
ENHANCING THE LEARNING OF
PROGRAMMING USING SCRATCH

A RECOMMENDER-SYSTEMS-BASED APPROACH IN NON WEIRD COMMUNITIES

JESENNIA DEL PILAR CÁRDENAS COBO

ADVISED BY:
DR. DAVID BENAVIDES CUEVAS AND DR. JOSÉ A. GALINDO

First published in April 2020 by
Departamento de lenguajes y sistemas informáticos, ETSI Informática
Avda. de la Reina Mercedes s/n
Sevilla, 41012. SPAIN

Copyright c©MMXX Jesennia del Pilar Cárdenas Cobo
jcardenasc@unemi.edu.ec

Classification (ACM 2019):

Categories and subject descriptors:

[500]Applied computing-Computer-managed instruction
[500]Software and its engineering-Empirical software validation
[500]Applied computing-Collaborative learning
[500]Applied computing-Learning management systems
[500]Applied computing-Computer-assisted instruction

General Terms: Design, Theory, Algorithms, Computational thinking.

Additional Key Words and Phrases: Fundamentals of programming and program-
ming language, academic performance, Scratch, recommender systems, visual pro-
gramming languages, programming learning and educational programming learn-
ing.

3

Dr. David Benavides Cuevas y Dr. José A. Galindo, de la Universidad de
Sevilla.

HACEN CONSTAR

que Jesennia del Pilar Cárdenas Cobo, ha realizado bajo nuestra supervisión
el trabajo de investigación titulado

Enhancing the learning of programming using
Scratch, a recommender-systems-based
approach in non WEIRD communities

Una vez revisado, autorizamos el comienzo de los trámites para su pre-
sentación como tesis doctoral al tribunal que ha de juzgarlo.

Fdo. Dr. David Benavides Cuevas y Dr. José A. Galindo
Universidad de Sevilla,
Sevilla, febrero de 2020

4

5

Yo, Jesennia del Pilar Cárdenas Cobo, con número de DNI 0918224783,

DECLARO

Ser la autora del trabajo que se presenta en la memoria de esta tesis doctoral
que tiene por tı́tulo:

Enhancing the learning of programming using
Scratch, a recommender-systems-based
approach in non WEIRD communities

Lo cual firmo en Sevilla, febrero de 2020.

Fdo. Jesennia del Pilar Cárdenas Cobo

6

A mi familia:
Teresa, Olga, Segundo, Juan Carlos, Carlos y Ámbar.

8

Contents

Acknowledgements . 17

Resumen . 19

Abstract . 21

I Preface

1 Introduction . 3
1.1 Overview . 4
1.2 Research approach . 5

1.2.1 Experimental design . 8
1.3 Contributions . 9

1.3.1 Summary of contributions . 9
1.3.2 Publications in chronological order . 9
1.3.3 Audiovisual material . 13
1.3.4 Degree thesis . 14
1.3.5 Tool . 14

1.4 Structure of this dissertation . 14

II Background

2 Learning of programming . 19
2.1 Introduction . 20
2.2 WEIRD and non-WEIRD communities . 21
2.3 Programming teaching learning . 23

10 Contents

2.3.1 Pedagogical initiatives . 23
2.3.2 Bloom’s taxonomy . 25
2.3.3 Patterns-based learning . 26

2.4 Tools for learning programming . 27
2.4.1 Visual tools . 30

2.5 Scratch . 33
2.6 Autonomous learning . 36
2.7 Summary . 38

III Contributions

3 Motivation . 41

4 Scratch as a supporting tool for learning programming . 43

5 Improving autonomous learning with Scratch 45

6 Applying CARAMBA to transfer results 47

IV Final remarks

7 Conclusions and future work . 51
7.1 Conclusions . 52

7.1.1 Discussion and open challenges . 53
7.2 Future work . 54
7.3 Epilogue . 55

V Appendix

A Questionnaires in spanish . 59

B Tables and complementary figures 63

C Application of Scratch & CARAMBA 67

D Computational thinking test . 71

Contents 11

Bibliography . 81

12 Contents

List of Figures

1.1 Proposal design . 6
1.2 Research method . 6
1.3 Contribution scheme . 10
1.4 Timeline contributions . 11

A.1 Survey 1ST. Group homogeneity . 60
A.2 Survey 2ND. Satisfaction with the Scratch tool 61
A.3 Survey 3TH. Learning improvements . 62

B.1 Information of the student groups . 64

C.1 Diagnostic test . 68
C.2 Phase 1: teaching Scratch, guided mode . 69
C.3 Phase 2: applying Scratch + CARAMBA, autonomous mode 70

D.1 Initial diagnostic test, informative data . 72
D.2 Initial reasoning test for children, part I . 73
D.3 Initial reasoning test for children, part II . 74
D.4 Initial reasoning test for children, part III . 75
D.5 Initial reasoning test for children, part IV . 76
D.6 Computational thinking test for children, part I 77
D.7 Computational thinking test for children, part II 78
D.8 Computational thinking test for children, part III 79

14 List of Figures

List of Tables

2.1 Differences between WEIRD and non-WEIRD populations 22

7.1 Links between chapters, research questions and publications 53

B.1 Description of the sample object to study . 65
B.2 Analysis of variance (ANOVA) of a single factor 66

16 List of Tables

Acknowledgements

Expresar todo el agradecimiento que siento en unas pocas lı́neas es difı́cil,
sin embargo quiero iniciar por agradecer a Dios por mi existencia y por todas
las bendiciones recibidas.

Gracias a mis padres y abuelita, que con su apoyo incondicional me alen-
taron cada dı́a para seguir; a mi esposo e hijos por comprender mi ausencia;
a mi Director Dr. David Benavides Cuevas, sin su guı́a hubiese sido difı́cil
poder avanzar; a mi Director Dr. José A. Galindo, punto de apoyo valioso
para culminar este trabajo.

Gracias a la Universidad Estatal de Milagro y a sus autoridades, por confiar
en nuestro trabajo de investigación y permitir que bajo su insignia propague-
mos el anhelo de lograr que el pensamiento computacional se desarrolle en
nuestra región. A la Universidad de Sevilla por acojerme en su programa doc-
toral y darme la oportunidad de formarme. Al Dr. Miguel Toro, pues bastó
solo una ocasión de escuchar sus ideas, para orientar mi trabajo.

Gracias al Dr. Jesús Moreno, pues su experiencia y trabajo realizado, me
ha servido para enfocar los objetivos alcanzados. Al Dr. Marcos Román, por
permitirme aplicar sus resultados en la evaluación de nuestra intervención en
los contextos escolares.

Gracias a mis amigos Dr. Amilkar Puris y Dr. Pavel Novoa por compartir
su experiencia conmigo, a mis pupilos Oscar y Nestor, a los estudiantes, profe-
sores y amigos, quienes permitieron que trabaje con ellos y finalmente pero no
menos importante, decirte gracias Hans, tu apoyo ha sido increı́ble, mantener
la mente abierta fue la clave, tenı́as razón.

18 List of Tables

Abstract

In today’s world, there is a growing need for professionals with com-
puter skills in general, and programming in particular. This is so, both in
WEIRD contexts and in contexts that are not. WEIRD is an acronym from En-
glish (Western, Educated, Industrialized, Rich and Democratic Societies) and
is used to refer to certain sectors of societies that are ”Western, educated, in-
dustrialized, rich and democratic.

The Ecuadorian State makes a high investment in the training of engineer-
ing career professionals offered by public universities. In Ecuador, these ca-
reers are highly demanded. However, a high student dropout is verified be-
cause of basic courses such as Fundamentals of programming in the first lev-
els, with the consequent deficiencies in the performance of the careers. Addi-
tionally, the low qualification of students in computer skills indicates that they
have not developed their computational thinking skills. In general terms, this
situation contributes to the loss of competitiveness of non-WEIRD countries.

For this reason, a pedagogical tool was introduced in teaching that al-
lowed motivating programming learning, reducing dropout and improving
academic performance in introductory programming courses at the university
level.

We present empirical evidence of the positive impact of Scratch on the Fun-
damentals of Programming courses. The use of this pedagogical tool allowed
students to develop the concepts of programming logic and the use of ba-
sic control structures. Students who used Scratch scored better, reduced the
number of suspensions and dropouts, and students were encouraged to enjoy
the subject. On the other hand, when developing the exercises with Scratch
in combination with the CARAMBA recommendation system, students were
motivated to autonomous learning.

The use of CARAMBA showed a positive correlation with the chances of
success in the course. Specifically, > 52% success, whose result is 8% higher
than the use of Scratch alone (without recommendations) and 21% higher than

20 List of Tables

traditional education (without Scratch). The Scratch + CARAMBA tools were
scaled to a school environment in non-WEIR contexts for programming learn-
ing. The post-application evaluation of the instrument indicated increases in
exam scores in all grades analyzed. It should be noted that there was an av-
erage increase of 32% in the afternoon sections compared to the morning sec-
tions.

This work opens a line of future research by bringing a pedagogical tool to
different educational environments. The results allow us to propose improve-
ments in CARAMBA’s recommendations, especially regarding the variables of
usability, interactivity, language and pedagogical aspects. CARAMBA func-
tionality should incorporate educational data mining tools that allow learning
models based on the profile of the students. Another aspect that we intend
to address is the scalability of the system in order to adapt it to other study
scenarios with more users and number of exercises.

Resumen

En el mundo actual, existe cada vez mayor necesidad de profesionales
con conocimientos de computación en general, y programación en particu-
lar. Esto es ası́, tanto en contextos WEIRD como en contextos que no lo son.
WEIRD es un acrónimo procedente del inglés (Western, Educated, Industri-
alized, Rich and Democratic Societies) y es utilizado para referirse a ciertos
sectores de sociedades que son “occidentales, educadas, industrializadas, ri-
cas y democráticas”.

El Estado ecuatoriano realiza una alta inversión en la formación de profe-
sionales de carreras de ingenierı́a ofertadas por las universidades públicas. En
el Ecuador estas carreras son altamente demandadas. Sin embargo, se verifica
una alta deserción estudiantil a causa de cursos básicos como Fundamentos
de programación en los primeros niveles, con las consecuentes deficiencias
en el desempeño de las carreras. Adicionalmente, la baja calificación de los
estudiantes en competencias de computación indica que no tengan desarrol-
ladas sus habilidades de pensamiento computacional. En términos generales,
esta situación contribuye a la pérdida de la competitividad de los paı́ses non
WEIRD.

Por esta razón se introdujo en la enseñanza una herramienta pedagógica
que permitió motivar el aprendizaje de programación, disminuir la deserción
y mejorar el rendimiento académico en los cursos introductorios de progra-
mación a nivel universitario.

Presentamos evidencia empı́rica del impacto positivo de Scratch en los cur-
sos de Fundamentos de Programación. El uso de esta herramienta pedagógica
permitió desarrollar en los estudiantes los conceptos de lógica de progra-
mación y el uso de estructuras básicas de control. Los estudiantes que us-
aron Scratch obtuvieron mejores notas, redujeron la cantidad de suspensos y
de deserciones, y se alentaron a los estudiantes a disfrutar de la asignatura.
Por otro lado, al desarrollar los ejercicios con Scratch en combinación con el
sistema de recomendaciones CARAMBA los estudiantes se vieron motivados
al aprendizaje autónomo.

22 List of Tables

El uso de CARAMBA mostró una correlación positiva con las posibili-
dades de éxito en el curso. Concretamente, ¿52% de éxito, cuyo resultado
es 8% superior al uso solo de Scratch (sin recomendaciones) y 21% superior a
la enseñanza tradicional (sin Scratch). Las herramientas Scratch+CARAMBA
fueron escaladas a un ambiente escolar en contextos non WEIR para el apren-
dizaje de programación. La evaluación posterior a la aplicación del instru-
mento indicó incrementos en las notas de los exámenes en todos los grados
analizados. Vale destacar, que hubo un incremento del promedio de las notas
del 32% en las secciones de la tarde respecto a las secciones matutinas.

Este trabajo abre una lı́nea de investigación futura al llevar una her-
ramienta pedagógica a diferentes entornos educativos. Se pretende plantear
mejoras en las recomendaciones de CARAMBA, en especial respecto a las vari-
ables de usabilidad, interactividad, lenguaje y de aspectos pedagógicos. En la
funcionalidad de CARAMBA se deben incorporar herramientas de minerı́a de
datos educacionales que permitan modelos de aprendizaje basados en el perfil
de los estudiantes. Otro aspecto que pretendemos abordar es la escalabilidad
del sistema a fin de adaptarlo a otros escenarios de estudio con más usuarios
y cantidad de ejercicios.

Part I

Preface

Chapter 1

Introduction

One never reaches the total truth, nor is one ever totally estranged from it.

Aristotle

I n this dissertation, we present our research work developed with uni-
versity students from contexts with little access to technology where the

learning of programming becomes a difficulty to overcome the subject pro-
gramming fundamentals. For this reason we proposed the use of a pedagogi-
cal tool that allowed motivating the development of computer thinking skills
and that was later extended to other educational contexts.

