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Abstract

In this paper we address the 2-stage assembly scheduling problem where there are
m machines in the first stage to manufacture the components of a product and one
assembly station (machine) in the second stage. The objective considered is the min-
imisation of the total completion time. Since the NP-hard nature of this problem is
well-established, most previous research has focused on finding approximate solutions
in reasonable computation time. In our paper, we first review and derive a number of
problem properties and, based on these ideas, we develop a constructive heuristic that
outperforms the existing constructive heuristics for the problem, providing solutions
almost in real-time. Finally, for the cases where extremely high-quality solutions are
required, a variable local search algorithm is proposed. The computational experience
carried out shows that the algorithm outperforms the best existing metaheuristic for
the problem. As a summary, the heuristics presented in the paper substantially modify
the state-of-the-art of the approximate methods for the 2-stage assembly scheduling
problem with total completion time objective.
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1 Introduction

Assembly scheduling refers to a branch of scheduling decisions in which parts/components/subsets

of products or services must be first manufactured in parallel and later assembled in a final stage.

Applications of assembly scheduling in industry and services have been reported in several works:

Potts et al. (1995) describe the case of personal computer manufacturing where the different com-

ponents of the computer are produced in the first stage to be later assembled in a second stage

(a packaging station). Lee et al. (1993) describe the case of a fire engine assembly plant. In this

case, the body and chassis of fire engines are produced in parallel, and assembled in a second stage.

Finally, another application is presented by Al-Anzi and Allahverdi (2006a); Allahverdi and Al-Anzi

(2006) and Al-Anzi and Allahverdi (2006b) in the area of distributed database systems.

Different objectives can be considered for the assembly scheduling problem. The first objective

addressed in the literature is the minimisation of the makespan or maximum completion time of

the set of jobs. This problem has been first tackled by Lee et al. (1993), and its NP-hardness in the

strong sense (even when the first stage is composed of 2 machines in parallel) has been established

by Potts et al. (1995). A number of efficient heuristics for the problem have been proposed by

Sun et al. (2003). Regarding exact solutions, the best approach is the Branch & Bound algorithm

proposed by Hariri and Potts (1997), which in many cases is able to schedule up to 8,000 jobs in

less than 100 seconds. Another well-studied objective is the minimisation of the sum of completion

times of the jobs, which is also the aim of our paper and is discussed in detail below. Other objective

considered in the literature is the maximum lateness (Allahverdi and Al-Anzi, 2006; Al-Anzi and

Allahverdi, 2006b). Finally, additional constraints such as setup times (Al-Anzi and Allahverdi,

2007), more than one machine in the second stage (Sung and Kim, 2008; Al-Anzi and Allahverdi,

2013), or additional stages for the transportation of components (Koulamas and Kyparisis, 2001;

Shoaardebili and Fattahi, 2015) have been also addressed.

As mentioned above, our paper is devoted to the 2-stage assembly scheduling problem with the

minimisation of total completion time as objective, which can be denoted as Am||
∑

j Cj according

to the notation in Potts et al. (1995). Minimisation of the total completion time is an important

scheduling objective since completion time can be viewed as a surrogate for the cycle time of the
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jobs, which in turns influences the inventory levels and the lead times that can be quoted by a

company (Framinan et al., 2014). Also note that this problem has several connections to other

scheduling problems: Perhaps the most clear case is the 2-machine flowshop scheduling problem

with total completion time as objective, which can be seen as a particular case of our problem

when there is only one component to be manufactured. In turn, this NP-hard problem can be

decomposed into consecutive single-machine scheduling problems, for which the Shortest Processing

Time (SPT) rule provides the optimal solution, a property used by some of the heuristics for the

Am||
∑

j Cj problem. Another connection is with the Customer Order Scheduling problem with

total completion time as objective (see e.g. Leung et al., 2005; Framinan and Perez-Gonzalez,

2017), denoted as PDm||
∑

j Cj . In this problem, customer orders composed of a number of parts

have to be manufactured in dedicated parallel machines. Clearly, PDm||
∑

j Cj and Am||
∑

j Cj

problems are equivalent if the processing times of the jobs in the second (assembly) stage are zero,

but, as we will show later, there is another less trivial relationship.

The first reference for total completion time minimisation is Tozkapan et al. (2003), where the

authors address the problem (weighted minimisation) for the first time. They show that permuta-

tion sequences are optimal for this problem, and propose two heuristics, labelled TCK1 and TCK2

in the following. Al-Anzi and Allahverdi (2006a) also address this problem, stating some conditions

that the processing times of an instance must fulfil to be optimally solved, and proposing both con-

structive heuristics and metaheuristics for the problem. Regarding the constructive heuristics, the

computational experience carried out by these authors shows that two of them (the aforementioned

TCK2 and a new proposal denoted as A1 in the following) are the most efficient heuristics for the

problem, being around 8% with respect to the best known solutions while requiring a negligible com-

putational effort. Regarding the metaheuristics proposed, it turns out that a Hybrid Tabu Search

(HTS in the following) obtains the best results, being therefore the most efficient metaheuristic for

the problem.

