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Abstract. In this paper we investigate how to adapt the TextRank
method to make it work in a supervised way. TextRank is a graph based
method that applies the ideas of the ranking algorithm used in Google
(PageRank) to Natural Language Processing (NLP) tasks. This approach
has given very good results in many NLP tasks like text summarization,
keyword extraction or word sense disambiguation. In all these tasks Text-
Rank operates in an unsupervised way, without using any training cor-
pus. Our main contribution is the definition of a method that allows to
apply TextRank to a graph that includes information generated from
a training tagged corpus. We have tested our method with the Part of
Speech (POS) tagging task, comparing the results with those obtained
with tools specialized in this task. The performance of our system is
quite near to these tools, improving the results of two of them when the
corpus tagset is big and therefore the tagging task more complicated.

1 Introduction

Graphs are a very natural representation for many NLP problems. In fact, we
have a graph just splitting a text into words and linking them by means of some
syntactic or semantic relationship. However, this obvious relationship between
texts and graphs is not always present in the models employed to implement
NLP applications. For example, generative approaches based on grammars tend
to use trees as representation model as a natural consequence of derivation trees.

In the other hand, statistical methods (based on corpus) rely on a great variety
of representations but only a few make use of the relationship between graphs and
language. Techniques like Maximun Entropy Modelling, Decision Trees, Memory
Based Learning or Transformation Based Learning are quite far of including
graph representations in their models. Examples of graph based techniques are
Markov Models and Neural Networks, though in this cases graphs are not used
to represent texts and they just give a way of connecting various elements to
build a model.

Recently, there have appeared research works that begin to make use of
graphs as the central representation for their models. There are even workshops
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(like [9]) whose main subject is the use of general graph methods and algorithms
for text processing tasks.

TextRank [0] is one of these approaches. This algorithm is based on the same
idea used originally by Google [4] to calculate the relevance of each web page in
Internet. It has been successfully applied to several NLP tasks. Despite of being
an unsupervised method it reaches similar results in these tasks than systems
that make use of additional information through annotated training corpora.

In this paper we investigate how to use TextRank in a supervised way. To
do that, we have collected information from a tagged training corpus and we
have included this information into a graph that is subsequently processed by
the TextRank algorithm. Our intuition says that if TextRank has behaved so
good working without training material, it would work better if we include in
the graph information extracted from thousands of examples of a task. The key
is to find the graph representation for a given problem that best exploits the
power of TextRank.

We have defined a general method for constructing a graph from a tagged
training corpus. This method is independent of the corpus tagset, so it can be
applied to any task that attachs tags to words. We have chosen the POS tagging
task for our experiments because it is easy to find resources to train the models
and because there are many specialized tagger generators to compare with. We
are aware that POS tagging is a well studied problem and that it is quite difficult
to improve the results reached by well tested techniques like Markov Models [2]
or Transformation Based Learning [3]. However, our aim is to learn from these
initial experiments in order to apply these ideas to more complex tasks in the
future.

The organization of the paper is as follows. In section two we present the
original version of TextRank, in the third section we show how to build a graph
from a training tagged corpus, fourth section includes the experimental design
and the results. Finally, in section five we draw the final conclusions and point
out some future work.

2 TextRank Algorithm

The main idea of TextRank is to apply a graph based ranking algorithm to
NLP tasks. It uses the well known PageRank algorithm [4], one of the keys
that converted Google in one of the most used browsers in Internet. PageRank
provides a web page ranking that relies on the knowledge stored in web page
links. It is used to calculate a relevance indicator for each page in Internet that
allows Google to decide which pages would be more interesting given a user
query. This idea has been successfully used in other domains, like social nets
analysis or citation analysis.

Formalization of PageRank is quite easy, let G = (V, E) be a graph where V
is a set of vertices and E is a a set of directed edges between two vertices. Two
functions are defined for a given vertex V;:



— In(V;) calculates the set of vertices that point to V;.
— Out(V;) calculates the set of vertices that V; points to.

The score of a vertex V; is computed by the following formula from In and
Out operations:
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where d is a dumping factor that is used to include in the model the probability
of a random jump from a vertex to any other, not necessarily linked to the first
one. The formula models the behavior of an Internet user that chooses randomly
a link with probability d and visit a completely new page with probability 1 —d.
In the original definition of PageRank a value of 0.85 is recommended for this
factor d, we have also used this value in our experiments.

An iterative algorithm is used to compute the PageRank value of each vertex of
the graph. This algorithm initially assigns arbitrary values to each node and then
applies iteratively the formula until convergence. This convergence is achieved
when the difference of the PageRank values in two consecutive iterations is less
than a predefined threshold for all the vertices in the graph. Once the iteration
has finished, the value calculated for each vertex represents the importance that
the algorithm has associated it.