In this chapter we give an overview of the contributions, the research
method we used and the publications that support the research of the problem
presented.

4 Chapter 1. Introduction

1.1 Overview

In today’s society, where most students are considered digital natives,
knowing how to program is a necessary skill for future professionals in order
to enhance thinking skills for solving problem [41]. Hence, numerous edu-
cational institutions have included this skill in their curricula, even at initial
levels (i.e. K-12). However, most of the experiences reported in literature
regarding this necessary initiative are in so-called WEIRD countries, meaning
those with Western, educated, industrialized, rich and democratic populations
[33, 40, 69].

In contrast, Latin America countries, and in particular Ecuador, have very
different characteristics. The presence of less-developed areas from a socioeco-
nomic point of view, makes the teaching and learning process of programming
a real challenge. It is even more so if you consider that students have a weak
basis for solving problems in the field of mathematics and physics. According
to [10, 56, 60], this can make learning programming a complex task, even in
university settings.

The context described above represents the vast majority of Ecuadorian
university students. A concrete example is the Universidad Estatal de Milagro
(UNEMI) where most of the students come from vulnerable sectors and have
integrated baccalaureates rather than specialized ones.

In this way, the number of university students who possess problem-
solving skills is low or simply non-existent. It is expected that many of them
will fail in the initial semesters, in which programming subjects are taught. In
the case of UNEMI, the aforementioned is observed in the degree courses of
Computer Systems Engineering and Industrial Engineering. Historical data
shows that both courses have high dropout rates in the initial semesters due
to the Fundamentals of Programming subject (FP).

To solve this problem, we present a set of contributions in this document
that can be summarized as follows (see Figure §1.1):

We used the Scratch visual programming language as a methodological
tool in classes (under the teacher’s direction) to introduce basic programming
concepts such as the use of variables, conditionals, cycles and some concur-
rence elements. Experience has shown a considerable improvement in learn-
ing and an acceptable level of motivation in students, in this experiment 46%
of the experimental group passed the mid-year test, while in the control group
only 21% made it.

We developed CARAMBA, a platform that integrates the Scratch language

1.2. Research approach 5

with an exercise recommendation system that personalizes students’ informal
learning. This platform uses a collaborative system to build personalized rec-
ommendations from the students’ own experience. In all experiments, the use
of this tool for autonomous learning complemented the students’ individual
needs, which helped to improve their academic performance and motivation.
Concretely, the success rate achieved by our proposal was more than 52%,
which is 8% more than the rate achieved during a previous experience using
Scratch only (no recommendation) and 21% more than the historical results of
teaching in the traditional way (without Scratch).

We applied a methodological scheme using Scratch and CARAMBA to de-
velop logical thinking in students aged between eight and twelve in a pub-
lic school. The experience was developed as a knowledge transfer project in
which university students were the main protagonists. The development of
the computational thinking of school students was validated with the Test-V2
instrument by Román et.al. [68], presenting a growth rate of 30% after the in-
tervention. In addition, the results obtained in the motivation of the university
students were encouraging, since only 96% confirm that have been motivated
to prepare themselves in the area of programming, prior to the start of the
project.

At the time of the intervention with UNEMI students, there were high rates
of failure in FP in Computer Systems Engineering and Industrial Engineering.
Our thesis presents the results of the didactic implementation of a program-
ming learning tool to support the conceptualization of programming logic and
the use of certain basic control structures. After the intervention, better results
in academic performance and motivation in the use of the proposed tool were
evident.

Furthermore, it was possible to extend the tool to other educational con-
texts, opening up the opportunity to intervene in diverse social environments
where the tool has been validated.

1.2 Research approach

In this research we adopted a quasi-experimental method [70] under an
empirical approach to measuring the incidence of the use of technological
tools in the learning of university students. The problematical identification
of the high rate of retention in the subject FP led to the search for teaching and
learning alternatives to help improve this indicator, which fostered a better
scenario for students

6 Chapter 1. Introduction

Figure 1.1: Proposal design

In the same way we applied the procedures shown in [37], where the tradi-
tional research method is adapted to the nature of technological research. The
researcher starts out by collecting the requirements stated by existing users
or by new potential users. When the requirements have been collected, the
researcher starts making an artifact which is supposed to satisfy the require-
ments. The overall hypothesis of the technology researcher is: The artifact
satisfied the need. The predictions form the starting point of evaluation (hy-
pothesis testing). To the researcher, evaluation may be just as challenging as
the manufacturing artifact. If the results are positive, the researcher may ar-
gue that the artifact satisfies the need. In case the results are negative, new
interactions in the research cycle: problem analysis - innovation - evaluation
may be stimulated. (Fig.§1.2)

Figure 1.2: Research method

1.2. Research approach 7

Next, we define the cycle used in each stage of our research in more detail:

Pilot test: The goal of this stage was to determine the cognitive and emo-
tional impact that Scratch has on students as a formal teaching-learning
method in the FP course. The methodological specifications were the
following:

• Analysis of the problem: The failure rate of students in the subject
FP . Why do students fail?

• Innovation: Scratch is introduced in the teaching learning process
of the subject using formal learning.

• Evaluation: Improvement in academic performance is obtained,
however the increase in motivation was not representative.

Recommender system: The goal was to determine the cognitive and emo-
tional impact of using personalized autonomous learning on students.

• Analysis of the problem: The student failure rate in FP. Why don’t
students consider Scratch to help them passing the course?

• Innovation: A platform integrating Scratch with an exercise recom-
mendation system to customize autonomous learning is developed.
In this way formal and informal learning are integrated into the
teaching process.

• Evaluation: Academic achievement is improved and the interest in
using the tool is satisfactory

Application: The aim was to adopt previously applied schemes in an educa-
tional scenario with different characteristics to measure their impact.

• Analysis of the problem: Low motivation level and poor problem
solution ability . Why is there little motivation in school students?

• Innovation: A linkage project is being developed that implements a
methodological strategy using Scratch and CARAMBA or learning
programming, involving children between eight and twelve years
of age.

• Evaluation: Students’ motivation in general increases and another
phase is planned for the project.

8 Chapter 1. Introduction

1.2.1 Experimental design

Experiments were carried out in all these three stages to measure the im-
pact of using technological tools on students’ learning. Below there is a brief
description design of each case.

• Pilot test: For this stage two groups of students (control and experimen-
tal), were set, each one applied a different method of teaching and learn-
ing (traditional and assisted with Scratch). At the beginning of the exper-
iment, homogeneity tests were carried out on the groups depending on
personal, social and economic variables. After a period of intervention,
the two groups were given the same knowledge review and the results
were compared. Satisfaction analysis was also performed for the group
that worked with Scratch.

• Recommendation system: In this case, we made a similar design to
the previous one but added a third experimental group that used
CARAMBA tool for autonomous learning. Also, we built a pretest-
postest experiment where the three groups faced the same test at the
beginning and end of the experiment. In this case the group homogene-
ity test was carried out on the basis of the results achieved in the initial
examination. After a period of implementation of the instrument, we
carried out a comparative analysis of final results. We also measured the
level of motivation of the group that used CARAMBA tool.

• Application: The experimental design in this case was oriented to im-
plement two phases. In the first phase, Scratch was used and after a
period CARAMBA was introduced. At the end of both periods the level
of motivation of each group of students was analyzed.

To obtain information from the experiments, we defined two research
instruments and applied them depending on the measurements to be per-
formed. Both instruments are defined below and identified in the phases of
their implementation:

• Knowledge test: This instrument allowed us to measure the cognitive
levels achieved by the students until the moment of its application. It
was elaborated by a group of teachers of the subject, which guaran-
teed consistency between questions and acquired knowledge. In addi-
tion, whenever the instrument was used, the same test was presented
for groups of students involved in the experiment. This instrument was
used in the first two stages(Pilot test and Recommendation system).

1.3. Contributions 9

• Satisfaction questionnaire: To measure satisfaction levels after the appli-
cation of each experiment, a questionnaire was designed, with questions
previously analyzed by a group of experts. This instrument was applied
only to the pilot groups in the first two stages and to all groups in the
third stage of the investigation.

1.3 Contributions

This section details the sequence in which the results of the thesis have
been obtained. Organized in three chapters which detail the methodology,
development, evaluation, results and conclusions from the pilot and imple-
mentation phase. Figure §1.3 presents the three contributions of this work and
then a general description of each of them is made.

1.3.1 Summary of contributions

• Applying Scratch to university students: This contribution was devel-
oped with the aim of measuring the impact of using technology as basic
programming concepts in the learning process.

• Applying Scratch Extension to students: This contribution was done to
measure the impact of a tool for informal and personalized learning on
motivation and learning .

• Scratch application and its extension to school children: This research
arises from the need to extend the results obtained in previous contri-
butions, in a scenario with different characteristics due to the level of
education.

1.3.2 Publications in chronological order

The results of our research have been published in different journals and
have been presented in congresses as our work has developed. Figure §1.4
shows a complete list of publications in chronological order. Additionally we
detail two works developed that are being considered for publication in jour-
nals and two videos showing the experiences when applying the experimen-
tation phase with engineering students and, additionally, with the students of
the school included in the research.

10 Chapter 1. Introduction

Figure 1.3: Contribution scheme

Next, we present a summary of each published contribution in chronolog-
ical order.

2016

• Conference paper in The World Engineering Education Forum & GEDC:
this conference was held in Seoul, South Korea, where academics, deans
of engineering faculties, students, and organizations, interested in con-
tributing to the improvement of engineering education met. In that con-
text we were able to expose an extract of the initial work of the research,
we presented the first improvements in the academic results of the stu-
dents at UNEMI, after the application of Scratch in the teaching of Pro-

1.3. Contributions 11

Figure 1.4: Timeline contributions

gramming for the first evaluation period of the subject FP.

WEFF & GEDC ’16: J. Cárdenas-Cobo, P. Novoa-Hernández, A.
Puris, and D. Benavides.Recommending Exercises in Scratch: An In-
tegrated Approach for Enhancing the Learning of Computer. Link:
http://www.ifees.net/weef-gedc-2016-seoul/ Programming

2017

• Conference paper in Latin American and Caribbean Conference: Global
Partnerships for Development and Engineering Education: Conference
for Engineering and Technology. A paper on the work carried out with

12 Chapter 1. Introduction

the students of the pre university at the State University of Milagro ,
Scratch + CARAMBA was presented, based on the best results obtained
with the first semester of Systems and Industrial Engineering students.
The intervention extends in the applicants for engineering This made
possible to validate CARAMBA tool once again.the work carried out
with pre-university students at Universidad Estatal de Milagro, Scratch
+ CARAMBA was presented. From the best results obtained with stu-
dents of first semester of Systems and Industrial Engineering, the inter-
vention of applicants in engineering programs is extended to students
of engineering, who must pass the program course to acquire a place in
engineering at UNEMI, this allows or validates once more CARAMBA
tool.

LACCEI ’17: J. Cárdenas-Cobo,David Benavides,Mayra D’Armas Reg-
nault, Mariuxi Vinueza, Jorge Rodas. Programación con la her-
ramienta SCRATCH +CARAMBA. Una experiencia de aprendizaje
significativo. Proceedings of the 15th LACCEI International Multi-
Conference. ISSN: 2414-6390. 2017. Link: laccei.org/index.php/
publications/laccei-proceedings.

2018

• Book chapter Springer: The best papers of the WEFF conference &
GEDC 2016, were selected to publish a book with the proceedings of
the congress. For this purpose the article was extended as well as an
epigraph which includes the improvement in motivation, with the help
of a tool recommending exercises to be solved. Exercises are suggested
based on comparison with similar users in terms of taste and difficulty.

WEEF & GEDC ’18: J. Cárdenas-Cobo, P. Novoa-Hernández, A. Puris,
and D. Benavides. Recommending Exercises in Scratch: An Integrated
Approach for Enhancing the Learning of Computer Programming.
Springer International Publishing, Cham, 2018. ISBN 978-3-319-60937-
9. Link: link.springer.com/chapter/10.1007/978-3-319-60937-9 20.

2019

• Article in IEEE Transactions on Learning Technologies journal: Recom-
mender Systems and Scratch is presented: An Integrated approach for
Enhancing computer programming learning. In this work the book
chapter is extended, adding the validation that allows to confirm the
Hypotesis that the tool contributes to improve the academic results of
engineering students.

1.3. Contributions 13

IEEE ’19: J. Cárdenas-Cobo, A. Puris, P. Novoa-
Hernández, J. A. Galindo, and D. Benavides. Recom-
mender systems and Scratch: An integrated approach for
enhancing computer programming learn- ing. IEEE Trans-
actions on Learning Technologies, 2.315 Impact Factor.

• Article in Computer and Education journal: The paper with the first
phase of our experimentation has been submitted. In this paper, we ex-
plain in detail the application of an instrument to show the impact of
applying Scratch on students’ motivation. Jesennia Cardenas, Águeda
Parra, José A. Galindo, Amilkar Puris, Pavel Novoa-Hernández, David
Benavides. Using Scratch to improve learning programming in college
students: a positive experience from Ecuador. Summit.