Note also that the problem under consideration can be regarded as a special case of the multi-

machine assembly scheduling problem, where there are more than one machine in the second (as-

sembly) stage. This problem has been addressed for the total completion time objective first by

Sung and Kim (2008) when there are two assembly machines, and later generalised for m ≥ 2 as-
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sembly machines by Al-Anzi and Allahverdi (2012). The most efficient approximate method for the

problem is the Artificial Immune Intelligence (AIS) metaheuristic by Al-Anzi and Allahverdi (2013),

as these authors conduct an exhaustive computational experience showing that AIS outperforms

the rest of existing approximate methods. However, it is worth to note that the inclusion of more

than one machine in the second stage may change the structure of solutions of the problem and

therefore it remains uncertain whether efficient procedures for the multi-machine case are equally

efficient when there is only one assembly machine.

Other related problem is that of the distributed two-stage assembly system, where the jobs

have to be assigned to one of f factories each one consisting of a two-stage assembly system like

the one treated in our research, and subsequently scheduled to minimise the total completion time.

To the best of our knowledge, this problem has been addressed only by Xiong et al. (2014), also

considering setup times. These authors propose the so-called ESPT constructive heuristic that

could be potentially interesting for our problem and indeed, when there is only one factory and no

setups are considered, it is equivalent to one of the already mentioned constructive heuristics by

Al-Anzi and Allahverdi (2006a).

Finally, Al-Anzi and Allahverdi (2006a) study a number of theoretical properties for the problem

under consideration. The work of these authors represents an important advance on analysing the

problem, particularly on identifying distinct sub-cases depending on whether the first stage domi-

nates the second, or vice versa. However, we will show in Section 2 that their results contain some

flaws, and we provide a correct formulation. Also, based on the ideas regarding the predominance

of one of the stages, we propose a constructive heuristic for the problem which turns out to be

much more effective than existing constructive heuristics, i.e. the average error with respect to the

best known solution is around five times smaller. Finally, we exploit some of the ideas used in the

design of the HTS algorithm to propose a new local search algorithm for the problem which also

favourably competes against HTS both in terms of quality of the solutions and in the computational

effort required.

The remainder of the paper is as follows: In Section 2 the problem under consideration is formally

stated and some properties are presented. Section 3 is devoted to first present the constructive

heuristics available for the problem (Section 3.1), and second to discuss a new proposal (Section
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3.2). In Section 4 we present a new metaheuristic for the problem, while Section 5 is devoted to the

computational experiments. Finally, the main conclusions are discussed in Section 6.

2 Problem Statement and Properties

Formally stated, the problem under consideration consists of scheduling n jobs in a layout composed

of two stages: In the first stage there are m machines in parallel, each one capable of processing

one of the m components of the jobs. Let us denote by tij the processing time in machine i of the

component of job j in this stage, or equivalently, tij is the processing time of the i-th component of

job j. It is convenient for us to denote the maximum and minimum of tij , i.e. tmax = max∀i,j tij ,

and tmin = min∀i,j tij . The second stage consists of the assembly of the components, so operations

in the second stage cannot start until the m components of the job have been completed. The

processing time of job j in this assembly stage is denoted by pj .

Given a permutation sequence, let us denote job [j] as the job processed in order j-th in the

sequence. Furthermore, let C[j] be the completion time of job processed in order [j]. Clearly, the

following recursive formula holds:

C[j] = max{C[j−1]; max
∀ i
{

j∑
k=1

ti[k]}}+ p[j] (1)

with C[0] = 0.

As mentioned in Section 1, a number of properties for the problem have been studied by Al-Anzi

and Allahverdi (2006a). While this work is an important step towards the analysis of the problem,

their results contain several flaws which also imply some changes in the tractable subcases. In

the next theorems, we provide the correct formulation of the problem properties, point out the

differences with the initial statements, and derive new properties.

Theorem 1. If max∀ j{pj} ≤ tmin, then the total completion time of a sequence can be expressed

as:

∑
Cj =

n∑
j=1

max
∀ i
{

j∑
k=1

ti[k]}+
n∑

j=1
pj (2)
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Proof. From Equation (1) it can be seen that C[1] = max{C[0]; max∀ i{ti[1]}+p[1]} = max∀ i{ti[1]}+

p[1]. Regarding the second job:

C[2] = max{C[1]; max
∀ i
{ti[1] + ti[2]}}+ p[2] =

= max{max∀ i{ti[1]}+ p[1]; max
∀ i
{ti[1] + ti[2]}}+ p[2] =

= max{max∀ i{ti[1] + p[1]}; max
∀ i
{ti[1] + ti[2]}}+ p[2]

Since max∀ j{pj} ≤ tik for all i, k, we have:

C[2] = max
∀ i
{ti[1] + ti[2]}+ p[2]

It is then easy to see that, in general, for job in position j, its completion time is given by:

C[j] = max
∀ i
{

j∑
k=1

ti[k]}+ p[j]

Therefore, the total completion time
∑
Cj is:

∑
Cj =

n∑
j=1

C[j] =
n∑

j=1
max
∀ i
{

j∑
k=1

ti[k]}+ p[j] =
n∑

j=1
max
∀ i
{

j∑
k=1

ti[k]}+
n∑

j=1
p[j] (3)

Theorem 1 establishes the conditions for the first stage to be dominant in a similar way to

Theorem 1 in Al-Anzi and Allahverdi (2006a). However, they incorrectly state that it is sufficient

that max∀ j{pj} ≤ min1≤k≤n{max1≤i≤m{tik}}. As a consequence, their Algorithm 2 does not

provide the optimal solution to the problem as claimed in their paper. Indeed, there is no polynomial

algorithm that can provide an optimal solution to the problem where the first stage is dominant,

as the following corollary states:

Corollary 1. The optimal solution of the Am||
∑

j Cj problem under the conditions of Theorem 1

is the same than the optimal solution of the PDm||
∑

j Cj problem.

