Shortcut sets for the locus of plane Euclidean networks

José Cáceres ${ }^{\text {a }}$, Delia Garijo ${ }^{\text {b }}{ }^{*}$, Antonio González ${ }^{\text {c }}$, Alberto Márquez ${ }^{\text {b }}$, María Luz Puertas ${ }^{\text {a }}$, Paula Ribeiro ${ }^{\text {d }}$
${ }^{\text {a }}$ Departamento de Matemáticas, Universidad de Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
${ }^{\text {b }}$ Departamento de Matemática Aplicada I, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
${ }^{\text {c Departamento de Matemáticas, Universidad de Zaragoza, C/ Pedro Cerbuna 12, } 50009 \text { Zaragoza, Spain }}$
${ }^{\text {d }}$ Instituto Superior de Engenharia, Universidade do Algarve, Estr. da Penha 139, 8005-139 Faro, Portugal

Keywords:
Euclidean network
Diameter
Shortcut set
Network design
Augmentation problem

A B S T R A C T

We study the problem of augmenting the locus \mathcal{N}_{ℓ} of a plane Euclidean network \mathcal{N} by inserting iteratively a finite set of segments, called shortcut set, while reducing the diameter of the locus of the resulting network. There are two main differences with the classical augmentation problems: the endpoints of the segments are allowed to be points of \mathcal{N}_{ℓ} as well as points of the previously inserted segments (instead of only vertices of \mathcal{N}), and the notion of diameter is adapted to the fact that we deal with \mathcal{N}_{ℓ} instead of \mathcal{N}. This increases enormously the hardness of the problem but also its possible practical applications to network design. Among other results, we characterize the existence of shortcut sets, compute them in polynomial time, and analyze the role of the convex hull of \mathcal{N}_{ℓ} when inserting a shortcut set. Our main results prove that, while the problem of minimizing the size of a shortcut set is NP-hard, one can always determine in polynomial time whether inserting only one segment suffices to reduce the diameter.

1. Introduction

A geometric network of points in the plane is an undirected graph whose vertices are points in \mathbb{R}^{2} and whose edges are straight-line segments connecting pairs of points. When edges are assigned lengths equal to the Euclidean distance between their endpoints, the geometric network is called Euclidean network. These networks are the objects of study in this paper; concretely, we deal with plane Euclidean networks in which edges may intersect only at their endpoints. For simplicity and when no confusion may arise, we shall simply say network, it being understood as plane Euclidean network and, unless otherwise stated, networks are assumed to be connected.

It is natural to distinguish between a network \mathcal{N} and its locus, denoted by \mathcal{N}, where one is considering not only the vertices of \mathcal{N} but the set of all points of the Euclidean plane that are on \mathcal{N} (thus, \mathcal{N}_{ℓ} is treated indistinctly as a network or as a closed point set). Roughly speaking, in order to compute the distance between two vertices of \mathcal{N} one has to sum the lengths of the edges of a shortest path connecting them, and the diameter of \mathcal{N} is the maximum among the distances between any two vertices. This concept is naturally extended to \mathcal{N}_{ℓ}; the difference is that now the distances that must be computed are not only between vertices but also between two arbitrary points along the edges of \mathcal{N}. In this setting, a

[^0]

Fig. 1. The distance between u and v gives the diameter of the network, but the diameter of its locus is given by the distance between p and q.
shortest path connecting two points of \mathcal{N}_{ℓ} may consist of a number of edges and one or two fragments of edges (in which the points to be connected are located). When computing the distance, we sum the lengths of all the edges in the path and the lengths of the fragments ${ }^{1}$. See Fig. 1.

In this paper, we study the following problem:
Problem 1. Given a plane Euclidean network \mathcal{N}, insert a finite set of segments $\mathcal{S}=\left\{s_{1}, \ldots, s_{k}\right\}$ in order to reduce (or minimize) the diameter of the locus of the resulting network, provided that the endpoints of segment s_{1} are on \mathcal{N}_{ℓ} and the endpoints of $s_{i}, 2 \leq i \leq k$, are on $\mathcal{N}_{\ell} \cup\left\{s_{1}, \ldots, s_{i-1}\right\}$. (We say that \mathcal{S} is a shortcut set for \mathcal{N}_{ℓ}.)

When a shortcut set \mathcal{S} is inserted into the network, there may be crossings between the segments in \mathcal{S}, and also between those segments and the network edges. In this paper, we consider that every crossing creates a new network vertex, which is a model that is applicable to a wide range of situations, for example, in urban network design: to introduce shortcut sets is a way of improving the worst-case travel time along networks of roads in a city, highways, etc. Note that such models are considering the locus of the network, which is also used for related applications to location analysis [4] and feed-link problems [4-6]. The modification or transformation of a network can be applied or models many other different situations. For instance, very recently, Li et al. [7] have proposed a rule for deleting not only edges but nodes of a complex network in order to illustrate its collapsing behavior, and in [8], the authors use the local structure of a network to identify influential spreaders with all the social applications that this identification allows. One can find many applications of Euclidean networks to robotics, telecommunications networks, computer networks, and flight scheduling. Any collection of objects that have some connections between them can be modeled as a geometric network. See [9-11] for more details and references.

Problem 1 also belongs to the class of graph augmentation problems. Concretely, it is a variant of the Diameter-Optimal k-Augmentation Problem for edge-weighted geometric graphs, where one has to insert k additional edges (i.e., a shortcut set of size k with segments connecting vertices) to an edge-weighted plane geometric graph in order to minimize the diameter of the resulting graph. Whilst there are numerous studies on the non-geometric version of this problem (see for instance [12-14]), when the input is an edge-weighted plane geometric graph much less is known, not only on this problem but on graph augmentation in general (see the survey [15] for results and references on graph augmentation over plane geometric graphs). Farshi et al. [16] designed approximation algorithms for the problem of adding one edge to a plane Euclidean network in \mathbb{R}^{d} while minimizing the dilation. The same problem is considered in $[17,18]$ but for networks embedded in a metric space.

When considering the locus \mathcal{N}_{ℓ} instead of the network \mathcal{N} (setting of Problem 1), the hardness of the problem is enormously increased which motivates that there are very few results on this topic, all restricted to specific families of graphs. Yang [19] studied the restriction of Problem 1 to inserting only one segment, called shortcut, to the locus of a simple polygonal chain. ${ }^{2}$ Among other results, he designed three different approximation algorithms to compute an optimal shortcut, i.e., a shortcut that minimizes the diameter among all shortcuts. De Carufel et al. [2,20] and Bae et al. [21] consider a variant of Problem 1 in which, in contrast with our model, the crossings that may appear when inserting shortcuts do not form new network vertices, and the endpoints of all their shortcuts are on \mathcal{N}_{ℓ}. A linear time algorithm to find an optimal shortcut for paths is provided in [2], and also optimal pairs of shortcuts (i.e., $k=2$) for convex cycles. Trees have been studied in [20] where the authors give an algorithm to find an optimal shortcut for a tree of size n in $O(n \log n)$ time. Finally, for circles, Bae et al. [21] have analyzed how to add up to seven shortcuts in an optimal way.

Our main contribution in this paper is to provide the first approach to Problem 1 for general plane Euclidean networks. Concretely, in Section 2, we first characterize the networks \mathcal{N} whose locus \mathcal{N}_{ℓ} admits a shortcut set. For such networks, we find in polynomial time a shortcut set for \mathcal{N}_{ℓ} giving an upper bound on its size. The section concludes by studying the connection between the diameter of the convex hull of \mathcal{N}_{ℓ} and the diameter of the resulting network when inserting a shortcut set to \mathcal{N}_{ℓ}.

Section 3 is devoted to prove that it is always possible to determine in polynomial time whether inserting only one segment to \mathcal{N}_{ℓ} suffices to reduce the diameter. Our method computes such a segment in case of existence, and combines a

[^1]

Fig. 2. Depicted as thick segments: (a) a shortcut set of size 2, (b) a simple shortcut.
remarkable number of tools that allow us to decide on the existence of that segment via analyzing intersections of certain arrangements of curves and certain regions.

Section 4 contains our first approach to two hard problems: to minimize the size of shortcut sets and to minimize the diameter of the resulting networks when inserting shortcut sets. We consider shortcut sets for non-connected networks, which is essential for proving our main result in this section: the NP-completeness of the problem of deciding whether the minimum size of a shortcut set (for \mathcal{N}_{ℓ} not necessarily connected) is smaller or equal than a fixed natural number.