1.3.3 Audiovisual material

This section presents the audiovisual material developed for the diffusion
of the work developed, as well as the user manual with all the profiles con-
tained in CARAMBA.

• Engineering student experiences: This video was presented with the ex-
periences told by the students after the experimentation phase. It was
presented in the framework of the meeting of deans invited by Shenseng
University, where proposals for the improvement of engineering educa-
tion were shared. China Shenseng(2018). The video presented can be
watched at YouTube: https://youtu.be/WqNMVUDG4ts

• Engineering students and the children experiences: This year a video
with the experiences told by engineering students and the children at the
public school where the tool was implemented after the experimentation
phase was presented. The video presented can be watched at YouTube:
https://youtu.be/qCAiM8O9hSw

• User guides: The user guides of the profile student, teacher and ad-
ministrator can be seen in the video published at the following address
Youtube: https://youtu.be/iPvZxMi4RSc

14 Chapter 1. Introduction

1.3.4 Degree thesis

After implementing CARAMBA in school environments(2019), in order
to propose improvements to the tool, a degree thesis was proposed with a
Computer Systems Engineering student from UNEMI, the project applied an
evaluation based on ISO9126, the results can be reviewed in the repository:
http://repositorio.unemi.edu.ec/handle/123456789/4748

1.3.5 Tool

As a result of this research CARAMBA platform integrating an exer-
cise recommendation system with the Scratch tool was developed for au-
tonomous learning . The platform allows managing different types of users
(students and teachers) with their specific roles and obtaining statistics of stu-
dent behavior among other things. This platform is available at Public IP:
http://caramba.nas-code.com/ Further details of this application are given be-
low in Chapter §5. The link in GitHub is: https://github.com/jcardenasc1/
CARAMBA/tree/master/django project

1.4 Structure of this dissertation

This document is organized as follows:

Part I. Preface: In the first part of this dissertation we present the main con-
tributions of this research, as well as the background and motivational
scenarios that drove this work.

Part II. Background: In the second part of the dissertation we explore and
update the basic information necessary to understand the objectives of
this thesis. We clarify the term not WEIRD and its relation to our work.
In addition, the various pedagogical tools for learning programming are
analyzed and the concepts of learning are discussed in depth, which con-
tributes to presenting possible solutions in the following chapters.

Part III. Motivation: In this part, we review some ideas to improve program-
ming learning and motivate our research work. We deepen into work
related to the application of pedagogical tools for learning programming
in university contexts and analyze the use of recommendation systems
applied to education. This background also allows us to present the gen-
eral and specific objectives set out in the contributions.

1.4. Structure of this dissertation 15

Part IV. Contributions: In this part we present the main contributions of this
thesis. Divided into three chapters where it begins with the analysis of
the motivation for the use of a pedagogical tool for learning program-
ming in university courses, then the application of a recommendation
system combined with a pedagogical tool and finally the application of
the tools in other educational contexts.

Part V. Final Remarks: In this part, we present the conclusions of this thesis
and propose future work to address new and challenging open research
questions found during the realization of this dissertation.

Part VI. Appendixes: We will find the questionnaires used in the experimen-
tal phase, the tests applied in the evaluation of computational thinking,
images of the extension to school contexts and statistical graphs refer-
enced in the contributions.

16 Chapter 1. Introduction

Part II

Background

Chapter 2

Learning of programming

Nothing in this world should be feared...only understood. Now is the time to understand more, so
that we can fear less.

Marie Curie

T he teaching and learning of programming allows the development of
computer thinking. From this premise, several studies of the pedagogi-

cal tools that allow a better learning to novice students have been carried out.
However, there is little literature in developing country contexts.

In this chapter we present definitions related to the teaching-learning-
programming process, the types of pedagogical tools for learning the pro-
gram, we analyze how recommendation systems can contribute to au-
tonomous learning and we define the non WEIRD context, necessary to justify
our research work.

20 Chapter 2. Learning of programming

2.1 Introduction

-The programming process arouses a phycho-pedagogical interest because
of its effects on the cognitive capacities of the human being. It also contributes
to develop an intellectual activity that allows planning and designing strate-
gies, analyzing problems, building algorithms, structuring instructions, un-
derstanding one’s own programs or those written by others. In the same way,
it helps to learn the syntax of the different programming languages, to com-
pare strategies between expert and beginner programmers.

In our experience, many students have difficulties in the process of learn-
ing the programming disciplines, the most common obstacle has been the cre-
ation of algorithms according to the requirements of the class and the correct
use of programming languages. This is because for many people, the high
level of abstraction of the discipline and the difficulty to understand its com-
plete conceptual structure constitute a serious impediment [63].

Algorithms must be expressed in natural language and people must have
the appropriate tools to facilitate their development. In literature, several
studies have been published in which proposals have been made to increase
programming in education. Programming models or patterns, algorithm anal-
ysis, suitable environments for programming, among other research works
have been carried out to improve the teaching and learning of this subject,
such as the study developed by Gomes et al [31].

These tools are designed to help in the process of learning programming
through graphic representations of the solution algorithms and/or the exe-
cution of a program [31]. The main research in this area has been carried
out in developed communities (known in the field of psychology as WEIRD
communities) [33], where the conditions for student learning are completely
favourable.

However, there is little specialized literature on developing communities
where students have to survive with very complex economic, social and tech-
nological barriers to learning. That is why in this chapter we detail pedagog-
ical concepts, methodologies and learning tools that are considered the basis
for our work and clarify the concept of non WEIRD communities, which we
see as an opportunity for research.

2.2. WEIRD and non-WEIRD communities 21

2.2 WEIRD and non-WEIRD communities

According to Henry et al.[33] in order to better understand human psy-
chologies, scientists need to stop carrying out the majority of their experimen-
tal research on Westerners (WEIRD), a term used to define Western popula-
tions, educated, industrialized, rich and democratic. Cultural psychologists
have demonstrated that people from WEIRD communities tend to have a more
individualistic and less communal outlook on life, whereas those from non-
WEIRD backgrounds are more analytical and less holistic. [57].

Considering that university students from rich countries are numerous and
also WEIRD, psychologists warn that this becomes a drawback, as they are
not a representative group of human beings as a whole and are routinely used
in studies to make broad, and most likely false, assertions, about what drives
human behavior [40]. This is because it is easier to access WEIRD populations;
studying people who live in non WEIRD countries can offer a substantially
greater vision than just adjusting the instruments used in studied populations
[69].

Studies analyzing ethnicity and post-secondary enrolment show that stu-
dents from African American and Latin American backgrounds often start
and/or complete their universities studies in a non-traditional way for ex-
ample: late enrolment, part time university attendance and the rest from uni-
versity attendance. Many students from ethnic minorities will first enrol on
two-year courses in order to later graduate with a four-year degree [11, 28, 50].

Pope et al. [62] suggest that through the use of codified rules, humans can
solve many problems with precision, and conclude that there are several as-
pects of cultural variation, knowledge, environmental uncertainty and educa-
tional training, which could emphasize the intercultural differences observed
in the use of flexible strategies, so the alternatives allow them to be more ef-
ficient. The authors reported that, the results in Western communities are not
the same as in non WEIRD communities. This is because people, after having
chosen a suitable solution will ignore any other options, even if those other
options are more effective.

Arnett et al.[4] in their work state research papers published in the top
psychology journals focus on Western societies that are not representative in
humankind as a whole, this coincides with the work of Henrich et. al.[33],
which presents the results of an analysis of ten years production in psychology
journals that suggest a similar bias in the field of research.

Usually the first authors of the publications in the major journals of the

22 Chapter 2. Learning of programming

Characteristics WEIRD non WEIRD References

More individualist social orientation
√

[57]

Less collectivist social orientation
√

[57]

More analytic cognition (equity, cooperation, punishment)
√

[33, 57]

Holistic cognition (moral reasoning and independent/interdependent self-concept)
√

[33, 57]

Representative study group
√

[40]

Easy to access populations
√

[69]

Nontraditional university enrolment patterns
√

[11, 28, 50]

Precise solution to problems
√

[62]

More publications in journals of Psychology
√

[4]

Reasoning strategies
√

[33]

Implications for such traits as motivation or emotions
√

[33]

Table 2.1: Differences between WEIRD and non-WEIRD populations

American Psychological Association (APA) are affiliated with academic insti-
tutions of WEIRD societies, representing 12% of the world population. These
publications are accessed mostly by WEIRD populations and the authors as
a norm extend their results easily to all humanity [4] nonetheless, Henrich et
al.[33] demonstrated that there ’s a great difference between WEIRD and non-
WEIRD people from the cognitive point of view and in the process of making
social decisions(for example, equity, cooperation, punishment), strategies of
reasoning (in which WEIRDS have a tendency to be more analytical and non-
WEIRDs to be more holistic), moral reasoning, independence and interdepen-
dence (whereby WERDS are often more individualistic, effecting motivation
and emotions.

The dominance of WEIRD countries in psychology is due to economic rea-
sons, Arnett [4]. In developing countries, governments usually allocate fund-
ing to more critical expenditure of to psychology research. Nonetheless, this
fails to explain the low numbers of research papers from developed countries
that are not members of WEIRD (for example, Japan).

Studies in the field of psychology warn the need to carry out research to
obtain replicable results for non-WEIRD communities, which have character-
istics different from the WEIRD populations (see Table §2.1). This would allow
to reproduce experiments in different contexts, through validated measuring
instruments [62, 68] to ensure results.

2.3. Programming teaching learning 23

2.3 Programming teaching learning

The inconveniences experienced by students during the initial stages of
their programming studies have in many cases led to frustration and even fail-
ure at school. In fact, introductory programming courses have a high dropout
rate and students usually do not learn to programmer well [51].

Several factors affect the students’ performance in introductory program-
ming courses. However, the key factor is that students have a weakness in
cognitive reasoning skills and in applying problem solving strategies, i.e. they
have not developed the cognitive abilities to the level they need to start learn-
ing programming [51]. In literature, there is an extensive research at the in-
ternational level to examine experiences in the teaching-learning process of
programming in search of the most common difficulties students face during
introductory courses at university levels, and how to address these difficulties.
Some relevant studies are mentioned below.

2.3.1 Pedagogical initiatives

A study developed by Lahtinen et al. [49] with university students and
professors to identify difficulties in programming learning in introductory
courses, where more than half of the students (58.6 %) who participated in
the study already had programming experience when they began studying at
university and only 40.6 % considered that they had more or less moderate
programming skills, they found that:

• The wide range of experience levels among programming students be-
comes a problem when it comes to designing, interesting and challeng-
ing teaching for all.

• The most difficult factors in programming were to understanding how to
design a program capable of solving a given problem, dividing function-
ality into a set of procedures, and locating errors in their own programs.

• Self-study exercises were considered more useful than lectures and
hands-on sessions in computer classrooms.

• Self-programming was rated as more useful than self-study.

• The biggest problem among new programmers is not relate to their abil-
ity to understand the basics, but to their ability to apply their knowledge.

24 Chapter 2. Learning of programming

From these findings we can highlight that student learning will be greatly
improved by learning through practice and real life situations. While theory
is essential to programming, students also need to put theory into practice to
fully understand the concepts.

For example, Wing et al. [80] refer to computational thinking as a kind of
mental activity in which people state a problem to be solved with a computer.
Either humans or machines, generally a combination of both, can carry out the
solution.

It is worth noticing the experience of De Kereki et al.[27], who obtained
improvements in the results of initial programming courses and a decrease in
student dropout by incorporating a set of activities to promote active learning
classroom and by emphasizing teacher reflection on the importance of includ-
ing variety and innovation in teaching, with the aim of encouraging active
learning and keeping the students motivated for the content.

Questions have been raised about other aspects to consider in the devel-
opment of introductory courses. For Moroni et. al. [58] if we starts from the
need to follow a structured methodology based on the imperative paradigm,
we must consider: how to accurately express the problems to be solved, the
solution strategies to choose from; how to translate the solution into an al-
gorithm; and, how to write the corresponding program into a programming
language. Moroni et. al., argue pupils the need to develop effective problem
solving abilities. Also, the methodology used in this learning process should
tend to solve increasingly complex problems.

Gomes et al. [31], proposed a computational system that helps to reduce
current learning difficulties, through an environment based on prioritizing
students’ learning styles in the design of different problems and tasks. On
the basis of a constructive approach the system provides opportunities that
should be developed while the learning process is taking place. They make
trials, deduce, and step by step structure their own knowledge. This creates
a possibility for a more effective, personalized interaction with them, both in
the definition of meaningful activities proposed to the student, as well as in
the information given by the context.

Even though programmers need to be creative, and programming needs
creativity, the number of teaching methods which are getting closer to the cre-
ative and potential role of programming is low in computer science research.
Nonetheless teachers should foster the students’ motivation to improve their
creative skills. Researchers and computer education teachers, as a rule do
not emphasize creativeness, they focus more on the syntax and in making the
program meet its goal.In that context for beginners programmers should in-

2.3. Programming teaching learning 25

terpret and give solutions to problems algorithmically which are very difficult
to solve. That is also the case of encrypting the code of an algorithm in a pro-
gramming language which constitutes a challenge as well.

