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a b s t r a c t 

We study the problem of augmenting the locus N � of a plane Euclidean network N by in- 

serting iteratively a finite set of segments, called shortcut set , while reducing the diameter

of the locus of the resulting network. There are two main differences with the classical

augmentation problems: the endpoints of the segments are allowed to be points of N � as 

well as points of the previously inserted segments (instead of only vertices of N ), and the 

notion of diameter is adapted to the fact that we deal with N � instead of N . This increases 

enormously the hardness of the problem but also its possible practical applications to net- 

work design. Among other results, we characterize the existence of shortcut sets, compute

them in polynomial time, and analyze the role of the convex hull of N � when inserting a 

shortcut set. Our main results prove that, while the problem of minimizing the size of a

shortcut set is NP-hard, one can always determine in polynomial time whether inserting

only one segment suffices to reduce the diameter.

 

 

 

 

 

 

 

 

 

 

 

1. Introduction

A geometric network of points in the plane is an undirected graph whose vertices are points in R 

2 and whose edges are

straight-line segments connecting pairs of points. When edges are assigned lengths equal to the Euclidean distance between

their endpoints, the geometric network is called Euclidean network . These networks are the objects of study in this paper;

concretely, we deal with plane Euclidean networks in which edges may intersect only at their endpoints. For simplicity and

when no confusion may arise, we shall simply say network, it being understood as plane Euclidean network and, unless

otherwise stated, networks are assumed to be connected. 

It is natural to distinguish between a network N and its locus, denoted by N � , where one is considering not only the

vertices of N but the set of all points of the Euclidean plane that are on N (thus, N � is treated indistinctly as a network

or as a closed point set). Roughly speaking, in order to compute the distance between two vertices of N one has to sum

the lengths of the edges of a shortest path connecting them, and the diameter of N is the maximum among the distances

between any two vertices. This concept is naturally extended to N � ; the difference is that now the distances that must

be computed are not only between vertices but also between two arbitrary points along the edges of N . In this setting, a
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Fig. 1. The distance between u and v gives the diameter of the network, but the diameter of its locus is given by the distance between p and q . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

shortest path connecting two points of N � may consist of a number of edges and one or two fragments of edges (in which

the points to be connected are located). When computing the distance, we sum the lengths of all the edges in the path and

the lengths of the fragments 1 . See Fig. 1 . 

In this paper, we study the following problem: 

Problem 1. Given a plane Euclidean network N , insert a finite set of segments S = { s 1 , . . . , s k } in order to reduce (or min-

imize) the diameter of the locus of the resulting network, provided that the endpoints of segment s 1 are on N � and the

endpoints of s i , 2 ≤ i ≤ k , are on N � ∪ { s 1 , . . . , s i −1 } . (We say that S is a shortcut set for N � .)

When a shortcut set S is inserted into the network, there may be crossings between the segments in S, and also between

those segments and the network edges. In this paper, we consider that every crossing creates a new network vertex, which

is a model that is applicable to a wide range of situations, for example, in urban network design: to introduce shortcut sets

is a way of improving the worst-case travel time along networks of roads in a city, highways, etc. Note that such models

are considering the locus of the network, which is also used for related applications to location analysis [4] and feed-link

problems [4–6] . The modification or transformation of a network can be applied or models many other different situations.

For instance, very recently, Li et al. [7] have proposed a rule for deleting not only edges but nodes of a complex network in

order to illustrate its collapsing behavior, and in [8] , the authors use the local structure of a network to identify influential

spreaders with all the social applications that this identification allows. One can find many applications of Euclidean net-

works to robotics, telecommunications networks, computer networks, and flight scheduling. Any collection of objects that

have some connections between them can be modeled as a geometric network. See [9–11] for more details and references. 

Problem 1 also belongs to the class of graph augmentation problems. Concretely, it is a variant of the Diameter-Optimal

k -Augmentation Problem for edge-weighted geometric graphs, where one has to insert k additional edges (i.e., a shortcut set

of size k with segments connecting vertices) to an edge-weighted plane geometric graph in order to minimize the diameter

of the resulting graph. Whilst there are numerous studies on the non-geometric version of this problem (see for instance

[12–14] ), when the input is an edge-weighted plane geometric graph much less is known, not only on this problem but on

graph augmentation in general (see the survey [15] for results and references on graph augmentation over plane geometric

graphs). Farshi et al. [16] designed approximation algorithms for the problem of adding one edge to a plane Euclidean

network in R 

d while minimizing the dilation. The same problem is considered in [17,18] but for networks embedded in a

metric space. 

When considering the locus N � instead of the network N (setting of Problem 1 ), the hardness of the problem is enor-

mously increased which motivates that there are very few results on this topic, all restricted to specific families of graphs.

Yang [19] studied the restriction of Problem 1 to inserting only one segment, called shortcut , to the locus of a simple polyg-

onal chain. 2 Among other results, he designed three different approximation algorithms to compute an optimal shortcut, i.e.,

a shortcut that minimizes the diameter among all shortcuts. De Carufel et al. [2,20] and Bae et al. [21] consider a variant

of Problem 1 in which, in contrast with our model, the crossings that may appear when inserting shortcuts do not form

new network vertices, and the endpoints of all their shortcuts are on N � . A linear time algorithm to find an optimal short-

cut for paths is provided in [2] , and also optimal pairs of shortcuts (i.e., k = 2 ) for convex cycles. Trees have been studied

in [20] where the authors give an algorithm to find an optimal shortcut for a tree of size n in O ( n log n ) time. Finally, for

circles, Bae et al. [21] have analyzed how to add up to seven shortcuts in an optimal way. 

Our main contribution in this paper is to provide the first approach to Problem 1 for general plane Euclidean networks.

Concretely, in Section 2 , we first characterize the networks N whose locus N � admits a shortcut set. For such networks,

we find in polynomial time a shortcut set for N � giving an upper bound on its size. The section concludes by studying

the connection between the diameter of the convex hull of N � and the diameter of the resulting network when inserting a

shortcut set to N � . 

Section 3 is devoted to prove that it is always possible to determine in polynomial time whether inserting only one

segment to N � suffices to reduce the diameter. Our method computes such a segment in case of existence, and combines a
1 The diameter of N � is the generalized diameter of N , which was introduced in [1] and called continuous diameter in, for example [2,3] , but we use the 

context of locus because it fits better to our purpose in this paper.
2 In fact, the restriction of Problem 1 to inserting only one segment to the locus of a general plane Euclidean network was proposed by Cai as a personal

communication to Yang [19] .



Fig. 2. Depicted as thick segments: (a) a shortcut set of size 2, (b) a simple shortcut.
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remarkable number of tools that allow us to decide on the existence of that segment via analyzing intersections of certain

arrangements of curves and certain regions. 