We conclude the paper in Section 5 with some comments and open problems.

2. Existence of shortcut sets

We begin with some notations and definitions. As usual, $V(\mathcal{N})$ and $E(\mathcal{N})$ denote, respectively, the vertex-set and the edge-set of a network \mathcal{N}, and $\delta(u)$ is the degree of $u \in V(\mathcal{N})$. An edge $u v \in E(\mathcal{N})$ is pendant if either u or v is a pendant vertex (i.e., has degree 1). We write $p \in \mathcal{N}_{\ell}$ for a point p on \mathcal{N}_{ℓ}, and distinguish the vertices of \mathcal{N} (which are not assumed to be in general position) saying that $V(\mathcal{N}) \subseteq \mathcal{N}_{\ell}$.

For $p, q \in \mathcal{N}_{\ell}$, a $p-q$ path P is a sequence $p u_{1} \cdots u_{k} q$ such that $u_{1} u_{2}, \ldots, u_{k-1} u_{k} \in E(\mathcal{N}), p$ is a point on an edge $\left(\neq u_{1} u_{2}\right)$ incident with u_{1}, and q is a point on an edge $\left(\neq u_{k-1} u_{k}\right)$ incident with u_{k}. The length of P, written as $|P|$, is the sum of the lengths of all edges $u_{i} u_{i+1}$ plus the lengths of the segments $p u_{1}$ and $q u_{k}$ (which are edges when $p, q \in V(\mathcal{N})$). The distance $d(p, q)$ between points $p, q \in \mathcal{N}_{\ell}$ is the length of a shortest $p-q$ path in \mathcal{N}_{ℓ}. The eccentricity of a point $p \in \mathcal{N}_{\ell}$ is $\operatorname{ecc}(p)=\max _{q \in \mathcal{N}_{\ell}} d(p, q)$ and the diameter of \mathcal{N}_{ℓ} is $\operatorname{diam}\left(\mathcal{N}_{\ell}\right)=\max _{p \in \mathcal{N}_{\ell}} \operatorname{ecc}(p)$. Two points $p, q \in \mathcal{N}_{\ell}$ are diametral whenever $d(p, q)=\operatorname{diam}\left(\mathcal{N}_{\ell}\right)$; when in addition p and q are vertices, they are called diametral vertices of \mathcal{N}_{ℓ}. These definitions for \mathcal{N} (instead of \mathcal{N}_{ℓ}) are analogous (and well-known), taking distances only between vertices of \mathcal{N}. When necessary, we shall use $d_{H}, \operatorname{ecc}_{H}$ and d_{e} for, respectively, distance on a network H, eccentricity on H, and Euclidean distance.

As we set in Problem 1, we define a shortcut set for the locus \mathcal{N}_{ℓ} of a network \mathcal{N} as a finite set $\mathcal{S}=\left\{s_{1}, \ldots, s_{k}\right\}$ of segments where s_{1} has endpoints on \mathcal{N}_{ℓ} and $s_{i}, 2 \leq i \leq k$, has endpoints on $\mathcal{N}_{\ell} \cup\left\{s_{1}, \ldots, s_{i-1}\right\}$ satisfying that diam $\left(\mathcal{N}_{\ell} \cup \mathcal{S}\right)<$ $\operatorname{diam}\left(\mathcal{N}_{\ell}\right)$; see Fig. 2(a). When \mathcal{S} consists of only one segment s we say that s is a shortcut (in this case, $\mathcal{N}_{\ell} \cup \mathcal{S}$ is simply $\left.\mathcal{N}_{\ell} \cup s\right)$, and a shortcut s is called simple if its two endpoints are the only intersection points with \mathcal{N}_{ℓ}; see Fig. 2(b). We want to point out that our definition of shortcut comes from that given in [19], which includes as a possibility the equality of the diameters of \mathcal{N}_{ℓ} and $\mathcal{N}_{\ell} \cup s$ (and so the locus of every network has a shortcut), but we believe that the intuitive idea of shortcut is better captured by excluding that case. As it was explained in the Introduction, our definition also differs from the shortcuts of $[2,20,21]$.

One can easily find networks \mathcal{N} whose locus \mathcal{N}_{ℓ} has no shortcut (a triangle, for example) and even no shortcut set of any size (a straight path). The characterization of the networks \mathcal{N} whose locus \mathcal{N}_{ℓ} admits a shortcut set is given in Theorem 2 below. We use $C H\left(\mathcal{N}_{\ell}\right)$ to denote the convex hull of \mathcal{N}_{ℓ}; note that $C H\left(\mathcal{N}_{\ell}\right)=C H(V(\mathcal{N}))$. Observe also that the distance between any two points in $C H\left(\mathcal{N}_{\ell}\right)$ is their Euclidean distance, which easily leads to the fact that $\operatorname{diam}\left(C H\left(\mathcal{N}_{\ell}\right)\right) \leq$ $\operatorname{diam}\left(\mathcal{N}_{\ell}\right)$.

Theorem 2. Let \mathcal{N} be a plane Euclidean network. Then, the following statements are equivalent:
(i) \mathcal{N}_{ℓ} admits a shortcut set.
(ii) The segment defined by any two diametral vertices is not contained in \mathcal{N}_{ℓ}.
(iii) $\operatorname{diam}\left(C H\left(\mathcal{N}_{\ell}\right)\right)<\operatorname{diam}\left(\mathcal{N}_{\ell}\right)$.

Proof. $(i \Leftrightarrow i i)$ If \mathcal{N}_{ℓ} contains a segment defined by diametral vertices, say u and v, then $d_{e}(u, v)=d_{\mathcal{N}_{\ell}}(u, v)=\operatorname{diam}\left(\mathcal{N}_{\ell}\right)$ and so there is no shortcut set for \mathcal{N}_{ℓ}. Otherwise, there exists $u \in V(\mathcal{N})$ such that $\delta(u)=r \geq 2$; let $\left\{u_{0}, \ldots, u_{r-1}\right\}$ be the set of its neighbours sorted clockwise.

Consider the oriented lines m_{i} from u to each u_{i}, and the corresponding right half-planes H_{i}^{+}(see Fig. 3).
For each u_{i}, determine whether there exists a vertex u_{j} such that $u_{j} \in H_{i}^{+}$and $u_{j+1} \notin H_{i}^{+}$(where indices are taken modulo r). Observe that there must exist such a vertex u_{j} for at least one of the u_{i} 's since \mathcal{N}_{ℓ} cannot be not a straight path, which contains a segment defined by two diametral vertices.

Fig. 3. Segment s_{i} (depicted as a thick segment) that shortens all paths containing any two of the intersected edges.

The angle $<u_{i} u u_{j}>$ is smaller than π and so a segment s_{i} crossing all edges $u u_{k}, i \leq k \leq j$, shortens all paths that contain any two of those edges (see Fig. 3). Further, all segments s_{i} must be placed very close to vertex u (their lengths are as small as desired) so that $\operatorname{ecc}(p)<\operatorname{diam}\left(\mathcal{N}_{\ell}\right)$ for every $p \in \cup s_{i}$. Thus, the set of all those segments s_{i} is a shortcut set.
(iißiii) As it was said before, $\operatorname{diam}\left(C H\left(\mathcal{N}_{\ell}\right)\right) \leq \operatorname{diam}\left(\mathcal{N}_{\ell}\right)$. If $\operatorname{diam}\left(\mathcal{N}_{\ell}\right)=\operatorname{diam}\left(C H\left(\mathcal{N}_{\ell}\right)\right)$ then there exist $u, v \in V(\mathcal{N})$ such that $d_{e}(u, v)=\operatorname{diam}\left(C H\left(\mathcal{N}_{\ell}\right)\right)=\operatorname{diam}\left(\mathcal{N}_{\ell}\right)=d_{\mathcal{N}_{\ell}}(u, v)$, which implies that segment $u v$ is contained in \mathcal{N}_{ℓ}. The reverse implication can be proved analogously.

The following corollary is a consequence of the preceding proof.
Corollary 3. Let \mathcal{N} be a plane Euclidean network whose locus \mathcal{N}_{ℓ} admits a shortcut set. Then, it is always possible to compute in polynomial time a shortcut set for \mathcal{N}_{ℓ} of size at most $2|E(\mathcal{N})|-n_{1}$, where n_{1} is the number of pendant vertices of \mathcal{N}.