The learner must develop a self-learning capacity necessary to perform ac-
cording to the requirements of today’s society. To this end, For Hernan et al.
[34], propose to change the teaching focused on the transmission of formal
contents (expository classes), to a teaching focused on competence develop-
ment and based on the resolution of problems as close as possible to reality.
Problem based learning improves retention in the long term by forcing the
learner not only to understand but to apply or reflect the learned concept.

Human cognitive system has been a subject to many studies. Caspersen et
al. [14] presented a model for human cognitive architecture and three learn-
ing theories based on this model: cognitive load theory, cognitive learning
and practical examples. In this study they designed an introductory course to
object oriented programming, the main techniques applied were: worked ex-
amples, scaffolding, discolored orientation, cognitive learning and emphasis
on patterns to help create schemes and improve learning, it also uses a charac-
terization of programming based on models. Since then, several authors cite
this work [29, 35, 73, 77].

2.3.2 Bloom’s taxonomy

Bloom’s taxonomy describes and categorizes particular topics by how cog-
nitively difficult they are to learn by placing the topics in a hierarchy from less
to more complex. It states that a student must master one level before pass-
ing to the next. [36]. The above statement was verified by Kranch et al. [46]
in their study where they compared three instructional sequences for teach-
ing programming concepts to novices. According to the results, varying the
sequence did not change what novices learned, but it did affect the difficulty
they experienced in learning it.

There are six categories in the taxonomy: knowledge, comprehension, ap-
plication, analysis, synthesis and evaluation, whereby knowledge is the first
level and is relates to memorizing information and definitions. As one goes
up through the levels, one must make greater use of knowledge and mental
capacities until one reached evaluation, the highest level of cognition, which
is relates to creating, developing and writing ideas[73].

Shuidan et. al.[73] showed in their study that teaching from basic to ab-
stract produced the lowest rated effort and difficulty and the highest efficiency.

26 Chapter 2. Learning of programming

Beginner programmers need plenty of opportunities to practice using the fun-
damentals of programing syntax and structure before they are ready to tackle
standing program solution plans. This should encourage confidence among
less-advanced beginners in introductory courses.

Learning to program is difficult and it is usually responsible for high
dropout rates in computer schools, because newbies aim to understand pro-
gramming early on and when they do not, this leads to frustration and finally
leads some to give up [73]. In this study they report on the efforts of the
novice programmers in the summative evaluation. We analyzed the answers
provided by the beginners to the questions of the final exam, and we tried
to understand why students make such mistakes, through applying Bloom’s
taxonomy to determine the skills obtained, in conceptualization, analysis and
application.

In a study by Walley et.al. [78] which aimed at investigating how beginners
understand the exercises planned to develop a program, a set of questions was
designed to test the full range of cognitive processes within the program. Un-
derstanding the cognitive processes of Bloom’s Revised Taxonomy, they found
to be more difficult than expected although the revised taxonomy allowed
them several ideas to generate the questions they found difficult to locate at
each level of taxonomy, because the examples were not so simple to translate
to programming and it was also difficult for them to match the cognitive tasks
performed for each question with Bloom’s cognitive processes..

Despite the evaluation of their application in different languages, the dif-
ferences in the initialization values and in the relational operators used by the
students, did not result in changes in the logic of the questions or answers at
the end of the study.

The experiences reflected in literature imply that traditional approaches
and methods for teaching programming may not be very effective for a lot of
students. Rather, teaching must be adapted to the realities and cognitive needs
of students for their growth as programming professionals.

2.3.3 Patterns-based learning

Programming models or patterns are simple design patterns that can aid
beginners, because they are solutions to simple and recurring algorithmic
problems. The models are like building blocks that allow one to construct
new programs. These solutions appear often in solving calculation problems
and are similar to programming strategies that have been designed by profes-

2.4. Tools for learning programming 27

sionals. Therefore, students take advantage of good programming practices
through the application of programming patterns. Various computing fields
have adopted design patterns, including software engineering, teaching com-
puting, man-machine interaction and e-learning..

Despite the general search for ways to develop programming competences,
there is no consensus on what is the best way to learn how to program. Aquino
et al.[2] propose an alternative improvement in the learning of programming
models (or patterns) using video-games, as they point out that there is no ped-
agogy to teach programming that stands out significantly from others. In ad-
dition, they indicate that there continues to exist the need to create new peda-
gogical methods for introductory programming. In their article, these authors
present a pedagogical approach in support of creativity in the programming
and the results of a successful case study, in which the instructor enables the
students to learn programming patterns by means of a game. This game used
specific materials and improved students’ motivation and learning.

Referring to the benefits of this alternative, Aquino et al. [2],point out
that by means of drawing programming (programming patterns), students
can combine and recombine a repertoire of building blocks in a limitless way
to foster creativity in themselves. In addition, they get to know new possi-
ble solutions, which enables them to focus more attention on the process of
solving problems and in our opinion leaves aside the fact that the novices
are more concerned about their problems in syntax when using programming
languages directly.

2.4 Tools for learning programming

The current context of teaching-learning processes is characterized by
the progressive inclusion of Information and Communication Technologies
(ICTs). This section provides a description of a number of ICT tools that are
being used successfully to support the teaching and learning of programming,
and have yielded positive results, not only in quantitative but also qualitative
terms. Each educational tool has proven effective in particular aspects, so the
use of ICTs should be to find the appropriate technique, method or model to
meet the specific needs identified [20], and to support the teacher’s perfor-
mance, so that students learn the proposed objectives.

The proposal of new developments for improving programming teaching
has increased in recent years and several studies refer to the tools that have
been tested for use in programming teaching at introductory levels. Gerrero

28 Chapter 2. Learning of programming

et al. [32] and Silva et al. [19]. Other people involved in the programming pro-
cess have reviewed the literature based on educational tools for POO. Geor-
gantaki et al. [30]. Nowadays, there are many visual programming tools avail-
able for teaching this subject. Each tool has been designed according to the
particular characteristics and needs of the target user at a given time. The dif-
ferent visual tools can be analyzed according to relevant parameters or charac-
teristics that must be considered to make the decision about their application.

Teaching systems were designed in order to facilitate the learning of pro-
gramming. These systems have tried to render programming accessible in
three main ways. Firstly, they simplify programming mechanics; secondly,
they offer support to students; and thirdly, they motivate learners Kelleher et
al. [43].Programming software developed for children and adults, who have
no programming experience, usually includes tools that allow them to delve
into basic programming concepts.

Systems have focussed on rendering programming mechanics more man-
ageable. For example, they have taken out unncessary syntex, introduced pro-
gramming in visible contexts in which learners can view immediate results
and explored different options to typing programs. The authors mentioned
above, presented a proposal to classify the different programming teaching
systems available, by the primary aspect of programming that the system at-
tempts to simplify. Their classification covered forty-eight systems.

To counteract such obstacles during learning, the tool to be used for teach-
ing should avoid syntax errors; allow the student to develop logical and cre-
ative thinking, by performing various activities (for example, games); and al-
lowing the visualization of the execution of algorithms. Blocks-based Pro-
gramming Languages (BBPL) comply with those characteristics. Block pro-
gramming environments have become a popular way of introducing coding
and as a building block towards traditional languages based on text, however
one can also use these environments to write ”real code” [6].

Willen et al. [79], consider that the following properties can be used to
approach the definition of BBPL:

• The interface used by the language contains building blocks (virtual
and/or physical).

• It allows to develop programs through the combination of blocks of
atomic or compound code.

• Element code blocks can contain other blocks.

2.4. Tools for learning programming 29

The interface that requires the first property must contain blocks of selec-
tion code, representing building blocks that can be selected through input de-
vices.

Understanding programming requires the application of computational
thinking.Much research has been done in this area. Segredo et al. [72]
conducted a comprehensive research with the aim of determining already-
available initiatives, projects and tools that aid students to think in a compu-
tational manner. The following feature dimensions were selected for the com-
parison: Available for free, Online tool, Online repository availability, Project
reusability/remixing, Learning difficulty, Block-based/Text-based/Both, and
Target programming language.

Regarding the introduction of new programming environments in educa-
tional contexts, Anfurrutia et al. [1] recommend considering that, first, no
single programming environment is befitting to all situations, and second,
the activity carried out through the tool has to be appealing and relevant to
learners. In order to increase the programming education’s effectiveness, it
is essential to select the most appropriate programming language, taking into
consideration the learner’s cognitive level and the reason why they are learn-
ing to program[72].

Concerning the purpose of learning programming, programming can be
learned by two main reasons: to become a professional programmer or to
achieve other goals through creating programs [6]. Young people who start
their university studies in computer careers enter the first group mentioned.
Regarding their cognitive level, those who have not acquired programming
knowledge or experience during the previous school stages can be considered
at the initial learning levels.

Many proposals are built in answering to people’s needs and considering
their level and purpose for learning programming. Yoon et al. [83] derived the
educational programming language (EPL) selection criteria for beginner com-
puter science by means of the Delphi method using a panel of 20 experts. The
objective of their study was to increase teachers’ ability to choose a suitable
EPL for learners, taking into account the learners’ characteristics and tran-
sitioning programming knowledge from the EPL to a general-purpose pro-
gramming language.

Teachers cannot easily adapt tools providing to their own needs, those who
provide what to do in the next step, they rather do so without recognizing
alternative strategies. Keuning et. al. [44] perform a systematic review of
the tools to learn how to program, the training feedback they have to help
students improve their work. They also reviewed techniques used to gain

30 Chapter 2. Learning of programming

feedback, analyzed how adaptable feedback is and how people can evaluate
these tools. They report on the encoding results of a total of 101 tools and
reveal that the comments focus mainly on the identification of errors and less
on the solution of problems and on the next step to make.

Software visualization is used to aid the programmer/user of a program to
understand the artefact being observed. It is a relatively young development
with many advantages being made in the 1900s. Software visualization en-
vironments are developed as programming tools for professionals or instruc-
tional tools for demonstrations or interactive study in Costelloe et al. [16].

2.4.1 Visual tools

The first tools for learning programming were developed back in the 1960s.
Concretely, in 1967, Logo was developed using the Lisp programming lan-
guage [61], which allowed for the implementation of I/O operations, itera-
tion, data structures and algorithms. Nowadays, the programming challenges
and requirements for graduated students have increased interest in improving
the tools and techniques to teach programming, such as Scratch [66], Green-
foot [39, 48, 75] and Alice [15, 82]. They can be classifed as text-based and
block-based [22], the Table §?? shows the results of systematic review of pro-
gramming tools, in this paper [74] the challenges are examined that new pro-
grammers must deal with and popular online methods for helping students.

Currently, special visual environments for Visual Programming are be-
ing used. And there is a consistent research on the matter. According to
Kaucic et al. [42] early research results indicate that visual programming is
more effective than traditional textual programming, because it is more mo-
tivating, less boring and does not require the syntax of programming lan-
guages. Willem et al.[79] mention the different terms used in literature to
identify them. Terms like “Graphical Programming Languages”, “Visual Pro-
gramming Languages”, and “Block-Based Programming Languages” are be-
ing used to represent similar programming languages.

Guerrero et al. [32] establish a typology allowing to properly organize and
study the large number of tools used to assist in the teaching-learning process
of programming. The authors call ”Visual Learning Tools” those tools aimed
at graphically representing a program, since the algorithm of the program and
its development can be observed through graphical components. They are
tools that allow a high degree of interaction with the student. In addition,
Integrated Development Environments (IDEs) for their characteristics such as
syntax coloring, compilation, debugging, contextual support, among others,

2.4. Tools for learning programming 31

help the learning process depending on the techniques used.

The use of pictures and animations as educations aids is an accepted prac-
tice. Visualization is used to clarify complex concepts and to enable students
to develop mental models of the underlying concept, an algorithm or the steps
of the execution of a program [16]. Kunkle et al. [47] in their study make refer-
ence to previous research on POO learning through BlueJ. Findings indicated
that although BlueJ helps learners to comprehend object-orientated program-
ming concepts, it fails to help them comprehend the ’flow’ of a program. The
authors’ findings imply that the learners could not trace the program’s source
code and therefore could not understand the program’s execution.

Alice, developed by Carnegie Mellon University, works in an animation
environment of a 3D virtual world, that through the creation of simple anima-
tion or video games teaches students the basic constructions of programming.
The most interesting thing is that each instruction in Alice is equivalent to the
declaration of programming languages oriented to objects like Java and C++.
So Alice contributes to learning the fundamentals of cite object oriented pro-
gramming [76].

The goal of the Alice is to enhance students’ initial experience with learn-
ing to program in two ways: remove needless frustration, and provide an
environment in which novice programmers of both genders can create com-
pelling programs. Needless frustration is minimized by allowing students to
create programs without ever typing a line of code, thereby preventing syntax
errors. Programs are built primarily by dragging and dropping objects, and
include associated methods and standard control structures with the editor.
[47].