Section 4 contains our first approach to two hard problems: to minimize the size of shortcut sets and to minimize the

diameter of the resulting networks when inserting shortcut sets. We consider shortcut sets for non-connected networks,

which is essential for proving our main result in this section: the NP-completeness of the problem of deciding whether the

minimum size of a shortcut set (for N � not necessarily connected) is smaller or equal than a fixed natural number. 

We conclude the paper in Section 5 with some comments and open problems. 

2. Existence of shortcut sets

We begin with some notations and definitions. As usual, V (N ) and E(N ) denote, respectively, the vertex-set and the

edge-set of a network N , and δ( u ) is the degree of u ∈ V (N ) . An edge u v ∈ E(N ) is pendant if either u or v is a pendant

vertex (i.e., has degree 1). We write p ∈ N � for a point p on N � , and distinguish the vertices of N (which are not assumed

to be in general position) saying that V (N ) ⊆ N � . 

For p, q ∈ N � , a p − q path P is a sequence pu 1 ���u k q such that u 1 u 2 , . . . , u k −1 u k ∈ E(N ) , p is a point on an edge ( � = u 1 u 2 )

incident with u 1 , and q is a point on an edge ( � = u k −1 u k ) incident with u k . The length of P , written as | P |, is the sum of

the lengths of all edges u i u i +1 plus the lengths of the segments pu 1 and qu k (which are edges when p, q ∈ V (N ) ). The

distance d ( p , q ) between points p, q ∈ N � is the length of a shortest p − q path in N � . The eccentricity of a point p ∈ N � is

ecc (p) = max q ∈N � d(p, q ) and the diameter of N � is diam (N � ) = max p∈N � ecc (p) . Two points p, q ∈ N � are diametral whenever

d(p, q ) = diam (N � ) ; when in addition p and q are vertices, they are called diametral vertices of N � . These definitions for N 

(instead of N � ) are analogous (and well-known), taking distances only between vertices of N . When necessary, we shall use

d H , ecc H and d e for, respectively, distance on a network H , eccentricity on H , and Euclidean distance. 

As we set in Problem 1 , we define a shortcut set for the locus N � of a network N as a finite set S = { s 1 , . . . , s k } of

segments where s 1 has endpoints on N � and s i , 2 ≤ i ≤ k , has endpoints on N � ∪ { s 1 , . . . , s i −1 } satisfying that diam (N � ∪ S) <

diam (N � ) ; see Fig. 2 (a). When S consists of only one segment s we say that s is a shortcut (in this case, N � ∪ S is simply

N � ∪ s ), and a shortcut s is called simple if its two endpoints are the only intersection points with N � ; see Fig. 2 (b). We want

to point out that our definition of shortcut comes from that given in [19] , which includes as a possibility the equality of

the diameters of N � and N � ∪ s (and so the locus of every network has a shortcut), but we believe that the intuitive idea of

shortcut is better captured by excluding that case. As it was explained in the Introduction, our definition also differs from

the shortcuts of [2,20,21] . 

One can easily find networks N whose locus N � has no shortcut (a triangle, for example) and even no shortcut set

of any size (a straight path). The characterization of the networks N whose locus N � admits a shortcut set is given in

Theorem 2 below. We use CH(N � ) to denote the convex hull of N � ; note that CH(N � ) = CH(V (N )) . Observe also that the

distance between any two points in CH(N � ) is their Euclidean distance, which easily leads to the fact that diam (CH(N � )) ≤
diam (N � ) . 

Theorem 2. Let N be a plane Euclidean network. Then, the following statements are equivalent: 

(i) N � admits a shortcut set.

ii) The segment defined by any two diametral vertices is not contained in N � .

ii) diam (CH(N � )) < diam (N � ) .

Proof. ( i ⇔ ii ) If N � contains a segment defined by diametral vertices, say u and v , then d e (u, v ) = d N � (u, v ) = diam (N � ) and

so there is no shortcut set for N � . Otherwise, there exists u ∈ V (N ) such that δ(u ) = r ≥ 2 ; let { u 0 , . . . , u r−1 } be the set of

its neighbours sorted clockwise. 

Consider the oriented lines m i from u to each u i , and the corresponding right half-planes H 

+ 
i 

(see Fig. 3 ).

For each u i , determine whether there exists a vertex u j such that u j ∈ H 

+ 
i 

and u j+1 �∈ H 

+ 
i 

(where indices are taken

modulo r ). Observe that there must exist such a vertex u j for at least one of the u i ’s since N � cannot be not a straight path,

which contains a segment defined by two diametral vertices. 



Fig. 3. Segment s i (depicted as a thick segment) that shortens all paths containing any two of the intersected edges.

 

 

 

 

 

 

 

 

 

 

 

 

 

The angle < u i uu j > is smaller than π and so a segment s i crossing all edges uu k , i ≤ k ≤ j , shortens all paths that contain

any two of those edges (see Fig. 3 ). Further, all segments s i must be placed very close to vertex u (their lengths are as small

as desired) so that ecc (p) < diam (N � ) for every p ∈ ∪ s i . Thus, the set of all those segments s i is a shortcut set. 

( ii ⇔ iii ) As it was said before, diam (CH(N � )) ≤ diam (N � ) . If diam (N � ) = diam (CH(N � )) then there exist u, v ∈ V (N ) such

that d e (u, v ) = diam (CH(N � )) = diam (N � ) = d N � (u, v ) , which implies that segment u v is contained in N � . The reverse impli-

cation can be proved analogously. �

The following corollary is a consequence of the preceding proof. 

Corollary 3. Let N be a plane Euclidean network whose locus N � admits a shortcut set. Then, it is always possible to compute

in polynomial time a shortcut set for N � of size at most 2 | E(N ) | − n 1 , where n 1 is the number of pendant vertices of N .

Proof. The shortcut set for N � constructed in the proof of Theorem 2 (equivalence of statements (i) and (ii)) has cardinality

at most ∑ 

u ∈ V (N ) ,δ(u ) ≥2

δ(u ) = 2 | E(N ) | − n 1 ,

and can obviously be constructed in polynomial time. �

Regarding the role of CH(N � ) when inserting segments, one can easily check that a vertex u ∈ V (N ) (with δ( u ) ≥ 2) on

the border of CH(N � ) requires only one segment for shortening all paths through u . This and similar considerations improve

the upper bound of the preceding corollary, but we put the emphasis on its linearity with respect to | V (N ) | . Nevertheless,

the importance of CH(N � ) goes much further as the following theorem reflects. 