Proof. Note that the second term in Equation (3) does not depend on the specific sequence, so the
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problem is equivalent to minimising the completion time in a PDm||
∑

j Cj problem instance taking

the processing times of the jobs in the first stage.

Corollary 1 establishes conditions for the dominance of the first stage in the Am||
∑

j Cj problem,

and, since the PDm||
∑

j Cj is NP-hard even for m = 2, then there is no polynomial algorithm that

can yield the optimal solution for the former problem. However, when the second (assembly) stage

is predominant, such polynomial algorithm does exist. Let us present first the conditions for the

second stage to be dominant:

Theorem 2. If min∀ j{pj} ≥ tmax, then the total completion time of a sequence can be expressed

as:

∑
Cj = nmax

∀ i
{ti[1]}+

n∑
j=1

(n− j + 1) · p[j] (4)

Proof. From Equation (1) it can be seen that C[1] = max{C[0]; max∀ i{ti[1]}+p[1]} = max∀ i{ti[1]}+

p[1]. Regarding the second job:

C[2] = max{C[1]; max
∀ i
{ti[1] + ti[2]}}+ p[2] =

= max{max∀ i{ti[1]}+ p[1]; max
∀ i
{ti[1] + ti[2]}}+ p[2] =

= max{max∀ i{ti[1] + p[1]}; max
∀ i
{ti[1] + ti[2]}}+ p[2]

Since min∀ j{pj} ≥ tik for all i, k, we have:

C[2] = max
∀ i
{ti[1]}+ p[1] + p[2]

It is then easy to see that:

C[j] = max
∀ i
{ti[1]}+

j∑
k=1

p[k]

Therefore, the total completion time
∑
Cj is:
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∑
Cj =

n∑
j=1

C[j] =
n∑

j=1

max
∀ i
{ti[1]}+

j∑
k=1

p[k]

 = n ·max
∀ i
{ti[1]}+

n∑
j=1

(n− j + 1) · p[j] (5)

The results of Theorem 2 establish the basis for a polynomial optimal algorithm for the problem:

Corollary 2. The optimal solution of Am||
∑

j Cj under the conditions of Theorem 2 is given by

the following procedure:

1. Sort all jobs in non decreasing order of pj. Denote this sequence as ΠSP T

2. Set best :=
∑
Cj(ΠSP T ), and Πb := ΠSP T

3. For all jobs (j = 2, . . . , n):

(a) Obtain a candidate sequence Πc by removing job in position j in Πc and insert it in

position 1.

(b) Set curr :=
∑
Cj(Πc)

(c) If curr < best, set best = curr and Πb := Πc

This procedure can run in O(n · logn)

Proof. The second term in Equation (5) shows that the sequence with minimal total completion

time with respect to this term is obtained by sorting the jobs in ascending order of their processing

times in the second stage. However, the first term states the influence of the job in position 1.

Therefore, a manner to find the optimal solution is to try all jobs in the first position while the rest

are sequenced in SPT order with respect to the second stage, and take the sequence with the lowest

completion time.

If additional conditions on the processing times of the first stage are imposed, then the SPT

rule can be optimal:
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Corollary 3. Under the conditions of Theorem 2, let k be the job for which pk = min1≤j≤N pj. If

min
1≤j≤n

{
max

1≤i≤m
tij

}
= max

1≤i≤m
tik (6)

then sorting the jobs in non decreasing order of their processing times in the assembly stage

provides the optimal solution to the problem.

Proof. Under the conditions of Theorem 2, the total completion time can be calculated according

to Equation (4). Note that, if condition (6) holds, sorting the jobs in non decreasing order of their

processing times in the assembly stage provides the optimal solution to the problem.

Corollary 3 expresses the specific conditions for the second-stage SPT rule to be optimal for the

assembly problem, therefore it would correspond –albeit with different conditions due to a flaw in

the proof– to Theorem 2 in Al-Anzi and Allahverdi (2006a).

The problem properties discussed in this section are useful to detect that there are two (extreme)

cases where the problem is related to other problems. These cases would serve us in a twofold

manner:

• First, to design a testbed where the instances do not belong to the extreme cases, as there

are specific algorithms available for these problems: If the first stage is dominant, there

are several efficient algorithms for the problem, most notably the algorithm by Framinan

and Perez-Gonzalez (2017). If the second stage is dominant, Corollary 2 gives a polynomial

algorithm to solve the problem. The testbed designed in Section 5 takes these conditions into

account.

• Second, when the conditions for the extreme cases are not fulfilled –which would be the

most common case–, it is clear that the quality of the solutions would be influenced by the

dominance of the stages, therefore this idea can be used to develop some efficient heuristics

for the problem. This aspect will be addressed in Section 3.
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3 Constructive heuristics

In this section, we first analyse the existing constructive heuristics for the problem (Section 3.1),

and then (Section 3.2) propose a new constructive heuristic based on the ideas discussed in the

previous section.