Scratch is a 2D environment that supports learning through the creation of
animations, games, and interactive stories, developed by the MIT Media Lab-
oratory (2003-2007) in agreement with the University of California Los Ange-
les. Its environment presents drag and drop functionalities, and allows using
objects called sprites and blocks that define a logical operation to perform. It
allows to improve the learning of such concepts as: variables, operators rela-
tionships and logic, and data types.

Scratch is a popular option in this review, considering that the trend is
moving toward an intelligent tutoring system, where students have a person-
alized commitment to their learning experience. The tools are presented as an
option for problem solving in an integrated environment and block program-
ming, they also focus on: supporting instructors on the curriculum, challenges
in CS and active learning through online tools.

32 Chapter 2. Learning of programming

Greenfoot is also considered within visual tools as a 2D virtual world. It
is a highly Specialized Educational Environment for Developing Interactive
Graphic Applications. It is based on Java Programming language [9]. It allows
the learning of fundamental concepts such as inheritance, abstraction, poly-
morphism to a higher level than introduced in such environments as Scratch
or Alice, and requires the introduction of Java code to a basic level.

BlueJ is an integrated development environment aimed at teachers as
learners introductory object-oriented programming in Java [47].It consists of a
graphical user interface for Java that allows the visualization of the program-
ming for beginners. It includes a frame based editor called Stride that allows
block programming such as Scratch and Greenfoot. You can experiment with
objects, classes, and create methods before moving to conceptualization and
without the need to know Java in depth. In the improved version you can
share projects through Github(social application on the web)[8].

Turingal consisted of a Turing machine and a magnetic tape. The student
wrote instructions using a language based on Pascal’s syntax, which allowed
the Turing machine to write and read symbols through the magnetic tape. For
Bubica et al. [9],Karel J Robot and Turingal systems sought to make program-
ming more specific or to reduce programming abstraction.

There are tools derived from previous generations that improve their inter-
activity, among them PLM (Programmer’s Learning Machine) which allows
to visualize the execution of code step by step for different programming lan-
guages [32].

A lot of research is done to help users to build their own blocks. Bu-
bica et al. [9], for example, mention Snap, previously known as BYOB,
which is a visual drag-and-drop programming language and an expanded re-
implimentation of Scratch. Snap includes first class lists, first class procedures
and continuations, making it appropriate for introducing high school or uni-
versity students to computer science.

Some programming languages have not lasted in time. The first program-
ming languages were very difficult to use and many could not learn the syntax
of programming [66]. This is why programming tools such as Scratch, Alice,
Greenfoot, have tried to overcome these limitations, since they are visual lan-
guages and there is no need to write programming lines, therefore typing mis-
takes are avoided; all types of customized projects and activities can be carried
out using multimedia resources [52].

Alice, Greenfoot and Scratch environments particularly stand out, as envi-
ronments that give students help they need, even though they were not de-

2.5. Scratch 33

veloped at the same time or within the same context, these environments can
be classified together because they share common characteristics. All three
are visual environments are intended to encourage direct involvement in any
attractive activity and all three have the task to introduce students to program-
ming [9].

2.5 Scratch

Scratch is an environmental programming which was built by Lego’s con-
structive learning ideas of Logo and was developed by a group of researchers
from the Lifelong Kindergarten Group of the Massachusetts Institute Media
Laboratory of Technology (MIT), under the direction of Mitchel [65]. It is a
free software, which runs under various operating systems and can be easily
installed, which was created in order to develop the logical and mathematical
thinking in children and young people.

Scratch is composed of a dynamic, attractive, colorful and simple graphical
interface that allows to perform, animations, games, dialogues, simulations,
diverse activities and interactive comics or other programs that often arise
from the student’s own creativity and can be shared with other students or
users of Scratch. Its environment uses menus, controls called color differenti-
ated block palette that allow the design of the program created by the student,
these controls come together as a puzzle in an orderly and logical way for
the program to work properly [38]. One of the benefits of Scratch is that it is
visually attractive and fosters learning in an active manner [45].

To be more effective in educational environments, programming tools need
to be very interactive and socialization oriented. Scratch is a social computing
environment and also a programming language that boasts a well-supported
interface, according to Malonely et al. [54] Although initially targeted at
teenagers, i.e. a younger audience than that in the first year of college, interest
in Scratch is increasing at university level as a way of introducing learnings to
difficult programming concepts.

Scratch has programming languages and its integrating capability is very
important. Programming languages must have the ability to encompass dif-
ferent types of projects so that people with very diverse interests and styles
are encouraged to schedule.Resnik et al. [66] The creators of Scratch have
taken into account three basic principles in the design of this programming
language to enable them to achieve this capability. These principles are: that
the programming language be playful, meaningful and social.[66]

34 Chapter 2. Learning of programming

• Leisure programming language. A programming language facilitating
gaming and feasible to try out different options easily. For the authors
the way to program in Scratch is similar to the way to build with Lego.
Lego construction pieces have connectors that suggest how they go to-
gether with each other and make easy to fiddle with them and start
building objects. Similarly, Scratch has some ”programming blocks” of
different colors, with connectors allowing them to fit together. The goal
is for children to play with them from the beginning and try to build
simple programs [66].

• Significant experience. One of the principles of learning is that people
working on meaningful projects learn and enjoy. The creators of Scratch
have given priority to two design criteria: diversity (which can sup-
port different types of projects: stories, games, animations, simulations)
and customization (that projects can be customized by importing photos,
voices, graphics, etc.)

• To promote social interaction. Scratch has a large community of peo-
ple who is attached to its website, and who collaborate and build on the
work of others. Other people will support, criticize and build on others
people’s projects, the goal is to finally turn out an interactive and enrich-
ing learning experience for all [66].

Given the difficulty that novice programmers have in understanding pro-
gramming concepts as well as the same process of learning to program,
Koorsse et al [45] studied the impact of programming support tools (PAT for
its acronym in English: Programming Assistance tools) that beginner pro-
grammers can utilize in order to learn how to program and/or better com-
prehend programming in secondary schools in South Africa.

This research’s main goal was to establish to establish programming sup-
port tools using a PAT affected students’ ability to understand programming
concepts and motivated them in terms of programming in general. In the re-
sults of this research, no conclusive evidence was found that students using
a PAT had a better understanding of programming concepts and were more
motivated towards programming than students who did not use a PAT, In
other words, the quantitative analysis suggested that the PATs did not affect
students’ ability to understand programming concepts in general.

However, in a case study of Scratch by the National Center for Informa-
tion Technology and Women [5], Scratch is described as a tool for ”promising
practices” to increase gender diversity itself. The research concludes that the
tool uses hands-on, active learning, its graphical interface is attractive; it mo-

2.5. Scratch 35

tivates creativity; it allows feedback; and it avoids syntax errors, so that users
can concentrate on relevant things such as processes and concepts.

They conducted two case studies. The first case study was a parallel net-
work of ordination. In unplugged activity, children move through the net-
work, and when two reach a node they compare the values of their data, with
the smaller one taking the path to the left and the other to the right. After
passing through the network, they leave the established order. This activity re-
quires key comparisons, which are common in many fundamental algorithms,
but also makes use of the animation that is natural in Scratch and Alice, to
emulate the Unplugged version where children physically walk through the
network

The second concept dealt with general ordering algorithms, choosing the
type of ordering. This concept requires languages to be able to easily use ma-
trices and their basic functionality, and to display operations in the matrix.
The final concept was to convert binary numbers to decimals, which requires
working with bits instead of integers. Authors conclude that Scratch and Alice
represent a creative and attractive way to teach programming and can be used
for important computer concepts. Scratch provides an easy way to use envi-
ronment, but lacks features such as sprite arrays, simple parameterization and
a larger virtual world size, can restrict what can be implemented, and how it
can be implemented.

A study by Malan et al. [53] showed that there was a decrease in the num-
ber of students dropping out of computer introductory courses when Scratch
was used to introduce programming concepts to students. One disadvantage
of Scratch is that users might have difficulty moving on to a traditional pro-
gramming environment, unless they also use a middleware tool that links the
concepts and programming methods that Scratch has introduced to them with
a programming language where syntax becomes relevant [66].

Scrath focuses on syntax rules due to the use of the drag and drop interface.
Therefore, users don’t need to worry about overloading the syntax of the pro-
gramming language, but focus more on planning the programming solutions
[45].

The experience of the leading universities in the world in teaching pro-
gramming is a point of reference for many researchers. In Harvard, students
are trained in Scratch for a week, and during that time they internalize com-
plex concepts, such as event management, concurrence, threads, as well as
the most trivial fundamental concepts such as types of repetition, selection,
variables, logic’s and data types. The conceptual fundamentals that are im-
mediately accessible to students through Scratch make the transition after a

36 Chapter 2. Learning of programming

single week in C or Java more natural.Wolz et al. [81]

The transitions from one environment or condition to another, in the study
of programming aspects are also a focus of interest. Armoni et al.[3] looked
at how students were able to transition from studying CS in Scratch’s visual
environment in middle school to studying it using a professional textual pro-
gramming language (C# or Java), whilst at secondary school. The case study
discovered that students who had used Scratch were better able to learn more
advanced concepts in secondary school and could learn them faster. Although
by the end of the process there were no significant differences in achievements
between Scratch users and non-Scratch users, the former were more likely to
enrol in CS classes and had higher levels of motivation and self-belief. There-
fore, there was a benefit to teaching CS, particularly visual programming, in
middle schools.

2.6 Autonomous learning

According to McCombs et al. [55] learners’ inclination for self-study in
terms of processing, planning and monitoring learning activities as well as
motivating themselves. The latter is essential for the former to take place and
motivation, in turn, depends on students believing that their efforts will bring
about academic success. Students need to be capable of evaluating their ability
in a positive way.

Two different conceptual approaches are used to refer to the student’s own
learning process, sometimes referred to as synonyms in literature: self directed
and self regulated learning. Rauner et al. [64] Many studies aim at clarifying
these concepts Ferrer-mico et al. [25] analyzed how programming in Scratch
affected young apprentices’ ability to self-study and concluded that most stu-
dents were aware that their knowledge of the subject could improve if they
spent more time utilizing Scratch.

In a study conducted by Chia et al. [24] the influence of setting prior goals
and regulating learning was investigated, the results revealed the following:
nonspecific objectives were more efficient that specific ones in terms of pro-
moting resource management related to self-regulation, so a self guided learn-
ing with goals set according to user profile.

In university education, distance education, vocational training or com-
puter technology are the areas in which autonomous learning is being in-
cluded with the highest priority, however to develop this model of teaching,
it must be recognized that autonomous learning influences the learner to as-

2.6. Autonomous learning 37

sume responsibility and internal control of the personal learning process, it
is also known as self directed learning, that is, a type of learning where the
standard is set by the subject learning [23].

University education should be oriented towards a comprehensive devel-
opment of the person ”a more humanistic cooperative, researcher and reflex-
ive type of person”. For this it is necessary to train students in areas of co-
operative and autonomous nature, for which teaching models which would
promote a new style of learning will be needed. Escribano et al.[23]

Responsibility and self-motivation for learning, within the context of
Ecuador, where students come from rural sectors, where they mostly lack tech-
nological tools to support teaching models, with low internet access in high
school educational establishments and students accustomed to classrooms, di-
rected by teachers with behavioral methodologies, The motivation for research
and development of autonomous learning is limited.

An example of this is the one presented by [7] in a study of university stu-
dents taking a programming course, which coincides with the previous para-
graph in considering that the moments when the teacher has control within
the classroom are those that mostly meet the learning requirements, besides
being the ones of greatest pleasure for the students, they like the practice, but
not the theory. Autonomous activities are the ones that students like the least,
this shows that there is lack of motivation, for self-learning. It suggests new
methods for maintaining and increasing motivation for work and tasks out-
side the classroom.

It is inevitable in the current context, where access to information has in-
creased, that students acquire a new role, different from the customary, they
must worry about learning to learn, adapting themselves to change, trans-
forming improved reality by managing their knowledge and becoming a
meaningful and autonomous learning agents, all this is considered basically
necessary for the acquisition of an academic and intellectual quality training
[12].

But what does it mean to learn to learn?, for Diaz et al. [21] is to teach
students to become independent and self regulated apprentices. However, at
present it appears that what the curricula at all levels of education promote
are apprentices who are highly dependent on the educational situation, with
ample or limited conceptual knowledge of different disciplinary subjects, but
with few tools or cognitive instruments helping them to face new learning
situations belonging to different domains and useful to the most diverse situ-
ations.

38 Chapter 2. Learning of programming

One of the types of products to be developed in an autonomous work
among others is the creative resolution of problems or cases, which we can be
integrated through the methodological approach of project oriented learning,
pedagogically based on the constructive approach of Kolb’s experience cycle
(1984). It is oriented to autonomous learning in which the research process and
the elaboration of a work, focused on the creation of a product or the appropri-
ate resolution to a problematic situation, acquires special relevance, through
a range of tasks, the application of interdisciplinary knowledge, and the ef-
fective use of resources. It allows solving problems with the search for open
solutions thus giving the student the opportunity to generate new knowledge
(Itesm, 2004) [26].