Theorem 4. Let N be a plane Euclidean network whose locus N � satisfies that: 

diam (CH(N � )) < diam (N � ) . 

Then, for every ε > 0 such that diam (CH(N � )) + ε < diam (N � ) there exists a shortcut set S for N � verifying that: 

diam (CH(N � )) ≤ diam (N � ∪ S) < diam (CH(N � )) + ε. 

Proof. Since diam (CH(N � )) < diam (N � ) , by Theorem 2 , N � admits a shortcut set. Further, every shortcut set S for N � verifies

that CH(N � ) = CH(N � ∪ S) and so 

diam (CH(N � )) = diam (CH(N � ∪ S)) ≤ diam (N � ∪ S) . 

We next construct a shortcut set S that, in addition, satisfies that diam (N � ∪ S) < diam (CH(N � )) + ε for given ε > 0 such

that diam (CH(N � )) + ε < diam (N � ) . 

Consider the set M = { p ∈ N � | ecc (p) ≥ M} where M = diam (CH(N � )) + 

ε 
4 . This set is non-empty; otherwise ecc( p ) < M

for every point p ∈ N � and so diam (N � ) < M, which contradicts diam (N � ) > diam (CH(N � )) + ε. Note that this hypothesis is

motivated by the fact that S must be a non-empty set. 

The set M is compact in R 

2 . Indeed, N � is compact in R 

2 (since it is a bounded closed point set) and so it suffices to

prove that M is compact in N � . Let p ∈ N � \ M . Then ecc( p ) < M and moreover, there is a neighborhood of p , say N p ⊆ N � ,

such that ecc( q ) < M for every q ∈ N p . This implies that N � \ M is an open set in N � . Hence, M is a bounded closed set in

N � and so a compact. 
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(

The collection of balls B (p, ε 4 ) for p ∈ M is a cover of M . Then, there is a finite subcover of M , i.e., there exist p 1 , . . . , p k ∈
M such that 

M ⊆
k ⋃ 

i =1

B (p i , 
ε 

4 

) . (1) 

For 1 ≤ i ≤ k , let M i = { q ∈ N � | d(p i , q ) ≥ M} . This set is non-empty because ecc( p i ) ≥ M . Further it is bounded and, rea-

soning as above, one can check that it is a closed set in N � , and so a compact in R 

2 . Since the collection of balls B (q, ε 4 ) for

q ∈ M i is a cover of M i then there exist q i 
1 
, . . . , q i r i ∈ M i such that

M i ⊆
r i ⋃ 

t=1

B (q i t , 
ε 

4 

) . (2) 

Let S be the set of segments with endpoints p i and q i 
j 

for 1 ≤ i ≤ k and 1 ≤ j ≤ r i . We now prove that d(p, q ) <

diam (CH(N � )) + ε for every p, q ∈ N � ∪ S . 

Clearly, if either p or q do not belong to M then 

d(p, q ) < M = diam (CH(N � )) + 

ε

4 

< diam (CH(N � )) + ε. 

Thus, we can assume that p, q ∈ M . By (1), there exist p i , p j ∈ M such that d(p, p i ) < 

ε 
4 and d(q, p j ) < 

ε 
4 . If p j / ∈ M i then

d ( p i , p j ) < M and so 

d(p, q ) ≤ d(p, p i ) + d(p i , p j ) + d(p j , q ) < diam (CH(N � )) + 

3 ε 

4 

< diam (CH(N � )) + ε. 

Otherwise, by (2), there exists q i 
h 

∈ M i such that d(p j , q 
i 
h 
) < 

ε 
4 . Further, there is a segment in S with endpoints p i , q 

i 
h 

which

implies that 

d(p i , q 
i 
h ) ≤ diam (CH(N � )) < M.

Therefore d(p i , p j ) ≤ d(p i , q 
i 
h 
) + d(q i 

h 
, p j ) < M + 

ε 
4 , and we obtain 

d(p, q ) ≤ d(p, p i ) + d(p i , p j ) + d(p j , q ) < M + 

3 ε 

4 

= diam (CH(N � )) + ε. 

Thus, we can conclude that diam (N � ∪ S) < diam (CH(N � )) + ε. �

3. Computing shortcuts

This section is devoted to prove that one can always determine in polynomial time whether N � admits a shortcut, and

in that case, to compute it. For clarity, we split this result into two: Proposition 7 considers the case of simple short-

cuts and Theorem 8 states the result for all shortcuts. First, we prove that diam (N � ) can be computed in polynomial time

( Lemma 6 ). It is important to note that the computation of diam (N � ) is done in [1] for general Euclidean networks but we

include a version of that result (restricted to our plane networks) because its proof plays a fundamental role in the proofs

of Proposition 7 and Theorem 8 . The following technical lemma will be useful in the proof of Lemma 6 and also in the

remainder of the paper. 

Lemma 5. Let N be a plane Euclidean network whose locus N � has diametral points p , q placed on two different non-pendant

edges u v and u ′ v ′ of N . Then, there exist two different shortest p − q paths, say P 1 and P 2 , such that either u , u ′ ∈ P 1 and

v , v ′ ∈ P 2 , or u, v ′ ∈ P 1 and v , u ′ ∈ P 2 (see Fig. 4 ).

Proof. Given shortest paths P u and P v connecting, respectively, u , q and v , q, the paths pu ∪ P u and pv ∪ P v are necessarily

shortest p − q paths when p and q are diametral points. Otherwise, say that pv ∪ P v is not a shortest path connecting p

and q , then there would be a point p ′ ∈ pv placed sufficiently close to p such that p ′ u ∪ P u is a shortest p ′ − q path. Hence

d(p ′ , q ) > d(p, q ) = diam (N � ) , a contradiction. 

Analogously, we can construct the paths qu ′ ∪ P u ′ and q v ′ ∪ P v ′ which are shortest p − q paths, and P 1 and P 2 can be

easily chosen among those four paths. �

Lemma 6. Given a plane Euclidean network N with n vertices, the diameter of its locus N � can be computed in polynomial time

in n. 

Proof. We proceed as follows to find two diametral points on N � . 

1) Compute the distances between any pair of vertices of N .

2) For every pair of non-pendant edges u v , u ′ v ′ ∈ E(N ) compute:

min 

{
d(u, v ) + d(v , v ′ ) + d(v ′ , u 

′ ) + d(u 

′ , u )

2 

,
d(u, v ) + d(v , u 

′ ) + d(u 

′ , v ′ ) + d(v ′ , u )

2 

}



Fig. 4. Paths P 1 and P 2 containing vertices u , u ′ and v , v ′ , respectively. 
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Here, we consider the case in which the diametral points are located on two non-pendant edges, and use the paths P 1
and P 2 of Lemma 5 . Thus, the preceding value is simply (| P 1 | + | P 2 | ) / 2 .