Proof. The shortcut set for \mathcal{N}_{ℓ} constructed in the proof of Theorem 2 (equivalence of statements (i) and (ii)) has cardinality at most

$$
\sum_{u \in V(\mathcal{N}), \delta(u) \geq 2} \delta(u)=2|E(\mathcal{N})|-n_{1}
$$

and can obviously be constructed in polynomial time.
Regarding the role of $C H\left(\mathcal{N}_{\ell}\right)$ when inserting segments, one can easily check that a vertex $u \in V(\mathcal{N})$ (with $\delta(u) \geq 2$) on the border of $C H\left(\mathcal{N}_{\ell}\right)$ requires only one segment for shortening all paths through u. This and similar considerations improve the upper bound of the preceding corollary, but we put the emphasis on its linearity with respect to $|V(\mathcal{N})|$. Nevertheless, the importance of $C H\left(\mathcal{N}_{\ell}\right)$ goes much further as the following theorem reflects.

Theorem 4. Let \mathcal{N} be a plane Euclidean network whose locus \mathcal{N}_{ℓ} satisfies that:

$$
\operatorname{diam}\left(C H\left(\mathcal{N}_{\ell}\right)\right)<\operatorname{diam}\left(\mathcal{N}_{\ell}\right)
$$

Then, for every $\varepsilon>0$ such that $\operatorname{diam}\left(C H\left(\mathcal{N}_{\ell}\right)\right)+\varepsilon<\operatorname{diam}\left(\mathcal{N}_{\ell}\right)$ there exists a shortcut set \mathcal{S} for \mathcal{N}_{ℓ} verifying that:

$$
\operatorname{diam}\left(C H\left(\mathcal{N}_{\ell}\right)\right) \leq \operatorname{diam}\left(\mathcal{N}_{\ell} \cup \mathcal{S}\right)<\operatorname{diam}\left(C H\left(\mathcal{N}_{\ell}\right)\right)+\varepsilon
$$

Proof. Since $\operatorname{diam}\left(C H\left(\mathcal{N}_{\ell}\right)\right)<\operatorname{diam}\left(\mathcal{N}_{\ell}\right)$, by Theorem $2, \mathcal{N}_{\ell}$ admits a shortcut set. Further, every shortcut set \mathcal{S} for \mathcal{N}_{ℓ} verifies that $C H\left(\mathcal{N}_{\ell}\right)=C H\left(\mathcal{N}_{\ell} \cup \mathcal{S}\right)$ and so

$$
\operatorname{diam}\left(C H\left(\mathcal{N}_{\ell}\right)\right)=\operatorname{diam}\left(C H\left(\mathcal{N}_{\ell} \cup \mathcal{S}\right)\right) \leq \operatorname{diam}\left(\mathcal{N}_{\ell} \cup \mathcal{S}\right)
$$

We next construct a shortcut set \mathcal{S} that, in addition, satisfies that $\operatorname{diam}\left(\mathcal{N}_{\ell} \cup \mathcal{S}\right)<\operatorname{diam}\left(C H\left(\mathcal{N}_{\ell}\right)\right)+\varepsilon$ for given $\varepsilon>0$ such that $\operatorname{diam}\left(C H\left(\mathcal{N}_{\ell}\right)\right)+\varepsilon<\operatorname{diam}\left(\mathcal{N}_{\ell}\right)$.

Consider the set $\mathcal{M}=\left\{p \in \mathcal{N}_{\ell} \mid \operatorname{ecc}(p) \geq M\right\}$ where $M=\operatorname{diam}\left(C H\left(\mathcal{N}_{\ell}\right)\right)+\frac{\varepsilon}{4}$. This set is non-empty; otherwise $\operatorname{ecc}(p)<M$ for every point $p \in \mathcal{N}_{\ell}$ and so $\operatorname{diam}\left(\mathcal{N}_{\ell}\right)<M$, which contradicts $\operatorname{diam}\left(\mathcal{N}_{\ell}\right)>\operatorname{diam}\left(C H\left(\mathcal{N}_{\ell}\right)\right)+\varepsilon$. Note that this hypothesis is motivated by the fact that \mathcal{S} must be a non-empty set.

The set \mathcal{M} is compact in \mathbb{R}^{2}. Indeed, \mathcal{N}_{ℓ} is compact in \mathbb{R}^{2} (since it is a bounded closed point set) and so it suffices to prove that \mathcal{M} is compact in \mathcal{N}_{ℓ}. Let $p \in \mathcal{N}_{\ell} \backslash \mathcal{M}$. Then $\operatorname{ecc}(p)<M$ and moreover, there is a neighborhood of p, say $\mathcal{N}_{p} \subseteq \mathcal{N}_{\ell}$, such that $\operatorname{ecc}(q)<M$ for every $q \in \mathcal{N}_{p}$. This implies that $\mathcal{N}_{\ell} \backslash \mathcal{M}$ is an open set in \mathcal{N}_{ℓ}. Hence, \mathcal{M} is a bounded closed set in \mathcal{N}_{ℓ} and so a compact.

The collection of balls $B\left(p, \frac{\varepsilon}{4}\right)$ for $p \in \mathcal{M}$ is a cover of \mathcal{M}. Then, there is a finite subcover of \mathcal{M}, i.e., there exist $p_{1}, \ldots, p_{k} \in$ \mathcal{M} such that

$$
\begin{equation*}
\mathcal{M} \subseteq \bigcup_{i=1}^{k} B\left(p_{i}, \frac{\varepsilon}{4}\right) \tag{1}
\end{equation*}
$$

For $1 \leq i \leq k$, let $\mathcal{M}_{i}=\left\{q \in \mathcal{N}_{\ell} \mid d\left(p_{i}, q\right) \geq M\right\}$. This set is non-empty because $\operatorname{ecc}\left(p_{i}\right) \geq M$. Further it is bounded and, reasoning as above, one can check that it is a closed set in \mathcal{N}_{ℓ}, and so a compact in \mathbb{R}^{2}. Since the collection of balls $B\left(q, \frac{\varepsilon}{4}\right)$ for $q \in \mathcal{M}_{i}$ is a cover of \mathcal{M}_{i} then there exist $q_{1}^{i}, \ldots, q_{r_{i}}^{i} \in \mathcal{M}_{i}$ such that

$$
\begin{equation*}
\mathcal{M}_{i} \subseteq \bigcup_{t=1}^{r_{i}} B\left(q_{t}^{i}, \frac{\varepsilon}{4}\right) \tag{2}
\end{equation*}
$$

Let \mathcal{S} be the set of segments with endpoints p_{i} and q_{j}^{i} for $1 \leq i \leq k$ and $1 \leq j \leq r_{i}$. We now prove that $d(p, q)<$ $\operatorname{diam}\left(C H\left(\mathcal{N}_{\ell}\right)\right)+\varepsilon$ for every $p, q \in \mathcal{N}_{\ell} \cup \mathcal{S}$.

Clearly, if either p or q do not belong to \mathcal{M} then

$$
d(p, q)<M=\operatorname{diam}\left(C H\left(\mathcal{N}_{\ell}\right)\right)+\frac{\varepsilon}{4}<\operatorname{diam}\left(C H\left(\mathcal{N}_{\ell}\right)\right)+\varepsilon
$$

Thus, we can assume that $p, q \in \mathcal{M}$. By (1), there exist $p_{i}, p_{j} \in \mathcal{M}$ such that $d\left(p, p_{i}\right)<\frac{\varepsilon}{4}$ and $d\left(q, p_{j}\right)<\frac{\varepsilon}{4}$. If $p_{j} \notin \mathcal{M}_{i}$ then $d\left(p_{i}, p_{j}\right)<M$ and so

$$
d(p, q) \leq d\left(p, p_{i}\right)+d\left(p_{i}, p_{j}\right)+d\left(p_{j}, q\right)<\operatorname{diam}\left(C H\left(\mathcal{N}_{\ell}\right)\right)+\frac{3 \varepsilon}{4}<\operatorname{diam}\left(C H\left(\mathcal{N}_{\ell}\right)\right)+\varepsilon
$$

Otherwise, by (2), there exists $q_{h}^{i} \in \mathcal{M}_{i}$ such that $d\left(p_{j}, q_{h}^{i}\right)<\frac{\varepsilon}{4}$. Further, there is a segment in \mathcal{S} with endpoints p_{i}, q_{h}^{i} which implies that

$$
d\left(p_{i}, q_{h}^{i}\right) \leq \operatorname{diam}\left(C H\left(\mathcal{N}_{\ell}\right)\right)<M
$$

Therefore $d\left(p_{i}, p_{j}\right) \leq d\left(p_{i}, q_{h}^{i}\right)+d\left(q_{h}^{i}, p_{j}\right)<M+\frac{\varepsilon}{4}$, and we obtain

$$
d(p, q) \leq d\left(p, p_{i}\right)+d\left(p_{i}, p_{j}\right)+d\left(p_{j}, q\right)<M+\frac{3 \varepsilon}{4}=\operatorname{diam}\left(C H\left(\mathcal{N}_{\ell}\right)\right)+\varepsilon
$$

Thus, we can conclude that $\operatorname{diam}\left(\mathcal{N}_{\ell} \cup \mathcal{S}\right)<\operatorname{diam}\left(C H\left(\mathcal{N}_{\ell}\right)\right)+\varepsilon$.