2.7 Summary

Based on studies revised, the criteria considered and the needs of univer-
sity students at introductory levels of programming, it is determined that the
Scratch tool is the best alternative for the first meeting of young people with
programming, who due to their lack of previous experiences in the matter,
and even in computing, need a low learning difficulty tool. In addition, the
tool is known for giving great emphasis to the development of computational
thinking so necessary for students to start their training as professionals in
computer sciences.

The change of learning methodology through a strategy of knowledge self-
regulation, suggests that the student should be attracted and motivated to
the use of a certain learning platform. Scratch has proven to be a tool that
puts syntax in the background, instead prioritizing the result and the ease of
assembling pieces of code allowing showing results of a given action.

Part III

Contributions

Chapter 3

Motivation

There is a driving force more powerful than steam, electricity and atomic energy: the will.

Albert Einstein,

L earning programming in university contexts, especially for young
novices with little access to technology, is a recurring problem in

Ecuador. To improve this difficulty, a number of pedagogical tools for teach-
ing programming have proliferated. For example, Scratch focuses its use on
concepts and not on syntax, and despite being a tool created for children, its
application with satisfactory results in universities has motivated its analysis
in our work. There are few cases found in universities that generate a research
opportunity.

In this chapter we present an analysis of existing VPLs for the develop-
ment of programming skills, we have reviewed cases in university environ-
ments, and how recommendation systems can be applied in educational envi-
ronments to motivate autonomous learning. †1

†1Part of this chapter is published on IEEE Transactions on Learning Technologies [18] and
Springer International Publishing [13]

42 Chapter 3. Motivation

Chapter 4

Scratch as a supporting tool for
learning programming

"Science serves to give us an idea of how enough our ignorance is."

Robert de Lamennais

D eveloping programming skills is a complex task for university stu-
dents from non-WEIRD contexts. This chapter presents the empirical

results of the experiments we conducted to determine the impact of a VPL on
programming learning. We have tested a number of hypotheses related to the
use of Scratch as an autonomous VPL.

44 Chapter 4. Scratch as a supporting tool for learning programming

Chapter 5

Improving autonomous learning
with Scratch

"I have deeply regretted that I have not advanced enough to understand the great fundamental
principles of mathematics, because the men who dominate them seem to have a sixth sense".

Charles Darwin

A s a result of the first experimental phase, it was necessary to establish
a VPL that would be more attractive for university students to learn

programming. This chapter presents the empirical results of the experiments
we carried out to determine the incidence of the VPL Scratch, extended with
a system of exercise recommendations, called CARAMBA(scrCrAtch Recom-
mendAtions for Mastering BAsic Computer Programming).

†1

†1Part of this chapter is published on IEEE Transactions on Learning Technologies [18] and
Springer International Publishing [13]

46 Chapter 5. Improving autonomous learning with Scratch

Chapter 6

Applying CARAMBA to transfer
results

Learning to think in a new way

Manifiesto Russel-Einstein the 1955

S tudents who access higher education come from educational environ-
ments with little or no access to technology, turning programming into

an entry barrier to university. This chapter presents the results of extending
Scracth + CARAMBA to another school sector to develop the computational
thinking of its children.

This chapter presents the results of the extension of Scracth + CARAMBA
to another educational sector to develop children’s computer thinking.

48 Chapter 6. Applying CARAMBA to transfer results

Part IV

Final remarks

Chapter 7

Conclusions and future work

Defend your right to think, because even thinking wrong is better than not thinking.

Hipatia

T his dissertation presents the difficulty of novices from non-WEIRD con-
texts in learning programming and how the impact of a VPL can im-

prove the results. This chapter presents the conclusions and future work based
on the results obtained.

52 Chapter 7. Conclusions and future work

7.1 Conclusions

In this dissertation we have shown that:

To improve the academic results of the novice students of programming of
the Faculty of Engineering of a University where their students belong to non-
WEIRD communities through the innovation of formal education to a self-
guided teaching and assisted by a tool created to recommend their route of
learning is not only feasible to achieve, but it has been able to evolve to adapt
to other contexts where, despite maintaining the non-WEIRD feature, the vari-
able is the age of the apprentices.

Although the proposal was focused on contributing to university learning,
it now successfully supports the learning of children between 8 and 12 years
old. In addition, as research problems deviate, new research challenges arise.
This motivates the need for new research and new solutions. In this thesis we
are confronted with some problems derived from the new tool of automated
analysis of recommendation for learning. Specifically, we have validated the
change in motivation to learn autonomously in this thesis. To demonstrate
the validity of our work we have validated in different contexts and stages,
from the first semesters of education, continuing with engineering aspirants
and extending the work to a public school with 460 boys and girls between 8
and 12 years.

• Q1: Did the students really use CARAMBA?

• Q2: Did they practice with exercises recommended by CARAMBA?

• Q3: To what extent did the level of practice in a given learning concept
influence student success?

• Q4: To what extent did practicing with CARAMBA contribute to student
success?

The results obtained allow us to conclude that: The main cause of the suc-
cess of CARAMBA is the high level of practice of the students with this tool.
However, one question still unanswered is: what causes students to exhibit
this high level of practice with CARAMBA?

In our opinion, this is mainly because the students are very motivated with
CARAMBA. We have observed that today’s students, like the majority of mod-
ern society, are closely linked to ICTs.Therefore, by using CARAMBA → more
motivation → more practice → better chances of success.

7.1. Conclusions 53

Research opportunities

We recognize that the hypothesis: Use of CARAMBA → More motiva-
tion → More practice → Better chances of success a requires an in-depth
formal study to explain it. Our future work will be oriented in that di-
rection.

7.1.1 Discussion and open challenges

In the Chapter §1 we detected and enumerated the research questions we
were willing to address in this thesis document. Table §7.1 shows the chapters
where we target each question with the contributions we published. Also, in
the next paragraph we will go through all different research questions and
explain how we addressed them.

RQ1 (Motivation): To what extent will Scratch’s learning strategy affect the
students’ motivation in FP? We presented and evaluated motivation in
Chapter §4.

RQ2 (Concept Learning): To what extent will Scratch’s learning strategy and
an exercise recommendation system affect the students’ ability? In chap-
ter §5, we studied the impact of an exercise recommendation system on
the students’ autonomous learning .

RQ3 (Final Performance): To what extent will Scratch’s learning strategy and
an exercise recommendation system affect the final performance of stu-
dents in FP? The impact of the application of the tool in other contexts,
in addition to the university and its impact on the perception of social
responsibility that it generates in university students, in addition to the
motivation to learn to teach, is presented in Chapter §6

Research question Chapter Published contributions

R1 §4 –

R2 §5 [13, 17, 18]

R3 §6 –

Table 7.1: Links between chapters, research questions and publications

54 Chapter 7. Conclusions and future work

Then, back to the original question:

How to reduce the failure rate in the subject fundamentals of program-
ming?

When analyzing the previous research questions, we can affirm that it is
possible to apply a recommendation system to contribute to programming
learning, we have evidenced an improvement in academic results in terms of
grades and the result of the interest aroused by the tool on learning, as well
as favorable results in the evaluation of computational thinking through an
instrument validated in other contexts and that has adapted to that of our
field of study.

To answer the original research question, we summarized that we im-
proved the failure rate of students in the Fundamentals of Programming
course. Specifically, we focused on awakening motivation for learning
through a tool and then evolved to autonomous learning methodology guided
by a recommendation system that allows interaction with similar learning
peers... However, there are still some facets of research that need future work.

7.2 Future work

In addition to the future work mentioned in each chapter of this disserta-
tion, here we show other future work necessary to cover all the needs detected
throughout the research work and that will continue to contribute to the dif-
ficulty in learning programming and address the other independent variables
that may intervene in the process of teaching learning.

• Controlled exercise recommendation: We will study whether construc-
tion recommendations take into account the order in which subjects are
taught to improve student learning. To this end, we will study recom-
mendation systems based on content. These systems recommend ele-
ments with similar characteristics to those already evaluated by a user.

• Scalability of the system: This tool is being adapted to other study sce-
narios with more users and exercises. In this sense, we are studying the
incorporation of a collaborative filtering system based on the [71] model.
This type of system reduces the size of the valuation matrix by trans-
forming it into characteristics that represent common factors presented
in the original matrix and allow the system to recognize patterns, which
may be hidden in the data set.

7.3. Epilogue 55

• CARAMBA Functionality: Incorporating other statistical details and
improving the user interface. Through EDM (Educational Data Mining),
we can perform data mining to obtain patterns of academic collabora-
tion, which will allow teachers to generate learning models based on the
user profiles they detect in their students.[59]. For Romero et al. [67]
EDM allows the use of data repositories in the analysis of students and
their learning, with the aim of building computational approaches that
combine data and theory to make practice work for the benefit of stu-
dents.

• SocialResponsibility: We propose to continue with the extension of
Scratch and CARAMBA to more public sector schools in the Milagro
region, covering more variables that may affect the learning of children
from 8 to 12 years old, to contribute to their development of computa-
tional thinking.

7.3 Epilogue

As a final conclusion, after reading these two famous phrases: ”The mind
is like a parachute . . . It only works if we have it open...” Albert Einstein. and
”True wisdom lies in recognizing one’s own ignorance.” Socrates.

We would like to paraphrase:

So we have to keep an open mind, accept that ignorance, despite so many
years of hard work, is still present and that we have much to do.

56 Chapter 7. Conclusions and future work

Part V

Appendix

Appendix A

Questionnaires in spanish

In this appendix we provide the three questionnaires in Spanish that were
asked to the university students.

60 Appendix A. Questionnaires in spanish

A1. Edad: valor númerico

A2. Sexo: Femenino 0 Masculino 0

A3. Nivel de instrucción de los padres: Sin estudios - Primario - Secundario -
Técnico - Superior/Postgrado

A4. Nivel socio-económico de la familia: Bajo - Medio - Alto

A5. Promedio de calificaciones en la secundaria:

A6. Promedio de calificaciones en el curso pre-universitario:

A7. Recibı́ clases de Fundamentos de Programación en el colegio SI NO

A8. Si tuviese la oportunidad de escoger mi opción de estudios, escogerı́a la
que estoy cursando actualmente

A9. Cumplo con regularidad las tareas encomendadas por el docente

A10. Asisto frecuentemente a clases

A11. Me interesa la asignatura Fundamentos de Programación

A12. Considero que tengo capacidad intelectual suficiente para superar la asig-
natura Fundamentos de Programación

A13. Considero que aprobaré la asignatura de Fundamentos de Programación

Figure A.1: Survey 1ST. Group homogeneity

61

B1. Tengo más posibilidades de ser promovido si se utiliza la herramienta
pedagógica Scratch. Escala Linkert

B2. Considero que la herramienta Scratch contribuirá a mejorar mis califica-
ciones en la asignatura Fundamentos de Programación. Escala Linkert

B3. Considero que Scratch puede contribuir a las metodologı́as utilizadas por
el docente de la asignatura de Fundamentos de Programación. Escala
Linkert

B4. Fue necesario tener conocimientos previos de programación para poder
usar la herramienta Scratch. Escala Linkert

B5. Me gustarı́a asistir a cursos donde se profundicen los conceptos y usos de
la herramienta Scratch. Escala Linkert

B6. La inclusión de Scratch en el contenido de la asignatura de Fundamentos
de Programación cambió positivamente mi perspectiva de la asignatura.
Escala Linkert

B7. Me gustarı́a que el software Scratch sea considerado como herramienta
pedagógica para impartir la clase de Fundamentos de Programación. Es-
cala Linkert

B8. Creo que utilizar el Scratch frente a otros métodos de enseñanza puede
mejorar las calificaciones de los estudiantes de la asignatura Fundamentos
de Programación. Escala Linkert

B9. Creo que utilizar el Scratch frente a otros métodos de programación puede
aumentar el interés y la motivación del alumnado por la asignatura Fun-
damentos de Programación. Escala Linkert

Figure A.2: Survey 2ND. Satisfaction with the Scratch tool

62 Appendix A. Questionnaires in spanish

C1. Considero que he logrado aprendizajes sólidos y duraderos en la asig-
natura Fundamentos de Programación. Escala Linkert

C2. Ha sido fácil el aprendizaje de la asignatura. Escala Linkert

C3. Creo que lo que he aprendido es aplicable a otras asignaturas de mi car-
rera

C4. Estudié la asignatura con entusiasmo e interés. Escala Linkert

C5. Creo que lo que he aprendido lo aplicaré en mi futuro profesional. Escala
Linkert

C6. Me siento motivado realizar fuera de clases actividades de profun-
dización o complemento de los conocimientos adquiridos en esta asig-
natura. Escala Linkert

C7. Me siento motivado para terminar la carrera. Escala Linkert

C8. Obtuve buenas calificaciones en la asignatura. Escala Linkert

Figure A.3: Survey 3TH. Learning improvements

Appendix B

Tables and complementary figures

In this appendix, we present a group of tables and figures that were ob-
tained in the investigation.