3) For every pendant edge u v ∈ E(N ) with δ(u ) = 1 , and every non-pendant edge u ′ v ′ ∈ E(N ) compute:

d (u, v ) + 

d (v , u 

′ ) + d(u 

′ , v ′ ) + d(v ′ , v )
2 

Note that if there is a diametral pair in which one of the points lies on a pendant edge, then it is the pendant vertex.

Further, we can assume that the other point is located on a non-pendant edge; otherwise that pair is obtained in step

(1). 

4) Compute the maximum value among those obtained in the previous steps; this maximum is diam (N � ) .

Since the values of steps (2) and (3) only depend on those of step (1), and they can be computed in polynomial time

(see for instance [1] ), then we can also compute diam (N � ) in polynomial time. �

We are now ready to prove our main result in this section. As it was said before, we split it into two results:

Proposition 7 below considers the case of simple shortcuts and its proof contains the main ideas of the proof of

Theorem 8 which also includes non-simple shortcuts. In the proof of this general theorem, we shall mainly focus on the

differences with the case of simple shortcuts. 

Proposition 7. Given a plane Euclidean network N , it is possible to determine in polynomial time whether N � admits a simple

shortcut, and compute one in case of existence. 

Proof. There are two main steps in proving the result. First, we split the searching space into a polynomial number of

“equivalent” regions (step (1)). Then, we design a method for seeking for a shortcut in each of those regions in polynomial

time (step (2)). 

Step (1). Construction of a polynomial number of “equivalent” regions. 

Consider two arbitrary vertical lines defining a strip enclosing N � . For each vertex u ∈ V (N ) , take two horizontal seg-

ments defined by u as one endpoint and the other in one of the vertical lines. Let H be the set of those 2 n segments

(formally, the direction of the segments of H must be different than those of the edges of N but, for simplicity, we can

assume them to be horizontal). We say that two lines are equivalent if they intersect the same segments of H. Observe

that there are O ( n 2 ) classes of equivalent lines. Indeed, for every pair of vertices u, v ∈ V (N ) consider the lines m u + v + and

m u −v − parallel to segment u v and leaving u and v in the same half-plane, and lines m u + v − , m u −v + leaving u, v in different

half-planes. These four lines must be placed sufficiently closed to u and v ; see Fig. 5 (a). It is easy to check that every class

of equivalent lines has a representative in the set { m u + v + , m u −v − , m u + v − , m u −v + | u, v ∈ V (N ) } , whose cardinality is O ( n 2 ).

Given a line m that crosses two edges e, e ′ ∈ E(N ) and intersects no other edges in between them, let P e,e ′ (m ) be the set

of equivalent lines to m that intersect edges e and e ′ (clearly, none of these lines intersect any edge in between e and e ′ ).
Observe that the intersection of a line of P e,e ′ (m ) with both edges determines a segment. Thus, P e,e ′ (m ) can also be viewed

as the set of segments given by the corresponding intersections. It is well-known that the region of the plane defined by

P e,e ′ (m ) has the shape of an hourglass, as illustrated in Fig. 5 (b); see for instance [22, Section 3.1] . Further, by the argument

above, there are obviously O ( n 2 ) regions P e,e ′ (m ) for each two edges e, e ′ ∈ E(N ) .

Step (2). Seeking for a simple shortcut in each region P e,e ′ (m ) in polynomial time. 



Fig. 5. (a) Lines associated to vertices u and v , (b) region P e,e ′ (m ) . 

Fig. 6. Segments in the boundary of region P(m ) in (a) determine the boundary of region R (m ) in (b). 

 

 

 

 

 

 

 

 

 

 

 

 

Consider now a region P e,e ′ (m ) . For simplicity, we shall say P(m ) but one must recall that edges e and e ′ are associated

to the region. We next show how to decide in polynomial time whether there is a segment pp ′ ∈ P(m ) (endpoint p on e and

p ′ on e ′ ) that is a shortcut for N � (which would be a simple shortcut since lines of P(m ) intersect no other edges in between

e and e ′ ). This is: (i) pp ′ must decrease the distance of all the diametral pairs of points on N � , and (ii) ecc (q ) < diam (N � )

for every point q ∈ pp ′ . 
Each segment of P(m ) can be codified by its endpoints on e and e ′ as follows. If e = u v and e ′ = u ′ v ′ then a point p on e

can be expressed as p = ut + (1 − t) v , and a point on e ′ is p ′ = u ′ t ′ + (1 − t ′ ) v ′ . Thus, a segment pp ′ ∈ P(m ) is represented

by a pair ( t , t ′ ). 
The pairs ( t , t ′ ) must lie inside a region R (m ) ⊆ R 

2 whose boundary is given by the coordinates of the segments bounding

P(m ) . Since region P(m ) has the shape of an hourglass, the boundary of R (m ) is determined by two polygonal chains that

are monotone with respect to the two axes, one being increasing and the other decreasing. Fig. 6 (b) shows an example

in which points (t i , t 
′ 
i 
) and (s i , s 

′ 
i 
) correspond, respectively, to the coordinates of the segments that form the left and right

boundaries of the region P(m ) in Fig. 6 (a). The polygonal chain given by points (s i , s 
′ 
i 
) is increasing ( s i > s j and s ′ 

i 
< s ′ 

j 
for

i < j ) and that given by points (t i , t 
′ 
i 
) is decreasing ( t i < t j and t ′ 

i 
> t ′ 

j 
for i < j ). Each point in R (m ) represents a segment of

P(m ) . 

By Lemma 6 , d = diam (N � ) can be computed in polynomial time. Moreover, regarding condition (i) above, we know that

the value d is obtained by checking whether there are diametral points on N � that may be: (a) two vertices, (b) two points

on different non-pendant edges, and (c) a pendant vertex and a point on a non-pendant edge. Thus, from [4, Lemma 9] , one

can deduce that there is at most a quadratic set of diametral points. 