3. Computing shortcuts

This section is devoted to prove that one can always determine in polynomial time whether \mathcal{N}_{ℓ} admits a shortcut, and in that case, to compute it. For clarity, we split this result into two: Proposition 7 considers the case of simple shortcuts and Theorem 8 states the result for all shortcuts. First, we prove that diam $\left(\mathcal{N}_{\ell}\right)$ can be computed in polynomial time (Lemma 6). It is important to note that the computation of $\operatorname{diam}\left(\mathcal{N}_{\ell}\right)$ is done in [1] for general Euclidean networks but we include a version of that result (restricted to our plane networks) because its proof plays a fundamental role in the proofs of Proposition 7 and Theorem 8. The following technical lemma will be useful in the proof of Lemma 6 and also in the remainder of the paper.

Lemma 5. Let \mathcal{N} be a plane Euclidean network whose locus \mathcal{N}_{ℓ} has diametral points p, q placed on two different non-pendant edges $u v$ and $u^{\prime} v^{\prime}$ of \mathcal{N}. Then, there exist two different shortest $p-q$ paths, say P_{1} and P_{2}, such that either $u, u^{\prime} \in P_{1}$ and $v, v^{\prime} \in P_{2}$, or $u, v^{\prime} \in P_{1}$ and $v, u^{\prime} \in P_{2}$ (see Fig. 4).

Proof. Given shortest paths P_{u} and P_{v} connecting, respectively, u, q and v, q, the paths $p u \cup P_{u}$ and $p v \cup P_{v}$ are necessarily shortest $p-q$ paths when p and q are diametral points. Otherwise, say that $p v \cup P_{v}$ is not a shortest path connecting p and q, then there would be a point $p^{\prime} \in p v$ placed sufficiently close to p such that $p^{\prime} u \cup P_{u}$ is a shortest $p^{\prime}-q$ path. Hence $d\left(p^{\prime}, q\right)>d(p, q)=\operatorname{diam}\left(\mathcal{N}_{\ell}\right)$, a contradiction.

Analogously, we can construct the paths $q u^{\prime} \cup P_{u^{\prime}}$ and $q v^{\prime} \cup P_{v^{\prime}}$ which are shortest $p-q$ paths, and P_{1} and P_{2} can be easily chosen among those four paths.

Lemma 6. Given a plane Euclidean network \mathcal{N} with n vertices, the diameter of its locus \mathcal{N}_{ℓ} can be computed in polynomial time in n.

Proof. We proceed as follows to find two diametral points on \mathcal{N}_{ℓ}.
(1) Compute the distances between any pair of vertices of \mathcal{N}.
(2) For every pair of non-pendant edges $u v, u^{\prime} v^{\prime} \in E(\mathcal{N})$ compute:

$$
\min \left\{\frac{d(u, v)+d\left(v, v^{\prime}\right)+d\left(v^{\prime}, u^{\prime}\right)+d\left(u^{\prime}, u\right)}{2}, \frac{d(u, v)+d\left(v, u^{\prime}\right)+d\left(u^{\prime}, v^{\prime}\right)+d\left(v^{\prime}, u\right)}{2}\right\}
$$

Fig. 4. Paths P_{1} and P_{2} containing vertices u, u^{\prime} and v, v^{\prime}, respectively.

Here, we consider the case in which the diametral points are located on two non-pendant edges, and use the paths P_{1} and P_{2} of Lemma 5. Thus, the preceding value is simply $\left(\left|P_{1}\right|+\left|P_{2}\right|\right) / 2$.
(3) For every pendant edge $u v \in E(\mathcal{N})$ with $\delta(u)=1$, and every non-pendant edge $u^{\prime} v^{\prime} \in E(\mathcal{N})$ compute:

$$
d(u, v)+\frac{d\left(v, u^{\prime}\right)+d\left(u^{\prime}, v^{\prime}\right)+d\left(v^{\prime}, v\right)}{2}
$$

Note that if there is a diametral pair in which one of the points lies on a pendant edge, then it is the pendant vertex. Further, we can assume that the other point is located on a non-pendant edge; otherwise that pair is obtained in step (1).
(4) Compute the maximum value among those obtained in the previous steps; this maximum is diam $\left(\mathcal{N}_{\ell}\right)$.

Since the values of steps (2) and (3) only depend on those of step (1), and they can be computed in polynomial time (see for instance [1]), then we can also compute $\operatorname{diam}\left(\mathcal{N}_{\ell}\right)$ in polynomial time.

We are now ready to prove our main result in this section. As it was said before, we split it into two results: Proposition 7 below considers the case of simple shortcuts and its proof contains the main ideas of the proof of Theorem 8 which also includes non-simple shortcuts. In the proof of this general theorem, we shall mainly focus on the differences with the case of simple shortcuts.

Proposition 7. Given a plane Euclidean network \mathcal{N}, it is possible to determine in polynomial time whether \mathcal{N}_{ℓ} admits a simple shortcut, and compute one in case of existence.

Proof. There are two main steps in proving the result. First, we split the searching space into a polynomial number of "equivalent" regions (step (1)). Then, we design a method for seeking for a shortcut in each of those regions in polynomial time (step (2)).

Step (1). Construction of a polynomial number of "equivalent" regions.
Consider two arbitrary vertical lines defining a strip enclosing \mathcal{N}_{ℓ}. For each vertex $u \in V(\mathcal{N})$, take two horizontal segments defined by u as one endpoint and the other in one of the vertical lines. Let \mathcal{H} be the set of those $2 n$ segments (formally, the direction of the segments of \mathcal{H} must be different than those of the edges of \mathcal{N} but, for simplicity, we can assume them to be horizontal). We say that two lines are equivalent if they intersect the same segments of \mathcal{H}. Observe that there are $O\left(n^{2}\right)$ classes of equivalent lines. Indeed, for every pair of vertices $u, v \in V(\mathcal{N})$ consider the lines $m_{u^{+}} v^{+}$and $m_{u^{-} v^{-}}$parallel to segment $u v$ and leaving u and v in the same half-plane, and lines $m_{u^{+} v^{-}}, m_{u^{-} v^{+}}$leaving u, v in different half-planes. These four lines must be placed sufficiently closed to u and v; see Fig. 5(a). It is easy to check that every class of equivalent lines has a representative in the set $\left\{m_{u^{+} v^{+}}, m_{u^{-} v^{-}}, m_{u^{+} v^{-}}, m_{u^{-} v^{+}} \mid u, v \in V(\mathcal{N})\right\}$, whose cardinality is $O\left(n^{2}\right)$.

Given a line m that crosses two edges $e, e^{\prime} \in E(\mathcal{N})$ and intersects no other edges in between them, let $\mathcal{P}_{e, e^{\prime}}(m)$ be the set of equivalent lines to m that intersect edges e and e^{\prime} (clearly, none of these lines intersect any edge in between e and e^{\prime}). Observe that the intersection of a line of $\mathcal{P}_{e, e^{\prime}}(m)$ with both edges determines a segment. Thus, $\mathcal{P}_{e, e^{\prime}}(m)$ can also be viewed as the set of segments given by the corresponding intersections. It is well-known that the region of the plane defined by $\mathcal{P}_{e, e^{\prime}}(m)$ has the shape of an hourglass, as illustrated in Fig. 5(b); see for instance [22, Section 3.1]. Further, by the argument above, there are obviously $O\left(n^{2}\right)$ regions $\mathcal{P}_{e, e^{\prime}}(m)$ for each two edges $e, e^{\prime} \in E(\mathcal{N})$.