This formula can be easily extended to admit weighted graphs. In this case
the score is computed using the following formula, where pj; is the weight of the
edge that goes from vertex V; to Vj:
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TextRank applies the ideas of PageRank to NLP tasks. To do that it is neces-
sary to find a way of representing the task by means of a graph. Then, PageRank
can be run and the resulting scores of each nodes can be used to make decisions
about the textual entities that they represent. The authors of TextRank have suc-
cessfully applied it to several NLP tasks, including Keyword Extraction and Text
Summarization [6] or Word Sense Disambiguation [7]. In each task the method
for building the graph is different. For example, in Keyword Extraction vertices
denote words, and edges represent that two words appear close in a phrase.

3 Building the Graph from an Annotated Corpus

Until now, applications developed using TextRank have followed a non super-
vised approach. That is, the graph is built directly from the test corpus avoiding
the use of any annotated training corpus. Despite of it, TextRank achieves re-
sults comparable to supervised learning systems that use annotated corpus in
the three tasks mentioned earlier. Perhaps, the reason for such an unexpected
fact (the same results are achieved using less information) may be found in the
nature of the selected tasks, that fit very well to graph models.



So, how good a task fits to graph models seems to be a critical factor for using
TextRank to solve it. In fact, we have not found any application to other classic
tasks of NLP such as POS tagging, syntactic analysis or information extraction.
The goal of this work is indeed to explore other application targets for this
algorithm while trying to adapt its use to a supervised framework that takes
advantage of the information available in a training annotated corpus.

The first thing we have to do is to decide a graph representation of our problem
from all the possible ones, in order to apply a ranking algorithm as TextRank.
We have chosen a representation as general as possible, so it could be used to
any tagging task. Vertices of our graphs are composed by two information units,
a word w and a tag t (V = (w,t)). For an ambiguous word (several tags can be
associated to it), as many vertices as possible tags to the word are created. The
main idea of our approach is building a graph for each sentence to be tagged,
applying TextRank to each of them and assigning to each word the tag from its
best ranked vertex. If a word appears more that once in a sentence, independent
vertices are created for each of them, this way it is possible to assign different
tags to each instance of the repeated word.

Edges in our graphs represent word cooccurrence, so between two vertexes
Vi = (wi,t;) and V; = (wj,t;) there is an edge if the word w; appears in the
sentence just after the word w;.

Finally, information extracted from the training corpus appears in the graph
as the weights of the edges. We have tested a few metrics to this purpose and
the best results have been achieved using a combination between emission pro-
babilities P(w|t) and transition probabilities P(¢|t'), the same ones used by the
bigrams based Hidden Markov Models. These probabilities are estimated coun-
ting words and tags in the corpus:
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where C(t) is the count of the tag ¢ in the training corpus, C'(w|t) is the count
of the word w tagged with tag ¢ and C(t',t) is the count of the tag ¢’ appearing
just before the tag t.

In the Hidden Markov Models, these probabilities are used to compute the
best tagged sentence maximizing this probability:

n
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We use the probability P(w;|t;)P(t;]t;—1) to weigh the edge going from vertex
Vi1 = (wi—1, ti—1) to vertex V; = (wj, t;), and then we let TextRank to compute
the importance of each node. Unlike Markov Models which consider all possible
solution paths of the graph as competitors, searching for the one maximizing the
earlier expression, our TextRank based approach is more collaborative, because
probabilities from different edges are combined in order to compute a score for
each vertex.



Many of the classic improvements of Markov Models, like trigrams and uni-
grams computing, unknown words estimations, or interpolation, may be easily
added to our system, just redefining the expression that weights the edges.

4 Experimental Design and Results

In this section we present the results we have obtained by applying different
variants of the supervised TextRank with two corpus annotated with POS tags.
There are many resources for this task and there are also many approaches which
we can compare the results to. This task, like many others in PLN, consists of
deciding which tags must be associated to a word. The set of labels is usually
medium size (between 50 and 100), there are words that can only be tagged with
one tag and others for which there are several possibilities. The hardest problem
in this task is raised by the unknown words, that are those that previously have
not been observed in the training corpus.

We have compared our results with the ones obtained with the most used
tools for the POS tagging. Both corpus used are written in English, one is the
Susanne corpus and the other one is made up of the four first sections of the
Penn TreeBank corpus, in table [Il there can be seen the sizes of the train and
test partitions for both corpus.

Table 1. Sizes of the corpus

Words (train) Words (test) Tags
Susanne Corpus 141140 15482 131
Penn Corpus 198550 46461 35

The most significant difference between both corpus is the number of tags.
The Penn corpus has a quite small set of tags of only 35 tags, whereas the
Susanne corpus triples that number with 131. In practice this can be translated
in the fact that tagging using the Susanne corpus is a much more difficult task
than with the Penn corpus, as it is verified in the results.