Consider now the endpoints u and u ′ of edges e and e ′ , respectively. We distinguish three cases depending on the type

of diametral points. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case (a). Let w, z ∈ V (N ) be diametral vertices of N � . Suppose that d 1 = d(w, u ) + d(z, u ′ ) ≤ d(w, u ′ ) + d(z, u ) ; otherwise

we would follow the same argument by taking d 1 = d(w, u ′ ) + d(z, u ) . If there is a segment pp ′ ∈ P(m ) in a path passing

through u and u ′ that decreases d(w, z) = d, then d 1 + d(u, p) + d(p, p ′ ) + d(p ′ , u ′ ) < d which is 

d(u, p) + d(p, p ′ ) + d(p ′ , u 

′ ) < d − d 1 . (3)

Case (b). Let w and z be two diametral points located on two non-pendant edges ab and a ′ b ′ , respectively. By Lemma 5 ,

one can consider two shortest w − z paths P 1 and P 2 such that d = diam (N � ) = (| P 1 | + | P 2 | ) / 2 . Assume that a , a ′ ∈ P 1 and

b , b ′ ∈ P 2 (a similar argument would be used for a , b ′ ∈ P 1 and b , a ′ ∈ P 2 ). If a path passing through u , u′ and containing a

segment pp ′ ∈ P(m ) decreases the value (| P 1 | + | P 2 | ) / 2 then either d ( a , a ′ ) or d ( b , b ′ ) is decreased, say d ( a , a ′ ) (analogous

for d ( b , b ′ )). Thus, 

d(b, a ) + d(a, u ) + d(u, p) + d(p, p ′ ) + d(p ′ , u 

′ ) + d(u 

′ a ′ ) + d(a ′ , b ′ ) + d(b ′ , b) < 2 d.

Let d 2 = d(b, a ) + d(a, u ) + d(u ′ a ′ ) + d(a ′ , b ′ ) + d(b ′ , b) where we assume that d(a, u ) + d(a ′ , u ′ ) ≤ d(a, u ′ ) + d(a ′ , u ) (other-

wise we take this last value for d 2 ). Hence, 

d(u, p) + d(p, p ′ ) + d(p ′ , u 

′ ) < 2 d − d 2 . (4)

Case (c). Let w, z ∈ N � be diametral points such that w is the pendant vertex of a pendant edge ww 

′ , and z is a point on

a non-pendant edge ab . This case is a combination of cases (a) and (b); by doing similar assumptions, we obtain 

d(u, p) + d(p, p ′ ) + d(p ′ , u 

′ ) < 2 d − d 3 (5)

where d 3 = 2 d(w, w 

′ ) + d(w 

′ , u ) + d(u ′ , a ) + d(a, b) + d(b, w 

′ ) . 
Observe that for a fixed pair (w, z) , Inequations (3) –(5) give us the interior points ( t , t ′ ) (corresponding to points p , p ′ )

of certain conics Q 

w,z 
u,u′ . They are conics because d ( u , p ) and d ( u ′ , p ′ ) are linear functions of t and t ′ , 

d(u, p) = (1 − t) d (u, v ) and d (u 

′ , p ′ ) = (1 − t ′ ) d(u, v ′ ) .

We can analogously construct the corresponding conics Q 

w,z 
u, v ′ , Q 

w,z 
v ,u ′ , and Q 

w,z 
v , v ′ for paths passing through u, v ′ or v , u ′ or v , v ′

(instead of u , u ′ ). When considering all types of diametral pairs (w, z) we obtain an arrangement Q of conics. 

Suppose now that there is a cell C in Q ∩ R (m ) that is contained, per each diametral pair, in at least one of its four

associated conics. Then, all points in C would represent segments pp ′ ∈ P(m ) that decrease the distance of all the diametral

pairs of points on N � . Nevertheless, this would not imply that those segments pp ′ are shortcuts since it must be guaranteed

that the maximum eccentricity of the points on pp ′ is smaller than d (condition (ii) above). To do this, we construct another

arrangement of conics Q 

′ as follows. 

Let ab be a non-pendant edge of N . Suppose that there is a segment pp ′ ∈ P(m ) such that N � ∪ pp ′ has two diametral

points placed, respectively, on ab and on segment pp ′ . Take the two paths P 1 and P 2 of Lemma 5 and, without loss of

generality, suppose that a , p ∈ P 1 and b , p ′ ∈ P 2 . This implies that either u or v are on P 1 and either u ′ or v ′ are on P 2 .

Assume that u ∈ P 1 and u ′ ∈ P 2 . The argument is analogous for the remaining cases. Since the maximum eccentricity of the

points on pp ′ must be smaller than d then 

| P 1 | + | P 2 |
2 

< d ⇒ d(u, p) + d(p, p ′ ) + d(p ′ , u 

′ ) < 2 d − d 4

where d 4 = d(b, a ) + d(a, u ) + d(u ′ , b) . Similarly, given a non-pendant vertex r ∈ V (N ) , if r is diametral to some point on pp ′
then 

d(u, p) + d(p, p ′ ) + d(p ′ , u 

′ ) < 2 d − d 5

where d 5 = d(r, u ) + d(r, u ′ ) (assuming that r , u ∈ P 1 and r , u ′ ∈ P 2 ). It is easy to check that for pendant vertices, we obtain

similar equations to the previous ones. Thus, condition (ii) above is captured again by certain conics which give rise to the

arrangement Q 

′ . Every vertex and every edge of N has an associated conic of Q 

′ . The interior points of a conic associated

to, say a non-pendant edge, correspond to segments with maximum eccentricity with respect to that edge smaller than d . 

We can conclude that there is a segment of P(m ) that is a simple shortcut for N � if and only if there exists a cell in

Q ∩ Q 

′ ∩ R (m ) that is contained in all conics of Q 

′ and, per each diametral pair, in at least one of its four associated conics

of Q . Any point in such a cell represents a segment that is a simple shortcut for N � . 

Complexity. As it was mentioned before, the set of diametral pairs of points on N � is at most quadratic. Further, the sets

of vertices and edges are linear and so the set of values needed to obtain our arrangements Q and Q 

′ is polynomial. Those

values depend on distances between vertices of N , and so their computation can be done in polynomial time [1] as well

as the computation of the arrangements Q and Q 

′ [23] . Since R (m ) is bounded by two monotone chains, Q ∩ Q 

′ ∩ R (m )

can also be obtained in polynomial time. The analysis of step (2) must be performed at most in the O ( n 2 ) regions P e,e ′ (m )

for each of the O ( n 2 ) pairs of edges e , e ′ (regions obtained in step (1)). Thus, the process is polynomial and the result

follows. �

The following theorem is the general version of the preceding proposition; it includes non-simple shortcuts. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Theorem 8. Given a plane Euclidean network N , it is possible to determine in polynomial time whether N � admits a shortcut,

and compute one in case of existence. 

Proof. The argument is essentially the same as in the proof of Proposition 7 although there are some important differences

on whose description we focus next. Throughout this proof, steps (1) and (2) refer to the corresponding steps in the proof

of Proposition 7 . 