Step (2). Seeking for a simple shortcut in each region $\mathcal{P}_{e, e^{\prime}}(m)$ in polynomial time.

Fig. 5. (a) Lines associated to vertices u and v, (b) region $\mathcal{P}_{e, e^{\prime}}(m)$.

Fig. 6. Segments in the boundary of region $\mathcal{P}(m)$ in (a) determine the boundary of region $\mathcal{R}(m)$ in (b).

Consider now a region $\mathcal{P}_{e, e^{\prime}}(m)$. For simplicity, we shall say $\mathcal{P}(m)$ but one must recall that edges e and e^{\prime} are associated to the region. We next show how to decide in polynomial time whether there is a segment $p p^{\prime} \in \mathcal{P}(m)$ (endpoint p on e and p^{\prime} on e^{\prime}) that is a shortcut for \mathcal{N}_{ℓ} (which would be a simple shortcut since lines of $\mathcal{P}(m)$ intersect no other edges in between e and e^{\prime}). This is: (i) $p p^{\prime}$ must decrease the distance of all the diametral pairs of points on \mathcal{N}_{ℓ}, and (ii) ecc $(q)<\operatorname{diam}\left(\mathcal{N}_{\ell}\right)$ for every point $q \in p p^{\prime}$.

Each segment of $\mathcal{P}(m)$ can be codified by its endpoints on e and e^{\prime} as follows. If $e=u v$ and $e^{\prime}=u^{\prime} v^{\prime}$ then a point p on e can be expressed as $p=u t+(1-t) v$, and a point on e^{\prime} is $p^{\prime}=u^{\prime} t^{\prime}+\left(1-t^{\prime}\right) v^{\prime}$. Thus, a segment $p p^{\prime} \in \mathcal{P}(m)$ is represented by a pair $\left(t, t^{\prime}\right)$.

The pairs $\left(t, t^{\prime}\right)$ must lie inside a region $\mathcal{R}(m) \subseteq \mathbb{R}^{2}$ whose boundary is given by the coordinates of the segments bounding $\mathcal{P}(m)$. Since region $\mathcal{P}(m)$ has the shape of an hourglass, the boundary of $\mathcal{R}(m)$ is determined by two polygonal chains that are monotone with respect to the two axes, one being increasing and the other decreasing. Fig. 6(b) shows an example in which points (t_{i}, t_{i}^{\prime}) and (s_{i}, s_{i}^{\prime}) correspond, respectively, to the coordinates of the segments that form the left and right boundaries of the region $\mathcal{P}(m)$ in Fig. 6(a). The polygonal chain given by points (s_{i}, s_{i}^{\prime}) is increasing ($s_{i}>s_{j}$ and $s_{i}^{\prime}<s_{j}^{\prime}$ for $i<j$) and that given by points (t_{i}, t_{i}^{\prime}) is decreasing ($t_{i}<t_{j}$ and $t_{i}^{\prime}>t_{j}^{\prime}$ for $i<j$). Each point in $\mathcal{R}(m)$ represents a segment of $\mathcal{P}(m)$.

By Lemma $6, d=\operatorname{diam}\left(\mathcal{N}_{\ell}\right)$ can be computed in polynomial time. Moreover, regarding condition (i) above, we know that the value d is obtained by checking whether there are diametral points on \mathcal{N}_{ℓ} that may be: (a) two vertices, (b) two points on different non-pendant edges, and (c) a pendant vertex and a point on a non-pendant edge. Thus, from [4, Lemma 9], one can deduce that there is at most a quadratic set of diametral points.

Consider now the endpoints u and u^{\prime} of edges e and e^{\prime}, respectively. We distinguish three cases depending on the type of diametral points.

Case (a). Let $w, z \in V(\mathcal{N})$ be diametral vertices of \mathcal{N}_{ℓ}. Suppose that $d_{1}=d(w, u)+d\left(z, u^{\prime}\right) \leq d\left(w, u^{\prime}\right)+d(z, u)$; otherwise we would follow the same argument by taking $d_{1}=d\left(w, u^{\prime}\right)+d(z, u)$. If there is a segment $p p^{\prime} \in \mathcal{P}(m)$ in a path passing through u and u^{\prime} that decreases $d(w, z)=d$, then $d_{1}+d(u, p)+d\left(p, p^{\prime}\right)+d\left(p^{\prime}, u^{\prime}\right)<d$ which is

$$
\begin{equation*}
d(u, p)+d\left(p, p^{\prime}\right)+d\left(p^{\prime}, u^{\prime}\right)<d-d_{1} \tag{3}
\end{equation*}
$$

Case (b). Let w and z be two diametral points located on two non-pendant edges $a b$ and $a^{\prime} b^{\prime}$, respectively. By Lemma 5 , one can consider two shortest $w-z$ paths P_{1} and P_{2} such that $d=\operatorname{diam}\left(\mathcal{N}_{\ell}\right)=\left(\left|P_{1}\right|+\left|P_{2}\right|\right) / 2$. Assume that $a, a^{\prime} \in P_{1}$ and $b, b^{\prime} \in P_{2}$ (a similar argument would be used for $a, b^{\prime} \in P_{1}$ and $b, a^{\prime} \in P_{2}$). If a path passing through u, u^{\prime} and containing a segment $p p^{\prime} \in \mathcal{P}(m)$ decreases the value $\left(\left|P_{1}\right|+\left|P_{2}\right|\right) / 2$ then either $d\left(a, a^{\prime}\right)$ or $d\left(b, b^{\prime}\right)$ is decreased, say $d\left(a, a^{\prime}\right)$ (analogous for $d\left(b, b^{\prime}\right)$). Thus,

$$
d(b, a)+d(a, u)+d(u, p)+d\left(p, p^{\prime}\right)+d\left(p^{\prime}, u^{\prime}\right)+d\left(u^{\prime} a^{\prime}\right)+d\left(a^{\prime}, b^{\prime}\right)+d\left(b^{\prime}, b\right)<2 d
$$

Let $d_{2}=d(b, a)+d(a, u)+d\left(u^{\prime} a^{\prime}\right)+d\left(a^{\prime}, b^{\prime}\right)+d\left(b^{\prime}, b\right)$ where we assume that $d(a, u)+d\left(a^{\prime}, u^{\prime}\right) \leq d\left(a, u^{\prime}\right)+d\left(a^{\prime}, u\right)$ (otherwise we take this last value for d_{2}). Hence,

$$
\begin{equation*}
d(u, p)+d\left(p, p^{\prime}\right)+d\left(p^{\prime}, u^{\prime}\right)<2 d-d_{2} \tag{4}
\end{equation*}
$$

Case (c). Let $w, z \in \mathcal{N}_{\ell}$ be diametral points such that w is the pendant vertex of a pendant edge $w w^{\prime}$, and z is a point on a non-pendant edge $a b$. This case is a combination of cases (a) and (b); by doing similar assumptions, we obtain

$$
\begin{equation*}
d(u, p)+d\left(p, p^{\prime}\right)+d\left(p^{\prime}, u^{\prime}\right)<2 d-d_{3} \tag{5}
\end{equation*}
$$

where $d_{3}=2 d\left(w, w^{\prime}\right)+d\left(w^{\prime}, u\right)+d\left(u^{\prime}, a\right)+d(a, b)+d\left(b, w^{\prime}\right)$.
Observe that for a fixed pair (w, z), Inequations (3)-(5) give us the interior points (t, t^{\prime}) (corresponding to points p, p^{\prime}) of certain conics $Q_{u, u^{\prime}}^{w, z}$. They are conics because $d(u, p)$ and $d\left(u^{\prime}, p^{\prime}\right)$ are linear functions of t and t^{\prime},

$$
d(u, p)=(1-t) d(u, v) \quad \text { and } \quad d\left(u^{\prime}, p^{\prime}\right)=\left(1-t^{\prime}\right) d\left(u, v^{\prime}\right)
$$

We can analogously construct the corresponding conics $Q_{u, v^{\prime}}^{w, z}, Q_{v, u^{\prime}}^{w, z}$, and $Q_{v, v^{\prime}}^{w, z}$ for paths passing through u, v^{\prime} or v, u^{\prime} or v, v^{\prime} (instead of u, u^{\prime}). When considering all types of diametral pairs (w, z) we obtain an arrangement \mathcal{Q} of conics.