64 Appendix B. Tables and complementary figures

63.89%
65.79%

22.22%23.68%

11.11%10.53%

2.78%

17−20 21−24 25−28 >29
Range of age

13.89%13.16%

83.33%
86.84%

2.78%

Low Mediun High
Socio−economic level of the family

2.63%

30.56%

18.42%

52.78%52.63%

5.56%
2.63%

11.11%

23.68%

Without study Primary High school Technical Higher
Parental education level,

Groups Control Treatment

Figure B.1: Information of the student groups

65

95% of
the con-
fidence
interval
for the
mean

n Avg SD. SE. Lower
limit

Higher
limit

Min Max

Age
Control
group

38 20.35 2.635 .389 19.57 21.13 17 28

Group
using
Scratch

36 21.09 3.387 .389 20.32 21.87 18 34

Total 74 20.81 3.134 .284 20.25 21.37 17 34
Level of
studies of
the
students
parents

Control
group

38 3.33 1.117 .165 2.99 3.66 1 5

Group
using
Scratch

36 2.99 .931 .107 2.77 3.20 2 5

Total 74 3.11 1.014 .092 2.93 3.30 1 5
Socio-
economic
level of
students’
families

Control
group

37 1.87 .344 .051 1.76 1.97 1 2

Group
using
Scratch

35 1.82 .420 .049 1.72 1.92 1 3

Total 72 1.84 .392 .036 1.77 1.91 1 3
Average
grades in
high
school

Control
group

38 8.82 .544 .080 8.66 8.98 8.00 9.70

Group
using
Scratch

36 8.87 .517 .059 8.75 8.99 7.79 10.00

Total 74 8.85 .526 .047 8.76 8.95 7.79 10.00
Average
grades in
the pre-
university
course

Control
group

32 8.53 1.616 .255 8.01 9.0506 7.30 18.00

Group
using
Scratch

30 8.62 1.368 .164 8.29 8.9504 7.50 19.00

Total 62 8.589 1.457 .139 8.31 8.86 7.30 19.00

Table B.1: Description of the sample object to study

66 Appendix B. Tables and complementary figures

Sum of
Squares

gl Quadratic
average

F Sig

Age
Control
group

15.874 1 15.874 1.624 .205

Group
using
Scratch

1172.790 71 9.773

Total 1188.664 72
Level of
studies of
the students
parents

Control
group

3.298 1 3.298 3.268 .073

Group
using
Scratch

121.096 71 1.009

Total 124.393 72
Socio-
economic
level of
students
family

Control
group

.056 1 .056 .362 .549

Group
using
Scratch

17.885 65 .154

Total 17.941 66
Average
grades in
high
school

Control
group

.068 1 .068 .242 .623

Group
using
Scratch

33.454 70 .279

Total 33.521 71
Average
grades in
the pre-
university
course

Control
group

.197 1 .197 .092 .763

Group
using
Scratch

229.342 47 2.143

Total 229.538 48

Table B.2: Analysis of variance (ANOVA) of a single factor

Appendix C

Application of Scratch &
CARAMBA

In this appendix we present images of the application of Scratch &
CARAMBA in a school context with the intervention of university students
in the career of system engineering.

68 Appendix C. Application of Scratch & CARAMBA

Figure C.1: Diagnostic test

69

Figure C.2: Phase 1: teaching Scratch, guided mode

70 Appendix C. Application of Scratch & CARAMBA

Figure C.3: Phase 2: applying Scratch + CARAMBA, autonomous mode

Appendix D

Computational thinking test

In this appendix, we present the test with which we evaluate the computa-
tional thinking, before and after our intervention, with Scratch

72 Appendix D. Computational thinking test

UNIVERSIDAD ESTATAL DE MILAGRO
FACULTAD DE CIENCIAS DE LA INGENIERÍA

CARRERA DE INGENIERÍA EN SISTEMAS
PROYECTO DE VINCULACIÓN CON LA COLECTIVIDAD

“ACADEMIA DE COMPUTACIÓN 2018”

ENCUESTA DIRIGIDA A NIÑOS DE 8 A 12 AÑOS DEL CANTÓN MILAGRO.
CÓDIGO: CURSO-PARALELO-SECCION-No.LISTA FECHA:________
DATOS INFORMATIVOS:

1.- Género:

o Femenino
o Masculino

2.- Pueblo y Nacionalidad:
o Indígenas
o Mestizos
o Afroamericanos
o Blancos
o Montubios
o Otros

3.- Grupo Etario (edad):
o Menores de 15 años
o De 15 a 29 años
o De 30 a 64 años
o De 65 y más años

4.- Tipo de discapacidades:
o Física
o Psicológica
o Mental
o Auditiva
o Visual
o Ninguna

5.- Nacionalidad:
o Ecuatoriano
o Extranjero

Indica el grado de uso de los siguientes servicios que
ofrece Internet SI NO A VECES

Tienes computador en casa
Tienes Internet en casa
Descargar música
Descargar documentos
Descargar imágenes
Descargar vídeos
Ingresas al Facebook
Descargas investigaciones
Los conocimientos que tienes sobre informática, sea
mucho o poco, ¿quién te los ha enseñado? SI NO A VECES

Amigos
Papa
Mama
Hermano
Solo
Curso de formación
Escuela
Cyber

Figure D.1: Initial diagnostic test, informative data

73

TEST DE RAZONAMIENTO PARA NIÑOS DE 8 A 12 AÑOS

Descubre que capacidad de razonamiento lógico tienen tus niños mediante las preguntas de este test.

1. SACO es a ASCO como 7683 es a:
3678
3867
6783
8376

2. ¿Cuantos círculos ves en este dibujo?

 7
 8
 9
10

3. ¿Cuántos rectángulos hay en la siguiente figura?

6
18
15
10

4. Si 4 manzanas de una docena están podridas, ¿cuántas están buenas?
2
4
8
6

Figure D.2: Initial reasoning test for children, part I

74 Appendix D. Computational thinking test

5. Busca entre las seis figuras de la derecha cuál es la que falta en el conjunto de la izquierda

A
B
C
D
E
F

6. ¿Cuál es el número que completa la serie?
6 - 12- 18- 24 - -36

34
28
30
32

7. ¿Cuál es el número que falta?

3
33
13
14

8. Observa la siguiente imagen, piensa y calcula el valor del cuadrado.

Figure D.3: Initial reasoning test for children, part II

75

24
26
28
30

9. Hoy he ido a comprar naranjas, la dependienta me ha dado 6, yo me he comido 1 y mi padre 2,
otra se ha caído y se ha estropeado. ¿Cuántas naranjas me quedan?
2
3
4
Ninguna

10. ¿Qué valor sigue en esta serie?
4 - 6 - 8 - 10 - ?

9
11
12
14

11. ¿Qué letra sigue en esta serie?
c - e - g - i - ?

k
a
l
j

12. ¿Qué ficha sigue en la siguiente serie?

a
b
c
d

Figure D.4: Initial reasoning test for children, part III

76 Appendix D. Computational thinking test

13. ¿Qué ficha sigue en la siguiente serie?

a
b
c
d

14. Si una mosca vive 5 días y en un día recorre 12 metros ¿cuánto recorrerá en 7 días?

60 metros
84 metros
77 metros

15. Si 7 gatos cazan 7 ratones en 7 minutos ¿cuantos minutos se demorará 1 gato en cazar 1 ratón?

7
1
5

16. ¿En qué número está estacionado de auto?

78
87
89
86

17. DIDIIDID es a 49499494 como DIIDIIDD es a:

94494499
49949944
49499494
94944949
49944949

Figure D.5: Initial reasoning test for children, part IV

77

UNIVERSIDAD ESTATAL DE MILAGRO

Evaluación

NOMBRE:

 20

Figure D.6: Computational thinking test for children, part I

78 Appendix D. Computational thinking test

Figure D.7: Computational thinking test for children, part II

79

Figure D.8: Computational thinking test for children, part III

80 Appendix D. Computational thinking test

Bibliography

[1] F. I. Anfurrutia, A. Álvarez, M. Larrañaga, and J.-M. López-Gil. Visual
programming environments for object oriented programming: Accep-
tance and effects in students’ motivation. VAEP-RITA, 5(1):11–18, 2017.

[2] A. Aquino-Leal and D. James-Ferreira. Learning programming patterns
using games. International Journal of Information and Communication
Technology Education (IJICTE), 12(2):23–34, 2016.

[3] M. Armoni, O. Meerbaum-Salant, and M. Ben-Ari. From scratch to “real”
programming. Trans. Comput. Educ., 14(4):25: 1–25: 15, feb 2015. ISSN
1946-6226.

[4] J. J. Arnett. The neglected 95%: why american psychology needs to be-
come less american. American Psychologist, 63(7):602, 2008.

[5] L. Barker. Snap, create, and share with scratch (case study 5). In Promis-
ing Practices workshop. NCWIT (National Center for Women and Infor-
mation Technology), 2008.

[6] D. Bau, J. Gray, C. Kelleher, J. Sheldon, and F. Turbak. Learnable Pro-
gramming: Blocks and Beyond. arXiv preprint arXiv:1705.09413, 2017.
ISSN 00010782.

[7] J. Beltrán, H. Sánchez, and M. Ricob. Quantitative and qualitative analy-
sis of learning programming at the central university of ecuador. Revista
Tecnológica ESPOL, 28(5):194–210, 2015.

[8] N. C. Brown and A. Altadmri. What’s new in bluej 4: Git, stride and
more. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education, pages 734–734, 2017.

[9] N. Bubica and I. Boljat. Strategies for Teaching Programming to Meet
New Challenges : State of the Art. Ciet, (June):1–6, 2014.

82 Bibliography

[10] S.-y. Byun, J. L. Meece, and M. J. Irvin. Rural-nonrural disparities in post-
secondary educational attainment revisited. American educational re-
search journal, 49(3):412–437, 2012.

[11] S.-y. Byun, J. L. Meece, and C. A. Agger. Predictors of college attendance
patterns of rural youth. Research in Higher Education, 58(8):817–842,
2017.

[12] R. Cano González. Tutorı́a universitaria y aprendizaje por competencias.
¿cómo lograrlo?. REIFOP, 12(1):181–204, 2009.

[13] J. Cárdenas-Cobo, P. Novoa-Hernández, A. Puris, and D. Benavides. Rec-
ommending Exercises in Scratch: An Integrated Approach for Enhancing
the Learning of Computer Programming, pages 255–271. Springer Inter-
national Publishing, Cham, 2018. ISBN 978-3-319-60937-9.

[14] M. E. Caspersen and J. Bennedsen. Instructional design of a program-
ming course: A learning theoretic approach. In Proceedings of the Third
International Workshop on Computing Education Research, ICER ’07,
pages 111–122, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-841-1.

[15] S. Cooper, W. Dann, and R. Pausch. Alice: A 3-d tool for introductory pro-
gramming concepts. Journal of Computing Sciences in Colleges., pages
107–116, 2000.

[16] E. Costelloe. Teaching programming the state of the art. The Center
for Research in IT in Education. Dept. of Computer Science Education.
Dublin: Trinity College, 2004.

[17] J. Cárdenas-Cobo, D. Benavides, M. D’Armas Regnault, M. Vinueza, and
J. Rodas. Programación con la herramienta scratch +caramba. una expe-
riencia de aprendizaje significativo. LACCEI, pages 107–144, 2017.

[18] J. Cárdenas-Cobo, A. Puris, P. Novoa-Hernández, J. A. Galindo, and
D. Benavides. Recommender systems and scratch: An integrated ap-
proach for enhancing computer programming learning. IEEE Transac-
tions on Learning Technologies, pages 1–1, 2019. ISSN 1939-1382.

[19] T. R. da Silva, T. Medeiros, H. Medeiros, R. Lopes, and E. Aranha. Ensino-
aprendizagem de programação: uma revisão sistemática da literatura.
Revista Brasileira de Informática na Educação, 23(01):182, 2015. ISSN
1414-5685.

[20] C. Desrosiers and G. Karypis. A Comprehensive Survey of
Neighborhood-based Recommendation Methods. In K. P. e. Ricci F.,

Bibliography 83

Rokach L., Shapira B., editor, Recommender Systems Handbook, chap-
ter Chapter 4, pages 107–144. Springer, Boston, MA, 2011. ISBN
9780387858203.

[21] F. Dı́az and G. Hernández. Estrategias docentes para un aprendizaje sig-
nificativo, volume 2. México: McGraw-Hill, 2002.

[22] H. Y. Durak and T. Güyer. Design and development of an instructional
program for teaching programming processes to gifted students using
scratch. In Curriculum development for gifted education programs,
pages 61–99. IGI Global, 2018.

[23] A. Escribano González. Aprendizaje cooperativo y autónomo en la
enseñanza universitaria. Universidad de Salamanca, 1995.

[24] C. Feng and M. Chen. The effects of goal specificity and scaffolding on
programming performance and self-regulation in game design. British
Educational Research Association, 39(1):285–302, 2013.