Since the shortcut may be non-simple, when constructing the regions P e,e ′ (m ) in step (1), we cannot assume that

line m intersects no other edges in between e and e ′ but it may intersect k edges in between them, say a set I = { e 0 =
e, e 1 , . . . , e k +1 = e ′ } of edges with e i = u i u

′ 
i 

(counting e and e ′ ). This implies that, for a candidate segment pp ′ ∈ P e,e ′ (m ) to

be a shortcut, different diametral pairs (w, z) and (w 

′ , z ′ ) might use different fragments of segment pp ′ in order to decrease

d = diam (N � ) . For example, one can have a w − z path decreasing d = d(w, z) that connects w with u i , uses the fragment

of pp ′ in between e i and e j and then connects u ′ 
j 

with z . There could also be a w 

′ − z ′ path decreasing d = d(w 

′ , z ′ ) using

another fragment of pp ′ . When trying to mimic the construction of the arrangements Q and Q 

′ in step (2), this fact gen-

erates the main differences with the proof of Proposition 7 . Nevertheless, we still have the O ( n 2 ) regions P e,e ′ (m ) for each

two edges e, e ′ ∈ E(N ) . For short, we again use P(m ) instead of P e,e ′ (m ) . Also, for each region P(m ) , a region R (m ) ⊆ R 

2

can be constructed as in step (2), and a segment pp ′ ∈ P(m ) can be represented by a point (t , t ′ ) ∈ R (m ) .

For constructing arrangement Q in step (2), we consider the four combinations of endpoints of e and e ′ (i.e., paths

passing through u , u ′ or u, v ′ or v , u ′ or v , v ′ ) but here we must take the 2(k + 2)(k + 1) suitable combinations of endpoints

of different pairs of edges of set I (still a polynomial number). This means that, for each pair of endpoints of those pairs of

edges, we analyze (as it was done in step (2)) the inequations obtained for a candidate segment pp ′ ∈ P(m ) to be a shortcut

which, in this general case, are of the form: 

d(u i , p i ) + d(p i , p 
′ 
j ) + d(p ′ j , u j ) < c

where we have taken as an example (in order to show the type of inequation) endpoints u i of e i and u j of e j . Further, p i 
and p ′ 

j 
are the intersection points of segment pp ′ with edges e i and e j , respectively; value c is a constant that depends on

d = diam (N � ) as well as on several distances obtained by reasoning as in step (2) when considering the different types of

diametral pairs. 

The above inequations do not necessarily describe conics (as in step (2)) because the terms d ( u i , p i ) and d(p ′ 
j 
, u j ) may

not be linear functions of t and t ′ , respectively. Clearly, the same happens for arrangement Q 

′ since the inequations obtained

for this arrangement are of the same type. Nevertheless, we shall show that the situation can be handled in a similar fashion

of Proposition 7 by proving, as follows, that those loci of points are convex sets. 

Let (w, z) be a diametral pair of points. Suppose that d(w, z) = d is decreased by using a path T 1 passing through vertices

u i and u j and containing the fragment of a segment p 1 p 
′ 
1 ∈ P(m ) in between e i and e j ; this segment is represented by a

point (t 1 , t 
′ 
1 
) ∈ R (m ) . Assume also that d(w, z) = d is decreased by another path T 2 passing through the same vertices u i and

u j and containing the fragment of a segment p 2 p 
′ 
2 

∈ P(m ) in between e i and e j ; segment p 2 p 
′ 
2 

is represented by a point

(t 2 , t 
′ 
2 ) ∈ R (m ) . To prove that the inequations corresponding to arrangement Q describe convex sets, it suffices to show that

every point ( t , t ′ ) on the segment with endpoints (t 1 , t 
′ 
1 
) and (t 2 , t 

′ 
2 
) represents a segment pp ′ ∈ P(m ) such that d(w, z) = d

is decreased by using a path, say T , passing through vertices u i and u j and containing the fragment of pp ′ in between e i and

e j . To do this, we distinguish two cases. 

Case (a). Vertices u i and u j are located at the same side of p 1 p 
′ 
1 

and p 2 p 
′ 
2 
; see Fig. 7 . 

The result is straightforward when either p 1 p 
′ 
1 

and p 2 p 
′ 
2 

do not intersect or they do but on a point located outside the

region defined by e i and e j ; see Fig. 7 (a). Otherwise, all points on the segment with endpoints (t 1 , t 
′ 
1 ) and (t 2 , t 

′ 
2 ) represent

segments in P(m ) that pass through the intersection point of p 1 p 
′ 
1 and p 2 p 

′ 
2 ; see Fig. 7 (b). Suppose that this intersection

point is under the bisector defined by e i and e j as Fig. 7 (b) shows. By comparing triangles, one can check that a path T that

uses the fragment of segment pp ′ in between e i and e j is shorter than T 2 (similar for the intersection point over the bisector

but using path T 1 ). Hence, T decreases d(w, z) = d since T 2 does. 

Case (b). Vertices u i and u j are located at different sides of p 1 p 
′ 
1 

and p 2 p 
′ 
2 
; see Fig. 8 . 

If p 1 p 
′ 
1 

and p 2 p 
′ 
2 

intersect then the result is straightforward since points ( t , t ′ ) represent segments that pass through

that intersection point; see Fig. 8 (a). Otherwise, consider a point ( t , t ′ ) on the segment with endpoints (t 1 , t 
′ 
1 ) and (t 2 , t 

′ 
2 ) ,

i.e., (t , t ′ ) = λ(t 1 , t 
′ 
1 
) + (1 − λ)(t 2 , t 

′ 
2 
) . 

Suppose first that λ = 1 / 2 . A well-known property of a quadrilateral is that if the midpoints of opposite edges are con-

nected (points a ′ and d ′ in Fig. 9 ), then the length of the path ba ′ d ′ d is smaller or equal than the length of at least one of

the two paths in the quadrilateral connecting b with d . Therefore, path T is shorter than T 1 or T 2 and so it also decreases

d(w, z) = d. For λ � = 1/2, we can apply successively the same property, starting with either the quadrilateral with vertices a ,

a ′ , d , d ′ or that with vertices a ′ , b , d ′ c . 
Thus, we can conclude that the inequations corresponding to arrangement Q describe convex sets. One can analogously

prove that arrangement Q 

′ consists also of convex sets. Since the process is very similar, we omit the details and only

specify the convexity condition in this case: consider a segment p 1 p 
′ 
1 

∈ P(m ) (which is a point (t 1 , t 
′ 
1
) ∈ R (m ) ) and suppose

that the maximum eccentricity of the points on p 1 p 
′ 
1 (in the network N � ∪ p 1 p 

′ 
1 ) is smaller than d . Further, as it was done

in step (2), assume that u i ∈ P 1 and u j ∈ P 2 for the corresponding paths P 1 and P 2 of Lemma 5 that give that maximum

eccentricity. The same assumptions are done for another segment p 2 p 
′ ∈ P(m ) (which is a point (t 2 , t 

′ ) ∈ R (m ) ). Thus, the

2 2 



Fig. 7. (a) Segments p 1 p 
′ 
1 and p 2 p 

′ 
2 do not intersect, (b) segments p 1 p 

′ 
1 and p 2 p 

′ 
2 intersect on a point located in the region defined by e i and e j . 