Suppose now that there is a cell \mathcal{C} in $\mathcal{Q} \cap \mathcal{R}(m)$ that is contained, per each diametral pair, in at least one of its four associated conics. Then, all points in \mathcal{C} would represent segments $p p^{\prime} \in \mathcal{P}(m)$ that decrease the distance of all the diametral pairs of points on \mathcal{N}_{ℓ}. Nevertheless, this would not imply that those segments $p p^{\prime}$ are shortcuts since it must be guaranteed that the maximum eccentricity of the points on $p p^{\prime}$ is smaller than d (condition (ii) above). To do this, we construct another arrangement of conics \mathcal{Q}^{\prime} as follows.

Let $a b$ be a non-pendant edge of \mathcal{N}. Suppose that there is a segment $p p^{\prime} \in \mathcal{P}(m)$ such that $\mathcal{N}_{\ell} \cup p p^{\prime}$ has two diametral points placed, respectively, on $a b$ and on segment $p p^{\prime}$. Take the two paths P_{1} and P_{2} of Lemma 5 and, without loss of generality, suppose that $a, p \in P_{1}$ and $b, p^{\prime} \in P_{2}$. This implies that either u or v are on P_{1} and either u^{\prime} or v^{\prime} are on P_{2}. Assume that $u \in P_{1}$ and $u^{\prime} \in P_{2}$. The argument is analogous for the remaining cases. Since the maximum eccentricity of the points on $p p^{\prime}$ must be smaller than d then

$$
\frac{\left|P_{1}\right|+\left|P_{2}\right|}{2}<d \Rightarrow d(u, p)+d\left(p, p^{\prime}\right)+d\left(p^{\prime}, u^{\prime}\right)<2 d-d_{4}
$$

where $d_{4}=d(b, a)+d(a, u)+d\left(u^{\prime}, b\right)$. Similarly, given a non-pendant vertex $r \in V(\mathcal{N})$, if r is diametral to some point on $p p^{\prime}$ then

$$
d(u, p)+d\left(p, p^{\prime}\right)+d\left(p^{\prime}, u^{\prime}\right)<2 d-d_{5}
$$

where $d_{5}=d(r, u)+d\left(r, u^{\prime}\right)$ (assuming that $r, u \in P_{1}$ and $r, u^{\prime} \in P_{2}$). It is easy to check that for pendant vertices, we obtain similar equations to the previous ones. Thus, condition (ii) above is captured again by certain conics which give rise to the arrangement \mathcal{Q}^{\prime}. Every vertex and every edge of \mathcal{N} has an associated conic of \mathcal{Q}^{\prime}. The interior points of a conic associated to, say a non-pendant edge, correspond to segments with maximum eccentricity with respect to that edge smaller than d.

We can conclude that there is a segment of $\mathcal{P}(m)$ that is a simple shortcut for \mathcal{N}_{ℓ} if and only if there exists a cell in $\mathcal{Q} \cap \mathcal{Q}^{\prime} \cap \mathcal{R}(m)$ that is contained in all conics of \mathcal{Q}^{\prime} and, per each diametral pair, in at least one of its four associated conics of \mathcal{Q}. Any point in such a cell represents a segment that is a simple shortcut for \mathcal{N}_{ℓ}.

Complexity. As it was mentioned before, the set of diametral pairs of points on \mathcal{N}_{ℓ} is at most quadratic. Further, the sets of vertices and edges are linear and so the set of values needed to obtain our arrangements \mathcal{Q} and \mathcal{Q}^{\prime} is polynomial. Those values depend on distances between vertices of \mathcal{N}, and so their computation can be done in polynomial time [1] as well as the computation of the arrangements \mathcal{Q} and \mathcal{Q}^{\prime} [23]. Since $\mathcal{R}(m)$ is bounded by two monotone chains, $\mathcal{Q} \cap \mathcal{Q}^{\prime} \cap \mathcal{R}(m)$ can also be obtained in polynomial time. The analysis of step (2) must be performed at most in the $O\left(n^{2}\right)$ regions $\mathcal{P}_{e, e^{\prime}}(m)$ for each of the $O\left(n^{2}\right)$ pairs of edges e, e^{\prime} (regions obtained in step (1)). Thus, the process is polynomial and the result follows.

The following theorem is the general version of the preceding proposition; it includes non-simple shortcuts.

Theorem 8. Given a plane Euclidean network \mathcal{N}, it is possible to determine in polynomial time whether \mathcal{N}_{ℓ} admits a shortcut, and compute one in case of existence.

Proof. The argument is essentially the same as in the proof of Proposition 7 although there are some important differences on whose description we focus next. Throughout this proof, steps (1) and (2) refer to the corresponding steps in the proof of Proposition 7.

Since the shortcut may be non-simple, when constructing the regions $\mathcal{P}_{e, e^{\prime}}(m)$ in step (1), we cannot assume that line m intersects no other edges in between e and e^{\prime} but it may intersect k edges in between them, say a set $I=\left\{e_{0}=\right.$ $\left.e, e_{1}, \ldots, e_{k+1}=e^{\prime}\right\}$ of edges with $e_{i}=u_{i} u_{i}^{\prime}$ (counting e and e^{\prime}). This implies that, for a candidate segment $p p^{\prime} \in \mathcal{P}_{e, e^{\prime}}(m)$ to be a shortcut, different diametral pairs (w, z) and (w^{\prime}, z^{\prime}) might use different fragments of segment $p p^{\prime}$ in order to decrease $d=\operatorname{diam}\left(\mathcal{N}_{\ell}\right)$. For example, one can have a $w-z$ path decreasing $d=d(w, z)$ that connects w with u_{i}, uses the fragment of $p p^{\prime}$ in between e_{i} and e_{j} and then connects u_{j}^{\prime} with z. There could also be a $w^{\prime}-z^{\prime}$ path decreasing $d=d\left(w^{\prime}, z^{\prime}\right)$ using another fragment of $p p^{\prime}$. When trying to mimic the construction of the arrangements \mathcal{Q} and \mathcal{Q}^{\prime} in step (2), this fact generates the main differences with the proof of Proposition 7. Nevertheless, we still have the $O\left(n^{2}\right)$ regions $\mathcal{P}_{e, e^{\prime}}(m)$ for each two edges $e, e^{\prime} \in E(\mathcal{N})$. For short, we again use $\mathcal{P}(m)$ instead of $\mathcal{P}_{e, e^{\prime}}(m)$. Also, for each region $\mathcal{P}(m)$, a region $\mathcal{R}(m) \subseteq \mathbb{R}^{2}$ can be constructed as in step (2), and a segment $p p^{\prime} \in \mathcal{P}(m)$ can be represented by a point $\left(t, t^{\prime}\right) \in \mathcal{R}(m)$.

For constructing arrangement \mathcal{Q} in step (2), we consider the four combinations of endpoints of e and e^{\prime} (i.e., paths passing through u, u^{\prime} or u, v^{\prime} or v, u^{\prime} or $\left.v, v^{\prime}\right)$ but here we must take the $2(k+2)(k+1)$ suitable combinations of endpoints of different pairs of edges of set I (still a polynomial number). This means that, for each pair of endpoints of those pairs of edges, we analyze (as it was done in step (2)) the inequations obtained for a candidate segment $p p^{\prime} \in \mathcal{P}(m)$ to be a shortcut which, in this general case, are of the form:

$$
d\left(u_{i}, p_{i}\right)+d\left(p_{i}, p_{j}^{\prime}\right)+d\left(p_{j}^{\prime}, u_{j}\right)<c
$$

where we have taken as an example (in order to show the type of inequation) endpoints u_{i} of e_{i} and u_{j} of e_{j}. Further, p_{i} and p_{j}^{\prime} are the intersection points of segment $p p^{\prime}$ with edges e_{i} and e_{j}, respectively; value c is a constant that depends on $d=\operatorname{diam}\left(\mathcal{N}_{\ell}\right)$ as well as on several distances obtained by reasoning as in step (2) when considering the different types of diametral pairs.

The above inequations do not necessarily describe conics (as in step (2)) because the terms $d\left(u_{i}, p_{i}\right)$ and $d\left(p_{j}^{\prime}, u_{j}\right)$ may not be linear functions of t and t^{\prime}, respectively. Clearly, the same happens for arrangement \mathcal{Q}^{\prime} since the inequations obtained for this arrangement are of the same type. Nevertheless, we shall show that the situation can be handled in a similar fashion of Proposition 7 by proving, as follows, that those loci of points are convex sets.