3.1 Existing constructive heuristics

The first constructive heuristics for the problem have been proposed by Tozkapan et al. (2003).

More specifically, these authors propose two heuristics: The first one –labelled in the following

TCK1– obtains m+1 sequences, each one as a product of applying the SPT rule with respect to the

processing times of each job in machine i in the first stage, and with respect to the processing times

of each job in the assembly machine. These heuristics exploit the already mentioned connection

between the single machine scheduling problem with total completion time as objective, and the

problem under consideration. To be precise, m+ 1 indices are developed for each job:

• Processing Times of job j on machine i (i = 1, . . . ,m) in the First stage (PTFij), i.e. PTFij =

tij .

• Processing Times of job j in the Second stage (PTSj), i.e. PTSj = pj .

Then, m+1 sequences are obtained by sorting the jobs in non descending order of these indices,

and the sequence yielding the lowest total completion time is selected.

The second heuristic –labelled in the following TCK2– obtains three indices for each job:

• Minimum Processing Times of job j (MPTj), i.e. MPTj = min{t1j , t2j , . . . , tmj , pj}.

• Average Processing Times of job j (APTj), i.e. APTj = 1
m+1

∑m
i=1 tij + pj .

• Maximum Processing Times of job j (MXPTj), i.e. MXPTj = max{t1j , t2j , . . . , tmj , pj}.

Then, three sequences are obtained by sorting the jobs in non descending order of these indices,

and the sequence yielding the lowest total completion time is selected.

Al-Anzi and Allahverdi (2006a) propose three constructive heuristics for the problem: heuristic

S1 is obtained by sorting the jobs in non descending order of pj . Heuristic S2 sorts the jobs in
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non descending order of max1≤i≤m tij . Finally, heuristic S3 considers the two stages to obtain the

solution, i.e. it sorts the jobs in non descending order of max1≤i≤m tij + pj . The rationale of these

heuristics is that sorting the jobs according to the SPT order of the second machine would yield

good results when the processing times in the assembly machine are larger than those in the first

stage machines. The S1-S3 heuristics have not been compared with other heuristics, although they

are used by Al-Anzi and Allahverdi (2006a) as starting seeds for two metaheuristics for the problem.

Finally, Al-Anzi and Allahverdi (2006a) propose two algorithms for the problem, labelled A1

and A2. These algorithms construct a sequence by iteratively inserting a non sequenced job at

the end of the existing sequence. The unscheduled job to be inserted is chosen so the value of an

indicator is minimised. More specifically, at iteration j (j = 1, . . . , n), a partial sequence of j − 1

jobs has been constructed and, for each unscheduled job k, the following indicator is computed for

algorithm A1:

A1k = max
i=1,...,m


j−1∑
r=1

ti[r] + tik

 (7)

whereas for algorithm A2 the indicator is:

A2k = max
i=1,...,m


j−1∑
r=1

ti[r] + tik

+ pk (8)

The A1 and A2 algorithms are compared with TCK1 and TCK2 by Al-Anzi and Allahverdi

(2006a), resulting that the best performance is obtained by TCK2 and A1. The differences between

both algorithms do not seem to be big enough to be considered statistically significant. Therefore,

these two heuristics can be assumed to be the most efficient constructive procedures so-far.

Despite the fact that there are several heuristics available for the problem, further improvements

could be obtained based on the following insights: First, A1 iteratively constructs a solution by

appending unscheduled jobs at the end of the partial sequence. This strategy has been successfully

employed for other related problems, such as the permutation flowshop with total completion time

objective (see Fernandez-Viagas and Framinan, 2015), or the customer order scheduling problem

(see Leung et al., 2005). However, in A1 the evaluation of the candidate jobs to be appended is

based only in the partial contribution to the objective function, without taking into account the rest
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of the unscheduled jobs. Estimating the contribution of the unscheduled jobs to the final objective

function would potentially improve the results, as the resulting heuristic would not be completely

greedy. Furthermore, A1 ignores the processing times in the second stage, therefore it does not

seem to be well suited for these problem instances where the second stage is dominant. However,

including the processing times of the second stage in a straightforward manner may not yield the

desired results, as it can be shown by the bad results obtained by A2.

These two aforementioned aspects (estimation of the contribution of the unscheduled jobs to

the completion time and a mechanism to properly assess the candidates depending on which stage

is dominant) will be the basis for the proposal of a new heuristic discussed in the following section.

3.2 Proposed constructive heuristic

The idea of the heuristic proposed is, as in A1 or A2, to iteratively construct a solution by selecting

one job among the unscheduled jobs and appending it to the end of a partial sequence. Therefore,

the procedure starts with an empty schedule Π and a set Ω with all unscheduled jobs. At iteration

j (j = 1, . . . , n), an unscheduled job ωl ∈ Ω is analysed as candidate to be inserted in position j in

Π.

The criterion to select the job among the candidates should take into account that, for the

specific problem instance, the processing times of the first (second) stage may be much larger than

those for the second (first) stage, therefore greatly affecting the (partial) completion time. To

distinguish the two cases, C1(ωl) the maximum completion time of ωl in the first stage is computed,

i.e.:

C1(ωl) := max
i=1,...,m

{C1∗i + tiωl
} (9)

where C1∗i denotes the completion time on machine i in the first stage of partial sequence Π,

i.e. the completion time in the first stage of the already scheduled jobs.