[25] T. Ferrer-Mico, M. Àngel Prats-Fernàndez, and A. Redo-Sanchez. Impact
of scratch programming on students’ understanding of their own learn-
ing process. Procedia - Social and Behavioral Sciences, 46:1219 – 1223,
2012. ISSN 1877-0428. 4th World Conference on Educational Sciences
(WCES-2012) 02-05 February 2012 Barcelona, Spain.

[26] C. L. Fraile. Estudio y trabajo autónomos del estudiante. Métodos y
modalidades de enseñanza centradas en el desarrollo de competencias.
Madrid: Alianza Universidad, pages 191–223, 2006.

[27] I. Friss de Kereki and A. Adorjan. Innovación en la Enseñanza Inicial de la
Programación. In Innovando en Educación Superior: Experiencias clave
en Latinoamérica y el Caribe 2016-2017, volume 3, chapter Integración de
TIC’s, pages 55–66. Universidad de Chile, Santiago, Chile, 2017. ISBN
978-956-19-1015-7.

[28] R. Fry. Latinos in higher education: Many enroll, too few graduate. Pew
Hispanic Center, 2002.

[29] R. Garcia, K. Falkner, and R. Vivian. Systematic literature review: Self-
regulated learning strategies using e-learning tools for computer science.
Computers & Education, 123:150–163, 2018.

[30] S. Georgantaki and S. Retails. Using Educational Tools for Teaching Ob-
ject Oriented Design and Programming. Journal of Information Technol-
ogy Education, 7(2):111–130, 2007.

84 Bibliography

[31] A. Gǿmes and A. Méndez. An environment to improve programming ed-
ucation. international conference on computer systems and technologies-
compsystech ’07 proceedings. In 07, volume 40, page 88. ACM New York,
NY, USA, 2007.

[32] M. Guerrero, D. S. Guamán, and J. C. Caiza. Review of support tools in
the teaching-learning process of programming. Revista Politécnica, 35(1),
2015.

[33] J. Henrich, S. J. Heine, and A. Norenzayan. Most people are not weird.
Nature, 466(7302):29, 2010.

[34] I. Hernán, J. Á. Velázquez, and C. A. Lázaro. Dos herramientas educa-
tivas para el aprendizaje de programación: generación de comentarios y
creación de objetos. VII Congreso Internacional de Interacci{ó}n Persona-
Ordenador, (July 2014):325–334, 2006.

[35] N. Hollender, C. Hofmann, M. Deneke, and B. Schmitz. Integrating cog-
nitive load theory and concepts of human–computer interaction. Com-
puters in human behavior, 26(6):1278–1288, 2010.

[36] W. Huitt. Bloom et al.’s taxonomy of the cognitive domain. Educational
psychology interactive, 22, 2004.

[37] S. Ida and S. Ketil. Technology research explained, chapter Technology
research explained. Technical report, pages 6–10. SINTEF ICT, NORWAY,
2007.

[38] E. D. Jaramillo. Incidencia de la implementación del ambiente de pro-
gramación scratch, en los estudiantes de media técnica, para el desarrollo
de la competencia laboral general de tipo intelectual exigida por el min-
isterio de educación nacional colombiano. Master’s thesis, Universidad
Autónoma de Bucaramanga, Colombia, 2013.

[39] M. Jonas and M. Sabin. Computational thinking in greenfoot: Ai game
strageties for cs1: Conference workshop. J. Comput. Sci. Coll., 30(6):8–10,
June 2015. ISSN 1937-4771.

[40] D. Jones. A weird view of human nature skews psychologists’ studies,
2010.

[41] F. Kalelioğlu. A new way of teaching programming skills to k-12 stu-
dents: Code. org. Computers in Human Behavior, 52:200–210, 2015.

[42] B. Kaucic and T. Asic. Improving introductory programming with
Scratch? 2011 Proceedings of the 34th International Convention MIPRO,
(January 2011):1095–1100, 2011.

Bibliography 85

[43] C. Kelleher and R. Pausch. Lowering the barriers to programming. ACM
Computing Surveys, 37(2):83–137, 2005. ISSN 03600300.

[44] H. Keuning, J. Jeuring, and B. Heeren. A systematic literature review of
automated feedback generation for programming exercises. ACM Trans.
Comput. Educ., 19(1):3:1–3:43, Sept. 2018. ISSN 1946-6226.

[45] M. Koorsse, C. Cilliers, and A. Calitz. Programming assistance tools
to support the learning of it programming in south african secondary
schools. Computers & Education, 82:162–178, 2015.

[46] D. A. Kranch. Teaching the novice programmer: A study of instructional
sequences and perception. Education and Information Technologies, 17
(3):291–313, 2012. ISSN 13602357.

[47] W. M. Kunkle. The Impact of Different Teaching Approaches and Lan-
guages on Student Learning of Introductory Programming Concepts.
ProQuest Dissertations and Theses, 16(September):175, 2010. ISSN
19466226.

[48] M. Kölling. The greenfoot programming environment. ACM Transac-
tions on Computing Education, 10–4(17):16–20, 2010.

[49] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen. A study of the difficul-
ties of novice programmers. ACM SIGCSE Bulletin, 37(3):14, 2005. ISSN
00978418.

[50] V. Lee and K. Frank. Student characteristics that facilitate transfer from
two-year to four-year colleges. Sociology of Education, 63:178–193, 1990.

[51] C. López-Escribano and R. Sánchez-Montoya. Scratch y Necesidades
Educativas Especiales: Programación para todos. RED Revista de Ed-
ucación a Distancia, 34:2–14, 2012. ISSN 14684462.

[52] C. López-Escribano and R. Sánchez-Montoya. Scratch y necesidades ed-
ucativas especiales: Programación para todos. RED Revista de Educación
a Distancia., (34):2–14, 2012.

[53] D. J. Malan, H. H. Leitner, D. J. Malan, and H. H. Leitner. Scratch for
budding computer scientists. In Proceedinds of the 38th SIGCSE techni-
cal symposium on Computer science education - SIGCSE ’07, volume 39
of SIGCSE ’07, pages 223–227, New York, New York, USA, 2007. ACM
Press. ISBN 1595933611.

86 Bibliography

[54] J. Maloney, K. Peppler, Y. Kafai, M. Resnick, and N. Rusk. Programming
by choice: urban youth learning programming with scratch. SIGCSE ’08
Proceedings of the 39th SIGCSE technical symposium on Computer sci-
ence education, pages 367–371, 2008. ISSN 0097-8418.

[55] B. L. McCombs and J. S. Whisler. The role of affective variables in au-
tonomous learning. Educational Psychologist, 24(3):277–306, 1989.

[56] R. P. Medeiros, G. L. Ramalho, and T. P. Falcão. A systematic literature re-
view on teaching and learning introductory programming in higher ed-
ucation. IEEE Transactions on Education, pages 1–14, aug 2019. ISSN
0018-9359.

[57] A. Mesoudi, K. Magid, and D. Hussain. How do people become w.e.i.r.d.?
migration reveals the cultural transmission mechanisms underlying vari-
ation in psychological processes. PLOS ONE, 11(1):1–17, 01 2016.

[58] N. Moroni and P. Señas. Un entorno para el aprendizaje de la progra-
mación. In II Congreso Argentino de Ciencias de la Computación, 410.
Ateneo de Profesores Universitarios de Computación y Sistemas, 1996.

[59] E. Nankani, S. Simoff, S. Denize, and L. Young. Supporting strategic
decision making in an enterprise university through detecting patterns
of academic collaboration. In International United Information Systems
Conference, pages 496–507. Springer, 2009.

[60] M. Niess. Preparing teachers to teach science and mathematics with
technology: Developing a technology pedagogical content knowledge.
Teaching and Teacher Education, 21(5):509 – 523, 2005. ISSN 0742-051X.

[61] S. Papert. Mindstorms: Children, Computers, and Powerful Ideas., chap-
ter 1. Basic Books., Inc. New York, USA, 1980.

[62] S. M. Pope, J. Fagot, A. Meguerditchian, D. A. Washburn, and W. D. Hop-
kins. Enhanced cognitive flexibility in the seminomadic himba. Journal
of Cross-Cultural Psychology, 50(1):47–62, 2019.

[63] A. Radenski. “python first”: A lab-based digital introduction to com-
puter science. iticse ’06. In 11th Annual Conference on Innovation and
Technology in Computer Science Education Bologna, Italy, 2006.

[64] F. Rauner and Maclean. Handbook of technical and vocational education
and research in training. Springer, 2018.

[65] M. Resnick. Sowing the crat for a more creative society. learning & lead-
ing with technology. ISTE (International Society for Technology in Edu-
cation)., 2008.

Bibliography 87

[66] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, et al.
Scratch: Programming for all. Communications of the ACM., 52(11):60–
67, 2009.

[67] C. Romero and S. Ventura. Educational data mining: A review of the state
of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 40(6):601–618, Nov 2010. ISSN 1094-6977.

[68] M. Román González. Codigoalfabetización y pensamiento computa-
cional en Educación Primaria y Secundaria: validación de un instru-
mento y evaluación de programas. Tesis, Universidad Nacional de Ed-
ucación a Distancia (España). Escuela Internacional de Doctorado. Pro-
grama de Doctorado en Educación, May 2016.

[69] K. Ruggeri, L. Bojanic, H. Bokhorst, L.and Jarke, and O. N. S. Marev, a.
S.and Ojinaga-Alfageme. Editorial: Advancing methods for psycholog-
ical assessment across borders. Frontiers in psychology, 1(10):503, 2019.

[70] R. H. Sampieri, C. Collado, Fernández, P. B. Lucio, and M. L. Pérez.
Metodologı́a de la investigación, volume 6. Mcgraw-hill México, 1998.

[71] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative
filtering recommendation algorithms. In Proceedings of the 10th interna-
tional conference on World Wide Web, pages 285–295. ACM, 2001.

[72] E. Segredo, G. Miranda, and C. León. Hacia la educación del futuro:
El pensamiento computacional como mecanismo de aprendizaje gener-
ativo. Education in the Knowledge Society (EKS), 18(2):33, 2017. ISSN
2444-8729.

[73] S. Shuhidan, M. Hamilton, and D. D’Souza. A taxonomic study of novice
programming summative assessment. In Proceedings of the Eleventh
Australasian Conference on Computing Education - Volume 95, ACE ’09,
pages 147–156, Darlinghurst, Australia, Australia, 2009. Australian Com-
puter Society, Inc. ISBN 978-1-920682-76-7.

[74] T. Y. Sim and S. L. Lau. Online tools to support novice program-
ming: A systematic review. In 2018 IEEE Conference on e-Learning, e-
Management and e-Services (IC3e), pages 91–96, Nov 2018.

[75] D. Teague, C. Fidge, and Y. Xu. Combining unsupervised and invigi-
lated assessment of introductory programming. In Proceedings of the

88 Bibliography

Australasian Computer Science Week Multiconference, ACSW ’16, pages
9:1–9:10, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4042-7.

[76] I. Utting, M. Cooper, S.and K¨Olling, J. Maloney, and M. Resnick. Alice,
greenfoot, and scratch – a discussion. ACM Transactions on Computing
Education, 10–4(17):16–20, 2010.

[77] A. Vihavainen, M. Paksula, and M. Luukkainen. Extreme apprenticeship
method in teaching programming for beginners. In Proceedings of the
42nd ACM technical symposium on Computer science education, pages
93–98. ACM, 2011.

[78] J. L. Whalley, R. Lister, E. Thompson, T. Clear, P. Robbins, P. Ajith Ku-
mar, and C. Prasad. An australasian study of reading and comprehension
skills in novice programmers, using the bloom and solo taxonomies. In
Conferences in Research and Practice in Information Technology Series,
2006.

[79] J. Willem, D. Alderliesten, A. Guijt, F. Doolaard, L. Stegman, and J. Tilro.
Identifying characteristics of block-based programming languages sup-
porting children in learning robotics programming. pages 1–18.

[80] J. M. Wing. Computational Thinking: What and Why? thelink - The
Magazine of the Varnegie Mellon University School of Computer Science,
49(3):1–6, 2010.

[81] U. Wolz, H. H. Leitner, D. J. Malan, J. Maloney, U. Wolz, H. H. Leitner,
D. J. Malan, and J. Maloney. Starting with scratch in CS 1. In Proceedings
of the 40th ACM technical symposium on Computer science education -
SIGCSE ’09, volume 41, page 2, New York, New York, USA, 2009. ACM
Press. ISBN 9781605581835.

[82] H. Yildiz Durak. The effects of using different tools in programming
teaching of secondary school students on engagement, computational
thinking and reflective thinking skills for problem solving. Technology,
Knowledge and Learning, Aug 2018. ISSN 2211-1670.

[83] I. Yoon, J. Kim, and W. Lee. The analysis and application of an educa-
tional programming language rur-ple for a pre-introductory computer
science course. Cluster Computing, 19(1):529–546, 2016. ISSN 1573-7543.

This document was typeset on // using RC–BOOK α. for LATEX2ε.
Should you want to use this document class, please send mail to

contact@tdg-seville.info.