Let (w, z) be a diametral pair of points. Suppose that $d(w, z)=d$ is decreased by using a path T_{1} passing through vertices u_{i} and u_{j} and containing the fragment of a segment $p_{1} p_{1}^{\prime} \in \mathcal{P}(m)$ in between e_{i} and e_{j}; this segment is represented by a point $\left(t_{1}, t_{1}^{\prime}\right) \in \mathcal{R}(m)$. Assume also that $d(w, z)=d$ is decreased by another path T_{2} passing through the same vertices u_{i} and u_{j} and containing the fragment of a segment $p_{2} p_{2}^{\prime} \in \mathcal{P}(m)$ in between e_{i} and e_{j}; segment $p_{2} p_{2}^{\prime}$ is represented by a point $\left(t_{2}, t_{2}^{\prime}\right) \in \mathcal{R}(m)$. To prove that the inequations corresponding to arrangement Q describe convex sets, it suffices to show that every point $\left(t, t^{\prime}\right)$ on the segment with endpoints $\left(t_{1}, t_{1}^{\prime}\right)$ and $\left(t_{2}, t_{2}^{\prime}\right)$ represents a segment $p p^{\prime} \in \mathcal{P}(m)$ such that $d(w, z)=d$ is decreased by using a path, say T, passing through vertices u_{i} and u_{j} and containing the fragment of $p p^{\prime}$ in between e_{i} and e_{j}. To do this, we distinguish two cases.

Case (a). Vertices u_{i} and u_{j} are located at the same side of $p_{1} p_{1}^{\prime}$ and $p_{2} p_{2}^{\prime}$; see Fig. 7.
The result is straightforward when either $p_{1} p_{1}^{\prime}$ and $p_{2} p_{2}^{\prime}$ do not intersect or they do but on a point located outside the region defined by e_{i} and e_{j}; see Fig. 7(a). Otherwise, all points on the segment with endpoints $\left(t_{1}, t_{1}^{\prime}\right)$ and (t_{2}, t_{2}^{\prime}) represent segments in $\mathcal{P}(m)$ that pass through the intersection point of $p_{1} p_{1}^{\prime}$ and $p_{2} p_{2}^{\prime}$; see Fig. 7(b). Suppose that this intersection point is under the bisector defined by e_{i} and e_{j} as Fig. 7(b) shows. By comparing triangles, one can check that a path T that uses the fragment of segment $p p^{\prime}$ in between e_{i} and e_{j} is shorter than T_{2} (similar for the intersection point over the bisector but using path T_{1}). Hence, T decreases $d(w, z)=d$ since T_{2} does.

Case (b). Vertices u_{i} and u_{j} are located at different sides of $p_{1} p_{1}^{\prime}$ and $p_{2} p_{2}^{\prime}$; see Fig. 8.
If $p_{1} p_{1}^{\prime}$ and $p_{2} p_{2}^{\prime}$ intersect then the result is straightforward since points $\left(t, t^{\prime}\right)$ represent segments that pass through that intersection point; see Fig. 8(a). Otherwise, consider a point $\left(t, t^{\prime}\right)$ on the segment with endpoints $\left(t_{1}, t_{1}^{\prime}\right)$ and $\left(t_{2}, t_{2}^{\prime}\right)$, i.e., $\left(t, t^{\prime}\right)=\lambda\left(t_{1}, t_{1}^{\prime}\right)+(1-\lambda)\left(t_{2}, t_{2}^{\prime}\right)$.

Suppose first that $\lambda=1 / 2$. A well-known property of a quadrilateral is that if the midpoints of opposite edges are connected (points a^{\prime} and d^{\prime} in Fig. 9), then the length of the path $b a^{\prime} d^{\prime} d$ is smaller or equal than the length of at least one of the two paths in the quadrilateral connecting b with d. Therefore, path T is shorter than T_{1} or T_{2} and so it also decreases $d(w, z)=d$. For $\lambda \neq 1 / 2$, we can apply successively the same property, starting with either the quadrilateral with vertices a, $a^{\prime}, d, d^{\prime}$ or that with vertices $a^{\prime}, b, d^{\prime} c$.

Thus, we can conclude that the inequations corresponding to arrangement \mathcal{Q} describe convex sets. One can analogously prove that arrangement \mathcal{Q}^{\prime} consists also of convex sets. Since the process is very similar, we omit the details and only specify the convexity condition in this case: consider a segment $p_{1} p_{1}^{\prime} \in \mathcal{P}(m)$ (which is a point $\left(t_{1}, t_{1}^{\prime}\right) \in \mathcal{R}(m)$) and suppose that the maximum eccentricity of the points on $p_{1} p_{1}^{\prime}$ (in the network $\mathcal{N}_{\ell} \cup p_{1} p_{1}^{\prime}$) is smaller than d. Further, as it was done in step (2), assume that $u_{i} \in P_{1}$ and $u_{j} \in P_{2}$ for the corresponding paths P_{1} and P_{2} of Lemma 5 that give that maximum eccentricity. The same assumptions are done for another segment $p_{2} p_{2}^{\prime} \in \mathcal{P}(m)$ (which is a point $\left(t_{2}, t_{2}^{\prime}\right) \in \mathcal{R}(m)$). Thus, the

Fig. 7. (a) Segments $p_{1} p_{1}^{\prime}$ and $p_{2} p_{2}^{\prime}$ do not intersect, (b) segments $p_{1} p_{1}^{\prime}$ and $p_{2} p_{2}^{\prime}$ intersect on a point located in the region defined by e_{i} and e_{j}.

Fig. 8. Segments $p_{1} p_{1}^{\prime}$ and $p_{2} p_{2}^{\prime}$ intersect in (a) and do not intersect in (b).

Fig. 9. A quadrilateral with vertices a, b, c, d in which the midpoints a^{\prime} and d^{\prime} of, respectively, edges $a b$ and $c d$ are connected.
convexity condition for \mathcal{Q}^{\prime} is that every point $\left(t, t^{\prime}\right)$ on the segment with endpoints $\left(t_{1}, t_{1}^{\prime}\right)$ and $\left(t_{2}, t_{2}^{\prime}\right)$ represents a segment $p p^{\prime} \in \mathcal{P}(m)$ such that the maximum eccentricity of the points on $p p^{\prime}$ (in the network $\mathcal{N}_{\ell} \cup p p^{\prime}$) is smaller than d, assuming also that $u_{i} \in P_{1}$ and $u_{j} \in P_{2}$ for the corresponding paths P_{1} and P_{2} of Lemma 5 that give the maximum eccentricity.

Regarding the complexity, the only difference with the proof of Proposition 7 is that, instead of analyzing the intersection of two arrangements of conics with region $\mathcal{R}(m)$, we compute the intersection of two arrangements of convex sets with that region, which can also be done in polynomial time [23] and so the result follows.

4. Shortcut number

There are two natural, interesting but very hard questions related with shortcut sets: which is the minimum number of segments that have to be inserted to \mathcal{N}_{ℓ} in order to reduce the diameter? Among all shortcut sets of minimum size, how can we find the one that minimizes the diameter? It seems difficult to give an answer for general plane Euclidean networks and, of course, new techniques must be developed. In this section we briefly describe our results on these questions, among which highlights the NP-completeness of the problem of deciding whether the minimum size of a shortcut set is smaller or equal than a fixed natural number.

Let \mathcal{N} be a network such that \mathcal{N}_{ℓ} admits a shortcut set (according to Theorem 2). We define the shortcut number of \mathcal{N}_{ℓ}, denoted by $\operatorname{scn}\left(\mathcal{N}_{\ell}\right)$, as the minimum size of a shortcut set. A shortcut set is called optimal if its size equals $\operatorname{scn}\left(\mathcal{N}_{\ell}\right)$ and it minimizes $\operatorname{diam}\left(\mathcal{N}_{\ell} \cup \mathcal{S}\right)$ among all shortcut sets \mathcal{S} of $\operatorname{size} \operatorname{scn}\left(\mathcal{N}_{\ell}\right)$. This notion of optimal shortcut set includes the optimal shortcut of Yang [19], and has the same spirit as the optimal set of shortcuts of De Carufel et al. [2,20] and Bae et al. [21].