Let C∗2 be the completion time of the jobs in Π in the second stage. If C1(ωl) is higher than

C∗2 , it is clear that, for candidate wl, the completion times in the first stage would largely influence

the completion time of the candidate job and that of the subsequent (unscheduled) jobs. Therefore,
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C1(ωl) would be a good indicator of the contribution of wl to the completion times.

In contrast, if the completion time of the candidate job in the first stage is lower than the

completion time of the previous jobs, then the completion time of the candidate job (and that of

subsequent jobs) would be influenced by the completion times of the candidate job in the second

stage. This influence decreases with the number of machines in the first stage since, with a higher

number of machines, there are more possibilities for the subsequent jobs not to be affected by the

second stage. Therefore, the influence of the second stage will be weighted according to the number

of machines, so pωl
m would be a good indicator of the contribution of wl to the completion times.

The second aspect that the heuristic takes into account is the estimation of the completion

time of the unscheduled jobs. To do so, we estimate the completion times of an artificial job •

composed of the unscheduled jobs by assuming that these unscheduled jobs are sorted according to

a given sequence S := (s1, s2, . . . , s|Ω−{ωl}|) (we will discuss later how this sequence is established).

Therefore, we propose to estimate C1• the completion times of this artificial job in the first stage

using the following equation:

C1• := 1
|Ω− {ωl}|

∑
k∈Ω−{ωl}

max
1≤i≤m

{C1∗i +
k∑

j=1
tisj} (10)

and p• the processing times of artificial job • in the second stage using the following equation:

p• := 1
|Ω− {ωl}|

∑
k∈Ω−{ωl}

pk (11)

Note that Equation (10) represents a sort of average completion time in the first stage of the

unscheduled jobs if it is assumed that they are scheduled according to S, whereas Equation (11) is

the average processing time of the unscheduled jobs in the second stage.

As with the scheduled jobs, if the completion times of the artificial job in the first stage are

higher than the completion times (in the assembly stage) of the candidate job, then the first stage

of the artificial job would largely determine the completion times. With an analogous reasoning as

done before, we propose to weight the processing time of the artificial job in the second stage with

respect to the number of machines in the first stage.

As already mentioned, the computation of C1• depends on the sequence S assumed for the
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unscheduled jobs. As our intention is to provide an estimate of the completion times of this arti-

ficial job, we suggest sorting the unscheduled jobs according to algorithm S2, which is the sorting

algorithm providing the best results according to the computational experience by Al-Anzi and Al-

lahverdi (2006a). Using this algorithm –or any other index-based algorithm– also has the advantage

that the relative order of the jobs can be determined at the beginning of the constructive heuristic

and it does not have to be recomputed for each iteration or candidate.

Finally, recall that the artificial job represents an estimation of the completion times of the

unscheduled jobs, so the importance of this estimation would decrease with the iterations of the

algorithm. Therefore, we propose to weight the contribution of the unscheduled jobs using n−j+1
n .

As a summary, the indicator ψl used to estimate the suitability of inserting a candidate job ωl

at the end of Π would be given by:

ψl := C1(ωl) + (n− j + 1)
n

(
C1• + p•

m

)
(12)

if C1(ωl) is higher than C∗2 (i.e. the first stage determines the completion time), otherwise:

ψl := pωl

m
+ (n− j + 1)

n

(
C1• + p•

m

)
(13)

Therefore, the candidate job with the lowest value of ψl is selected and extracted from the list

of unscheduled jobs. The procedure continues until all jobs have been scheduled. Figure 1 shows

the pseudocode of the proposed heuristic.

4 Variable Local Search

As we will show in the computational experience in Section 5, the procedure proposed in the previous

section allows us to obtain very fast (less than 0.01 seconds) solutions with an average deviation of

around 2% with respect to the best known solutions. However, it can be also useful to embed this

heuristic in a more sophisticated local search procedure to obtain solutions of higher quality, albeit

at the expenses of higher computation times.

There are several metaheuristics available for the problem, all by Al-Anzi and Allahverdi (2006a):

14



Procedure Proposed Heuristic
// All jobs are initially unscheduled
Π := ∅;
// Completion times on stages 1 and 2 of sequence Π:
C1∗i := 0 i = 1, . . . ,m
C2∗ := 0
Obtain a sequence Ω := (ω1, . . . , ωn) by applying algorithm S2;
for j = 1 to n do

for each ωl ∈ Ω do
// Compute the completion times in the first stage after selecting ωl as candidate:
C1(ωl) := max1≤i≤m{C1∗i + tiωl

}
// Compute completion times of the artificial job in the first stage by Eq. (10):
C1• := 1

|Ω−{ωl}|
∑

k∈Ω−{ωl}max1≤i≤m{C1∗i +∑k
j=1;j 6=l tiwj

}
// Compute processing times of the artificial job in the second stage by Eq. (11):
p• := 1

|Ω−{ωl}|
∑

k∈Ω−{ωl} pk

// Compute the indicator by Eqs. (12) or (13) depending on the dominating stage:
if C1(ωl) > C∗2 then