Fig. 8. Segments p 1 p 
′ 
1 and p 2 p 

′ 
2 intersect in (a) and do not intersect in (b). 

Fig. 9. A quadrilateral with vertices a , b , c , d in which the midpoints a ′ and d ′ of, respectively, edges ab and cd are connected. 

 

 

 

convexity condition for Q 

′ is that every point ( t , t ′ ) on the segment with endpoints (t 1 , t 
′ 
1 ) and (t 2 , t 

′ 
2 ) represents a segment

pp ′ ∈ P(m ) such that the maximum eccentricity of the points on pp′ (in the network N � ∪ pp ′ ) is smaller than d , assuming

also that u i ∈ P 1 and u j ∈ P 2 for the corresponding paths P 1 and P 2 of Lemma 5 that give the maximum eccentricity. 

Regarding the complexity, the only difference with the proof of Proposition 7 is that, instead of analyzing the intersection

of two arrangements of conics with region R (m ) , we compute the intersection of two arrangements of convex sets with
that region, which can also be done in polynomial time [23] and so the result follows. �
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4. Shortcut number

There are two natural, interesting but very hard questions related with shortcut sets: which is the minimum number of

segments that have to be inserted to N � in order to reduce the diameter? Among all shortcut sets of minimum size, how

can we find the one that minimizes the diameter? It seems difficult to give an answer for general plane Euclidean networks

and, of course, new techniques must be developed. In this section we briefly describe our results on these questions, among

which highlights the NP-completeness of the problem of deciding whether the minimum size of a shortcut set is smaller or

equal than a fixed natural number. 

Let N be a network such that N � admits a shortcut set (according to Theorem 2 ). We define the shortcut number of N � ,

denoted by scn (N � ) , as the minimum size of a shortcut set. A shortcut set is called optimal if its size equals scn (N � ) and it

minimizes diam (N � ∪ S) among all shortcut sets S of size scn (N � ) . This notion of optimal shortcut set includes the optimal

shortcut of Yang [19] , and has the same spirit as the optimal set of shortcuts of De Carufel et al. [2,20] and Bae et al. [21] . 

Proposition 9. Let N be a plane Euclidean network whose locus N � admits a shortcut set. Then, the following statements hold. 

(i) scn (N � ) ≤ 2 | E(N ) | − n 1 , where n 1 is the number of pendant vertices of N .

ii) N � has an optimal shortcut set.

Proof. The bound of statement (i) is given in Corollary 3 . To prove statement (ii), suppose that scn (N � ) = h, and consider

the mapping 

f : 

2 h )︷ ︸︸ ︷
N � × · · · × N � −→ R , f (p 1 , q 1 , p 2 , q 2 , . . . , p h , q h ) = diam (N � ∪ S) 

where S is the set of segments with endpoints p i , q i , 1 ≤ i ≤ h . Since this is a continuous mapping taking values on a compact

set, it has a minimum. On the other hand, N � admits a shortcut set and so the minimum of f must be attained by an optimal

shortcut set. �

Remark. One can check that the star S n with odd n , given by V (S n ) = { u, u 0 , . . . , u n −1 } , E(S n ) = { uu i : 0 ≤ i ≤ n − 1 } , and

vertex u i placed at ( cos ( 2 πn i ) , sin ( 2 πn i )) attains the upper bound of the preceding proposition. 

Regarding the shortcut number, it is interesting to consider non-connected networks N ; note that all our previous results

on this paper deal with connected networks. Obviously, when N is non-connected, diam (N � ) is infinite and a shortcut set

is simply a set of segments that connects N � . Thus, the following proposition is straightforward. 

Proposition 10. Let N be a non-connected plane Euclidean network, and let N 

1 
� , . . . , N 

k
� be the connected components of its

locus. Then, scn (N � ) = 1 if and only if the set { C H(N 1 
� ) , . . . , C H(N 

k 
� ) } admits a stabbing line, i.e., a straight line that intersects

each of the k given convex hulls CH(N 

i 
� ) . 

Atallah and Bajaj [24] designed an algorithm for line stabbing simple objects in the plane which, for our set of k con-

vex hulls, runs in O ( k log k ) time. Hence, this is the complexity time of deciding whether scn (N � ) = 1 for non-connected

plane Euclidean networks N . Nevertheless, the computation of the shortcut number in general is a much more complex

computational problem. Indeed, consider the following problem: 

Short-Cut-Number: Given a plane Euclidean network (not necessarily connected) N with n vertices and a natural number t ,

to decide whether scn (N � ) ≤ t or not. 

Theorem 11. SHORT-CUT-NUMBER is an NP-complete problem. 

Proof. Clearly Short-Cut-Number is in NP since, by Lemma 6 , one can check in polynomial time whether |S| ≤ t and

diam (N � ∪ S) ≤ t for a given set of segments S and a network N . On the other hand, we can reduce 3–satisfiability (3SAT)

to Short-Cut-Number by mimicking the reduction given in [25] of 3-satisfiability to the Point Covering Problem. For the

sake of completeness, we summarize here the main steps of that reduction. 

The input of the Point Covering Problem is a set of points in the plane with rational coordinates, and one has to find a

collection of straight lines of minimum cardinality such that each point lies on at least one of the lines. 

Let φ be an instance of 3SAT with m clauses and n variables. Without loss of generality, it may be assumed that the

bipartite graph of variables and clauses associated to φ is connected. The following properties establish the reduction of

[25] .

1. Each clause c j is represented by a point P j .

2. Each variable x i is represented by a grid of m 

2 points P i 
kl 

(1 ≤ k , l ≤ m ).

3. For each i ( i = 1 , . . . , n ) and j ( j = 1 , . . . , m ), the points P i 
1 j 

, . . . , P i 
m j 

lie on a straight line denoted by L ij , and the points

P i 
j1 

, . . . , P i 
jm 

lie on a straight line denoted by R ij .

4. Except for the lines defined in the item above, no other straight line of the plane contains more than two points of the

point sets defined in (1) and (2).

5. For every j ( j = 1 , . . . , m ), the point P j lies on the line L ik if and only if j = k and the positive literal x j ∈ c j and P j lies on
the line R ik if and only if j = k and the negative literal x̄ j ∈ c j .