4.1 Other Systems

In order to compare the results obtained with our supervised version of TextRank
we have trained both corpus with tools specialized in the task of POS tagging.
Concretely we have used the following systems:

— TnT [2], is one of the most widely used, based in Markov Models, is very
fast and usually obtains very good results.

— TreeTagger [10], is based in decision trees, it generates a database register
for each word that is later used to obtain the decision tree.

— MBT [5], carries out the training by means of example based learning, an
efficient implementation of the nearest neighbour technique.



— fnTBL [§], is an efficient implementation of the Brill method based in the
generation of transformation rules guided by error discovery.

— MaxEnt [I], uses maximum entropy modelling to integrate, using restric-
tions, the problem knowledge provided by the training corpus.

Furthermore, we have a simple tagger that we have used as the baseline in
our experiments. This simple tagger associates to each word the most repeated
tag in the training corpus for it.

4.2 TextRank Variants

Besides the supervised method for TextRank presented in sectionBlof this article,
we have included in our group of experiments two variants of the original idea.

The first variant, namely inverse TextRank, consists in calculating the transi-
tion probabilities in reverse way. Therefore, P(t|t) shows the probability of tag
t' being found after the tag ¢, and it is estimated with the following formula from
the examples of the training corpus:

O(t,t)
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In this model, the edges of the graph represent the coocurrence relations of
the viewed words from right to left.

The second variant consists of the combination of the results of TextRank and
inverse TextRank. In order to do this we have applied the technique of stacking,
that consists of using the results of a first stage of learning to train a second
level classifier. In our case, for each word of the training corpus we have created
a register that contains the three tags better located according to TextRank and
inverse TextRank for this word, as well as the scores obtained by each proposal.
The register is completed with the real tag that is extracted directly from the
training corpus. With all the registers obtained from the training corpus, we
trained a decision tree that determines the tag to assign to a word based on the
proposals of TextRank and inverse TextRank.

P(t|t") =

4.3 Results

Before running these experiments we knew that it was going to be difficult to
obtain better results than the tools with which we would compare ourselves.
The reason: these tools are very specialized in the task of the POS tagging and
include special heuristics to solve this problem in the best possible way.

The table 2 shows the results of all the systems described in this article. With
respect to the baseline, TextRank fully surpasses the established ones for both
corpus. Considering the comparative with the other tools, our method beats
TreeTagger and MBT with the Susanne corpus, and remains quite close to the
rest of taggers for this corpus. In the case of the Penn corpus we did not beat
any of these tools, although our results are near to MBT and TreeTagger.



Table 2. Results of the experiments

Susanne Corpus Penn Corpus
Baseline 79.15% 80.01%
TnT 93.61% 95.48%
TreeTagger 91.27% 94.28%
fmTBL 93.01% 95.04%
MBT 91.16% 94.40%
MaxEnt 93.09% 95.47%
TextRank 90.32% 92.14%
Inverse TextRank 89.84% 91.70%
Combined TextRank 91.51% 93.28%

Although we have obtained worse results than most of the tools, it is nece-
ssary to emphasize that our method is still in a very preliminary phase. For
example, no special heuristic for the unknown words is included. It is to expect
that the results will improve when this type of information is included in the
construction of the graph, as most of the tools which we have compared it with
includes this information. It is also necessary to emphasize that the method has
behaved better with the most difficult corpus (Susanne with 131 tags as opposed
to the 35 tags of the Penn corpus), which makes us think that it can work better
in another type of harder tasks.

As an interpretation of these results we can conclude that the supervised
TextRank method can be an alternative to other learning methods used in NLP
tasks, although it is still necessary to make a deeper study to know how far it
can improve and in what tasks it can give better results.

5 Conclusions and Future Work

We have studied how to adapt the unsupervised algorithm TextRank to make
it work in a supervised way. We have defined a method to build a graph from a
phrase that integrates information extracted from a tagged training corpus. We
apply TextRank to this graph and use the ranking of each node to assign the
most plausible tag to each word of the phrase. The method is based on word
coocurrence and emission and transition probabilities similar to those used in
Markov Models.

We have developed an experimental study using two corpus (Susanne and
Penn TreeBank) tagged with POS information, and we have compared our results
with those obtained by specialized tools for this kind of task. Results show that
our method produces a satisfactory tagging, improving the results of two of them
when we train with the Susanne corpus (this corpus sets out a more difficult
problem than Penn corpus because its tagset is bigger).



Our future work will concern three main lines: 1) to study different ways of
building graphs that include more information extracted from the corpus, 2) to
define heuristics to manage special cases like unknown words, and 3) to apply
our method to other NLP tasks like Information Extraction or Shallow Parsing
to check out how it behaves with more complex tasks than POS tagging.
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