ψl := C1(ωl) + n−j+1
n

(C1• + p•
m

)
else

ψl := pωl

m
+ n−j+1

n
(C1• + p•

m
)

end
end
r := argmin1≤k≤n−i+1 ψk;
Append ωr at the end of Π, i.e. Π := (π1, . . . , πi−1, ωr);
Extract ωr from Ω, i.e. Ω := (ω1, . . . , ωr−1, ωr+1, . . . , ωn−i+1);
// Update values of the constructive sequence:
C1∗i := C1∗i + tiωr

C∗2 := max {max1≤i≤m{C1∗i };C∗2}+ pwr

end
return C∗2

end

Figure 1: Pseudo-code of the proposed heuristic
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a Simulated Annealing algorithm, a Tabu Search algorithm, and a Hybrid Tabu Search algorithm

(HTS in the following). Among these three algorithms, HTS obtains the solutions with the highest

quality while approximately requiring the same computational effort than the other two metaheuris-

tics. Therefore, it can be stated that HTS is the best-so-far metaheuristic for the problem.

HTS starts with the best solution provided by the constructive heuristics S1, S2, and S3, and

performs a complete local search in the neighbourhood by systematically exploring all neighbour

solutions of a given sequence by exchanging two job positions (General Pairwise Interchange or GPI

-type of neighbourhood). The four last positions used for GPI are stored in a tabu list to prevent

the algorithm to have a cyclic behaviour. Based in a simulated annealing -like cooling scheme, the

algorithm updates the best-so-far solution if a better solution is found during the exploration of the

neighbourhood. The solution is updated even if the neighbour solution is worse with a probability

that depends on the distance between the best-so-far solution and the current solution, and the

number of iterations of the algorithm, so this acceptance probability exponentially decreases as the

algorithm progresses. The algorithm runs for a pre-defined number of iterations, therefore it does

not have any external parameter.

Although the performance of HTS is excellent (according to Al-Anzi and Allahverdi, 2006a it

provides an average 0.15% deviation from the best known solutions in an extensive testbed), we

believe that there is room for improvement by allowing a higher diversification in the exploration

of solutions. Our proposal to carry out this diversification consists of two aspects:

• To restart the GPI search process once a best-so-far solution is found, so the algorithm may

quickly move to explore the most promising neighbourhoods.

• To change the type of neighbourhood if the algorithm is stuck in a local optima, borrowing

ideas from Variable Neighbourhood Search or VNS (Mladenović and Hansen, 1997).

Along these ideas, we propose an algorithm –labelled Variable Local Search or VLS– that starts

with an initial solution obtained using the heuristic proposed in Section 3.2. This solution is set to

both the best-so-far sequence Πb and the current candidate Πc.

Once this solution is obtained, the algorithm performs a maximum ofmaxit iterations, consisting

of the following phases:

16



1. General Pairwise Interchange with Restart (GPIR) phase: The most promising

candidate in the neighbourhood of Πc is found by evaluating all neighbours of Πc obtained

by exchanging the job in position l (l = n, n − 1, . . . , 2) in Πc with that in position k (k =

l−1, l−2, . . . , 1). If a sequence Πn with lowest total completion time than that of Πc is found

in the search, then Πc is replaced by Πn and the search is restarted so all neighbours of the

new most promising candidate can be explored.

2. Perturbation phase: Once the most promising candidate in the neighbourhood has been

obtained, it is compared with the best-so-far sequence Πb. If the candidate is better than the

best so-far sequence, then Πb is updated, and the counter for iterations without improvement

is restarted. Otherwise, the counter for iterations without improvement is increased in one

unit. As long as the counter for iterations without improvement does not exceeds n, the job

in position r (chosen at random from positions [1, n− 1]) of the most promising candidate is

removed and inserted in position r + 1. The aim of the insertion performed here is to carry

out a perturbation of the current solution in order to make the GPIR phase to explore a

different section of the solution space.

If the counter for iterations without improvement exceeds the number of jobs n, then there are

little chances that the current candidate will improve the best-so-far solution in the current

section of the solution space, therefore a greater perturbation would give more opportunities

for improvement. In our proposal, this is done by successively performing the reinsertion a

bigger number of times. More specifically, the number of times d that a random insertion is

performed is 1 until n iterations have been elapsed without improvement. Then, d = 2 for

another n iterations without improvement, and so forth until d = n or the maximum number

of iterations maxit is reached. Every time a new best-so-far solution is found, d is reset to 1

to perform a systematic exploration of the new neighbourhood.

The pseudocode of the proposed algorithm is shown in Figure 2. The intensification in the

local search is provided by the GPIR, as the neighbourhood of the current solutions is systemati-

cally explored. The diversification of the algorithm is provided by performing successively greater

perturbations in the current solution in order to move the algorithm to explore different neighbour-
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hood. In order to progressively widen the search space, perturbations of the current solutions are

performed in a similar manner to the VNS, but in this case the neighbourhood remains the same

and the idea of variable neighbours is used to diversify the search. We are not aware of a similar use

of the concept of VNS. The resulting algorithm is rather simple as it has only one parameter (the

maximum number of iterations allowed), so there is no need for callibration. In the next section,

we conduct an extensive computational experience to test the effectiveness of our proposal, as well

as the constructive heuristic proposed in Section 3.2.