Fig. 10. Segment s shortens one of the p − q paths in P : (a) p and q are on the u − r path P 1 that does not pass through v , (b) q ∈ P 1 and p is on the 

u − r ′ path that does not go through v , (c) one of the points is on the wedge determined by r, v and r ′ . 

Fig. 11. Polygon triangulation with shortcut number 2 (the pairs { u 1 , u 4 }, { u 2 , u 5 } and { u 3 , u 6 } are diametral).
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In our case the whole collection of points given in (1) and (2) is a plane Euclidean network without edges N � (φ) whose

diameter is infinite. Thus, the shortcut number of N � (φ) is the minimum number of segments that have to be inserted to

N � (φ) to connect it in a unique connected component; this gives a finite diameter. 

A unique connected component can be obtained if and only if the entire collection of vertices of N � (φ) can be covered.

As in [25] , we can see that φ is satisfiable if and only if the entire collection of points given in (1) and (2) above can be

covered by nm lines. �

4.1. Polygons 

In our setting, a polygon P is the locus of a plane Euclidean cycle. 

Proposition 12. No polygon P admits a simple shortcut, and moreover: 

(i) scn (P ) = 2 when P is convex.

ii) scn (P ) = 1 when P is non-convex. In this case, there always exists a shortcut with at least one vertex of P as endpoint.

Proof. If the two endpoints of a segment s are the only intersection points with a polygon P , then s splits P into two

paths whose midpoints are diametral points of P and also of P ∪ s . This implies that diam (P ) = diam (P ∪ s ) . Hence, P has no

simple shortcut, and moreover, scn( P ) ≥ 2 when P is convex. In this case, we take two consecutive vertices of P and add two

segments s and s ′ , each of which is very close to one of the vertices (this means that its length can be taken as small as

desired) and its two endpoints are, respectively, on the two incident edges with the corresponding vertex. Clearly, either s

or s ′ shortens at least one of the two paths connecting any two diametral vertices of P (recall that diam( P ) is attained by

two vertices when P is convex). Further, by taking the length of those segments small enough, ecc( p ) < diam( P ) for p ∈ s ∪ s ′ .
Therefore, diam( P ∪ { s , s ′ }) < diam( P ), which proves statement (i). 

When P is non-convex, there are two vertices u, v ∈ V (P ) such that u v is not an edge of P but it is a segment on the

border of its convex hull CH ( P ). The u − v path contained in the interior of CH ( P ) is called the u − v pocket of P . Consider

a segment s that has vertex u as an endpoint and intersects the u − v pocket, say in a point r ′ (see Fig. 10 ). We can

assume r ′ to be very close to v , i.e., the length of the segment r ′ v is some ε > 0; the other endpoint of s , denoted by r , is

located outside the pocket. As Fig. 10 shows, given diametral points p , q ∈ P , segment s shortens one of the p − q paths in

P ; the figure distinguishes three cases according to the possible positions of p and q . Moreover, by taking ε small enough,

ecc( z ) < diam( P ) for every z ∈ s . Hence, s is a shortcut and so statement (ii) follows. �

Not all triangulations of polygons admit a shortcut; Fig. 11 illustrates an example that requires two segments to decrease

the diameter. However, it seems that most polygon triangulations have shortcut number equal to one. One can check this,

for example, for fan triangulations of convex polygons (it suffices to add a sufficiently small segment that intersects all

incident edges with the apex of the triangulation). 



Fig. 12. Diametral points p , q on a planar embedding of K 4 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Remark. As it was explained in the Introduction, De Carufel et al. [2] consider shortcuts for cycles that are always simple.

Thus, their Lemma 3.1 says that no polygon admits a simple shortcut as we also prove in Proposition 12 . Since our definition

of shortcut set differs from their shortcuts, we have included Proposition 12 to show how to deal with non-simple shortcuts,

which is the content of statement (ii). The other statements are included for completeness. 

4.2. The complete graph K 4 

Non-trivial Euclidean networks obtained from planar embeddings of complete graphs K n only appear for n = 3 and n =
4 . As an abuse of notation, let K 3 and K 4 denote those Euclidean networks, and ( K 3 ) � and ( K 4 ) � their locus. For n = 3 ,

Proposition 12 yields scn ((K 3 ) � ) = 2 . 

Proposition 13. The shortcut number of ( K 4 ) � is equal to 1. 

Proof. Let V (K 4 ) = { u 1 , u 2 , u 3 , u 4 } where u 4 lies in the interior of the triangle T of vertices u 1 , u 2 , u 3 . Let per( T ) denote the

perimeter of T . It follows that diam (( K 4 ) � ) ≥ per( T )/2 since there is always a point w ∈ u 2 u 3 such that d(u 1 , w ) = per (T ) / 2 .

Also, it holds that d(u 1 , u 4 ) + d(u 4 , u 2 ) > d(u 1 , u 2 ) and d(u 1 , u 4 ) + d(u 4 , u 3 ) > d(u 1 , u 3 ) , and so there is a point z ∈ u 1 u 4
sufficiently close to u 1 satisfying that d(z, w ) = d(z, u 1 ) + d(u 1 , w ) . This implies that diam (( K 4 ) � ) > per( T )/2; otherwise one

would have d(z, w ) = d(z, u 1 ) + d(u 1 , w ) = d(z, u 1 ) + diam ((K 4 ) � ) . Therefore, given two diametral points p , q in ( K 4 ) � , we

can assume p ∈ T and q �∈ T . Without loss of generality, suppose that p ∈ u 2 u 3 and q ∈ u 1 u 4 (see Fig. 12 ). 

By Lemma 5 , there exist at least two shortest p − q paths in ( K 4 ) � , one of them containing vertex u 3 and the other con-

taining vertex u 2 . Further, one of those paths contains vertex u 1 . Hence, every vertex among u 1 , u 2 , u 3 belongs to a certain

shortest p − q path. Thus, a segment s placed sufficiently close to u 1 (it also applies for u 2 and u 3 ) and intersecting all inci-

dent edges with u 1 is a shortcut for ( K 4 ) � . Observe that s must be located close to u 1 to guarantee that ecc( z ) < diam(( K 4 ) � )

for every z ∈ s . �

5. Concluding remarks

The concept of shortcut set is natural in the context of Euclidean networks, and we believe that its study is of interest not

only from the theoretical point of view but also for the already mentioned applications of those networks to road networks,

robotics, telecommunications networks, etc. This paper presents the first approach to its study for general plane Euclidean

networks. As main results we highlight that, while the problem of minimizing the size of a shortcut set is NP-complete,

plane Euclidean networks whose locus admits a shortcut can be identified in polynomial time. 

Our study opens many possibilities in this type of problems, such as its extension to other network parameters or to

design methods for computing optimal shortcut sets. 
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