5 Computational Experience

In this section, we analyse the efficiency of the constructive heuristic proposed in Section 3.2, and

the variable local search proposed in Section 4. To do so, we generate a testbed using the param-

eters given by Allahverdi and Al-Anzi (2009). This testbed consist of 30 replications of instances

generated for different combinations of n and m. More specifically, n ∈ {20, 40, 60, 80, 100, 120},

and m ∈ {2, 4, 6, 8}. For each instance size, the processing times of the jobs in the machines for both

stages are drawn from a uniform distribution [1, 100]. In total, 720 instances have been generated.

Furthermore, it has been checked that none of the instances fulfilled the conditions of Theorems 1

and 2.

Using the testbed described above, we conduct two experiments:

1. First, we compare the constructive heuristics existing for the problem with our proposal in

Section 3.2. Since these heuristics provide the solution in real-time (0.01 seconds for the

biggest instances), the comparison is done in terms of the quality of solution obtained by

heuristic h on instance i measured as the Relative Percentage Deviation (RPD):

RPDhi = Ohi −O∗i
O∗i

· 100 (14)

where Ohi is the total completion time obtained by heuristic h when applied to instance i,

and O∗i is a reference value of the minimum total completion time for instance i. In order to

have good reference values, we developed a MILP model for the problem under consideration,
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Procedure Variable Local Search(maxit)
d := 1; // Set the number of insertions to perform to 1
it := 1; // Set the number of iterations to 1
improvement := 0; // Set the counter for iterations without improvement
Let Πb be the sequence obtained by the heuristic in Figure 1;
Fb := SumC(Πb); // Set Πb as the best so far sequence
Πc := Πb; // Set the sequence as the most promising candidate
Fc := Fb; // Set the completion time of the most promising candidate
while it < maxit do

// Perform local search
for l = n, n− 1, . . . , 2 do

Obtain Πn by exchanging positions l and k (k = l − 1, l − 2, . . . , 1) in Πc;
// Check if Πn is the most promising candidate
if SumC(Πn) < Fc then

Set Πn as the most promising candidate: Πc := Πn and Fc := SumC(Πn);
Restart the local search, i.e. set l = n to explore all possible exchanges;

end
end
// Check if the most promising candidate improves the best-so-far sequence
if Fc < Fb then

Update best-so-far sequence, i.e. Fb := Fc and Πb := Πc;
improvement := 0; // Restart the counter for iterations without improvement
d = 1; // Reset the number of insertions to perform to 1.

else
improvement := improvement+ 1;

end
if improvement > n then

// Enhances the neighbourhood
d := min{d+ 1;n− 1};
improvement := 0; // Restart the counter for iterations without improvement

end
// Performs d times a random insertion
for i = 1, . . . , d do

Remove job in a random position r in Πc and insert it in position r + 1;
end
it := it+ 1; // Increase the number of iterations

end
Return Πb as the best solution;

end

Figure 2: Pseudo-code of the proposed variable local search
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and tried to solve the instances using the Gurobi solver. For all instances with n = 20 and

m = 2, 4 the solver was able to provide the optimal value within 900 seconds. For bigger sizes

(n = 40), in most instances the solver was not able to find the optimal solution in the allowed

CPU time. Still, the so-obtained value was used if resulted to be better than those obtained

by any of the multiple approximate methods tested in the experiments, therefore providing a

fairly tight upper bound of the optimal total completion time.

2. Second, we compare the best-so-far metaheuristic for the problem (the Hybrid Tabu Search

by Allahverdi and Al-Anzi, 2009) with the Variable Local Search proposed in Section 4.

In addition, we also compare the best-so-far metaheuristic for the multi-machine assembly

problem (the Artificial Immune System by Al-Anzi and Allahverdi, 2013, see Section 1). In

this case, the comparison is done both in terms of the quality of solutions –measured in terms

of RPD– and the computational effort required to obtain the solution –measured in seconds

of CPU time–.

These two experiments are discussed in the next subsections.

5.1 Comparison of constructive heuristics

In this experiment, the following constructive heuristics have been compared:

1. TCK1 and TCK2 heuristics by Tozkapan et al. (2003).

2. S1-S3 and A1, A2 heuristics by Al-Anzi and Allahverdi (2006a).

The results of the comparison are shown in Table 1. As it can be seen, the proposed heuristic

clearly outperforms the existing constructive heuristics for all problem sizes. It also provides the

lowest value of the standard deviation of RPD. The average RPD with respect to the reference

solution is almost five times smaller than that of the following heuristic (TCK2). The differences

can be also appreciated in Figure 3 where the 95% confidence intervals of ARPD are shown. It can be

also checked in Figure 3 that there are statistically significant differences among most procedures, so

it can be concluded that our proposal is the best constructive heuristic for the problem. Regarding
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Figure 3: 95% CI RPD for the constructive heuristics

the rest of heuristics, the experiment confirms the results already obtained by Al-Anzi and Allahverdi

(2006a), although the statistical analysis allows to assert that TCK2 is better than A1.

5.2 Comparison of metaheuristics

In the next experiment, the performance of the VLS proposed in Section 4 is tested against the best-

so-far metaheuristic available for the problem, i.e. the HTS. In addition, we include the best-so-far

metaheuristic available for the multi-machine assembly case, i.e. the AIS algorithm by Al-Anzi and

Allahverdi (2013). As discussed in Section 1, the problem with several assembly machines can be

seen as a generalisation of our problem, although it is not clear that efficient procedures for the

latter would also yield good solutions when there is only one machine, due to a potentially different

structure of the space of solutions.

Since VLS does not have a pre-defined stopping criterion (i.e. the maximum number of iterations

in VLS is not fixed), different values of the maximum number of iterations have been tested to cover

several scenarios ranging from an average computation time of around one second to one minute.

These CPU time values correspond to maxit ∈ {100, 500, 1000, 2000, 5000}. The results in terms
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Figure 4: Trade-off between quality of solutions and computational effort

of Average RPD and CPU time are shown in Tables 2 and 3 respectively. As it can be seen in

Table 2 even the version of VLS with maxit = 100 outperforms HTS for all problem sizes. This

fact is remarkable taking into account that the average CPU effort for VLS in this case is around

50 times smaller than for HTS, as shown in Table 3. Also, the standard deviation in all problem

sizes is smaller for the different versions of VLS than for HTS, which speaks for the robustness of

the proposed method. The Average RPD values of VLS decrease with the number of iterations,

although the ratio of improvement decreases with the number of iterations, perhaps due to the

proximity of the solutions found to their best values. Regarding AIS, its performance is the worst

among the algorithms under comparison, both regarding the quality of solutions and the required

CPU time, which is probably pointing at the best suitability of the GPI neighbourhood scheme of

VLS and HTS for the problem under consideration, as compared to the random swapping of AIS.

This may be reinforced by the poor results obtained by some preliminary experiments in which VLS

was modified to use the random swapping neighbourhood instead of GPI.

Finally, Figure 4 shows the trade-off between CPU time and Average RPD for the different

methods (AIS is excluded in view of its poor results). If interpreted as a Pareto set regarding

these two objectives, it could be stated that VLS dominates HTS for all values of maxit (with the

exception of maxit = 5000, which also takes longer CPU times).
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m n HTS AIS VLS 100 VLS 500 VLS 1000 VLS 2000 VLS 5000
2 20 0.972 19.331 0.016 0.076 0.147 0.289 0.717

40 5.395 56.328 0.093 0.510 1.029 2.045 5.093
60 15.279 122.972 0.304 1.635 3.392 6.992 16.934
80 32.714 304.603 0.709 3.857 8.168 16.730 41.502

100 57.750 467.824 1.471 7.273 15.502 31.973 80.040
120 95.150 408.032 2.843 12.626 26.512 56.528 143.408

4 20 1.082 21.942 0.017 0.084 0.163 0.316 0.800
40 6.485 62.913 0.103 0.578 1.186 2.372 5.968
60 18.568 140.619 0.368 1.857 3.872 7.865 19.369
80 40.502 336.654 0.826 4.280 8.857 18.755 47.536

100 74.717 518.258 1.710 7.911 17.211 36.909 95.490
120 123.684 491.445 3.528 14.099 29.527 64.574 168.969

6 20 1.217 22.287 0.019 0.095 0.185 0.367 0.928
40 7.603 72.533 0.122 0.665 1.395 2.803 7.140
60 22.651 150.049 0.444 2.194 4.728 9.584 23.711
80 49.952 377.199 1.010 4.951 10.268 21.843 56.081

100 94.249 595.731 2.166 9.779 20.374 44.646 117.831
120 158.257 587.626 4.080 16.787 34.197 75.362 203.522

8 20 1.342 23.901 0.025 0.102 0.203 0.406 1.003
40 8.493 79.715 0.141 0.765 1.575 3.140 8.083
60 26.084 191.498 0.505 2.459 5.228 10.834 26.952
80 58.295 419.795 1.201 5.682 11.845 25.448 65.093

100 109.457 663.848 2.578 11.334 23.440 50.636 134.386
120 183.047 671.365 4.790 19.693 40.335 83.771 227.995

Total 49.706 283.603 1.211 5.387 11.223 23.924 62.440

Table 3: Average CPU time (seconds) by the HTS, AIS and the different versions of VLS

6 Conclusions

In this paper we address the 2-stage assembly scheduling problem with the objective of minimising

the total completion time. We first analyse some problem properties and correctly formulate some

flaws found in the work by Al-Anzi and Allahverdi (2006a). Based on the ideas of the predom-

inance of one of the stages in the total completion time, a new constructive heuristic has been

developed. The computational experience carried out shows that this proposal results in a much

better performance than the existing constructive heuristics, yielding an average deviation from

the best known solution of around 2%, which is around five times smaller than that of the second

best performing heuristic, and, at the same time, it requires negligible computation times (around

than 0.01 seconds in the biggest instances). For those scenarios where a higher quality of solutions

is required, a variable local search algorithm has been proposed. This algorithm outperforms the

best-so-far metaheuristic for the problem, yielding solutions with higher quality in much lesser CPU

time. Using an average CPU time of one second, the variable local search algorithm finds solutions

of around 0.6% of the best-known solution. If an average minute of CPU time is allowed, the results

are on average of around 0.2% of the best-known solution.

As a result, with the heuristics presented in the paper, the state-of-the-art of the approximate
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methods for the 2-stage assembly scheduling problem with total completion time has been sub-

stantially modified. Regarding future research lines, the idea of the constructive heuristic with the

estimation of the contribution of the unscheduled jobs could be extended to other objectives. Addi-

tionally, it can be enhanced for the multi-machine assembly scheduling problem, where the number

of assembly machines in the second stage is higher than one, or to the case of multi-stage assembly

scheduling problems.
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