Proposition 9. Let \mathcal{N} be a plane Euclidean network whose locus \mathcal{N}_{ℓ} admits a shortcut set. Then, the following statements hold.
(i) $\operatorname{scn}\left(\mathcal{N}_{\ell}\right) \leq 2|E(\mathcal{N})|-n_{1}$, where n_{1} is the number of pendant vertices of \mathcal{N}.
(ii) \mathcal{N}_{ℓ} has an optimal shortcut set.

Proof. The bound of statement (i) is given in Corollary 3. To prove statement (ii), suppose that $\operatorname{scn}\left(\mathcal{N}_{\ell}\right)=h$, and consider the mapping

$$
f: \overbrace{\mathcal{N}_{\ell} \times \cdots \times \mathcal{N}_{\ell}}^{2 h)} \longrightarrow \mathbb{R}, \quad f\left(p_{1}, q_{1}, p_{2}, q_{2}, \ldots, p_{h}, q_{h}\right)=\operatorname{diam}\left(\mathcal{N}_{\ell} \cup \mathcal{S}\right)
$$

where \mathcal{S} is the set of segments with endpoints $p_{i}, q_{i}, 1 \leq i \leq h$. Since this is a continuous mapping taking values on a compact set, it has a minimum. On the other hand, \mathcal{N}_{ℓ} admits a shortcut set and so the minimum of f must be attained by an optimal shortcut set.

Remark. One can check that the star S_{n} with odd n, given by $V\left(S_{n}\right)=\left\{u, u_{0}, \ldots, u_{n-1}\right\}, E\left(S_{n}\right)=\left\{u u_{i}: 0 \leq i \leq n-1\right\}$, and vertex u_{i} placed at $\left(\cos \left(\frac{2 \pi}{n} i\right), \sin \left(\frac{2 \pi}{n} i\right)\right)$ attains the upper bound of the preceding proposition.

Regarding the shortcut number, it is interesting to consider non-connected networks \mathcal{N}; note that all our previous results on this paper deal with connected networks. Obviously, when \mathcal{N} is non-connected, diam $\left(\mathcal{N}_{\ell}\right)$ is infinite and a shortcut set is simply a set of segments that connects \mathcal{N}_{ℓ}. Thus, the following proposition is straightforward.
Proposition 10. Let \mathcal{N} be a non-connected plane Euclidean network, and let $\mathcal{N}_{\ell}^{1}, \ldots, \mathcal{N}_{\ell}^{k}$ be the connected components of its locus. Then, $\operatorname{scn}\left(\mathcal{N}_{\ell}\right)=1$ if and only if the set $\left\{C H\left(\mathcal{N}_{\ell}^{1}\right), \ldots, C H\left(\mathcal{N}_{\ell}^{k}\right)\right\}$ admits a stabbing line, i.e., a straight line that intersects each of the k given convex hulls $C H\left(\mathcal{N}_{\ell}^{i}\right)$.

Atallah and Bajaj [24] designed an algorithm for line stabbing simple objects in the plane which, for our set of k convex hulls, runs in $O(k \log k)$ time. Hence, this is the complexity time of deciding whether $\operatorname{scn}\left(\mathcal{N}_{\ell}\right)=1$ for non-connected plane Euclidean networks \mathcal{N}. Nevertheless, the computation of the shortcut number in general is a much more complex computational problem. Indeed, consider the following problem:

Short-Cut-Number: Given a plane Euclidean network (not necessarily connected) \mathcal{N} with n vertices and a natural number t, to decide whether $\operatorname{scn}\left(\mathcal{N}_{\ell}\right) \leq t$ or not.

Theorem 11. Short-Cut-Number is an NP-complete problem.
Proof. Clearly Short-Cut-Number is in NP since, by Lemma 6, one can check in polynomial time whether $|\mathcal{S}| \leq t$ and $\operatorname{diam}\left(\mathcal{N}_{\ell} \cup \mathcal{S}\right) \leq t$ for a given set of segments \mathcal{S} and a network \mathcal{N}. On the other hand, we can reduce 3 -satisfiability (3SAT) to Short-Cut-Number by mimicking the reduction given in [25] of 3-satisfiability to the Point Covering Problem. For the sake of completeness, we summarize here the main steps of that reduction.

The input of the Point Covering Problem is a set of points in the plane with rational coordinates, and one has to find a collection of straight lines of minimum cardinality such that each point lies on at least one of the lines.

Let ϕ be an instance of 3SAT with m clauses and n variables. Without loss of generality, it may be assumed that the bipartite graph of variables and clauses associated to ϕ is connected. The following properties establish the reduction of [25].

1. Each clause c_{j} is represented by a point P_{j}.
2. Each variable x_{i} is represented by a grid of m^{2} points $P_{k l}^{i}(1 \leq k, l \leq m)$.
3. For each $i(i=1, \ldots, n)$ and $j(j=1, \ldots, m)$, the points $P_{1 j}^{i}, \ldots, P_{m j}^{i}$ lie on a straight line denoted by $L_{i j}$, and the points $P_{j 1}^{i}, \ldots, P_{j m}^{i}$ lie on a straight line denoted by $R_{i j}$.
4. Except for the lines defined in the item above, no other straight line of the plane contains more than two points of the point sets defined in (1) and (2).
5. For every $j(j=1, \ldots, m)$, the point P_{j} lies on the line $L_{i k}$ if and only if $j=k$ and the positive literal $x_{j} \in c_{j}$ and P_{j} lies on the line $R_{i k}$ if and only if $j=k$ and the negative literal $\overline{x_{j}} \in c_{j}$.

Fig. 10. Segment s shortens one of the $p-q$ paths in P : (a) p and q are on the $u-r$ path P_{1} that does not pass through v, (b) $q \in P_{1}$ and p is on the $u-r^{\prime}$ path that does not go through v, (c) one of the points is on the wedge determined by r, v and r^{\prime}.

Fig. 11. Polygon triangulation with shortcut number 2 (the pairs $\left\{u_{1}, u_{4}\right\},\left\{u_{2}, u_{5}\right\}$ and $\left\{u_{3}, u_{6}\right\}$ are diametral).

In our case the whole collection of points given in (1) and (2) is a plane Euclidean network without edges $\mathcal{N}_{\ell}(\phi)$ whose diameter is infinite. Thus, the shortcut number of $\mathcal{N}_{\ell}(\phi)$ is the minimum number of segments that have to be inserted to $\mathcal{N}_{\ell}(\phi)$ to connect it in a unique connected component; this gives a finite diameter.

A unique connected component can be obtained if and only if the entire collection of vertices of $\mathcal{N}_{\ell}(\phi)$ can be covered. As in [25], we can see that ϕ is satisfiable if and only if the entire collection of points given in (1) and (2) above can be covered by $n m$ lines.

4.1. Polygons

In our setting, a polygon P is the locus of a plane Euclidean cycle.
Proposition 12. No polygon P admits a simple shortcut, and moreover:
(i) $\operatorname{scn}(P)=2$ when P is convex.
(ii) $\operatorname{scn}(P)=1$ when P is non-convex. In this case, there always exists a shortcut with at least one vertex of P as endpoint.

Proof. If the two endpoints of a segment s are the only intersection points with a polygon P, then s splits P into two paths whose midpoints are diametral points of P and also of $P \cup s$. This implies that $\operatorname{diam}(P)=\operatorname{diam}(P \cup s)$. Hence, P has no simple shortcut, and moreover, $\operatorname{scn}(P) \geq 2$ when P is convex. In this case, we take two consecutive vertices of P and add two segments s and s^{\prime}, each of which is very close to one of the vertices (this means that its length can be taken as small as desired) and its two endpoints are, respectively, on the two incident edges with the corresponding vertex. Clearly, either s or s^{\prime} shortens at least one of the two paths connecting any two diametral vertices of P (recall that diam (P) is attained by two vertices when P is convex). Further, by taking the length of those segments small enough, ecc $(p)<\operatorname{diam}(P)$ for $p \in s \cup s^{\prime}$. Therefore, $\operatorname{diam}\left(P \cup\left\{s, s^{\prime}\right\}\right)<\operatorname{diam}(P)$, which proves statement (i).

When P is non-convex, there are two vertices $u, v \in V(P)$ such that $u v$ is not an edge of P but it is a segment on the border of its convex hull $C H(P)$. The $u-v$ path contained in the interior of $C H(P)$ is called the $u-v$ pocket of P. Consider a segment s that has vertex u as an endpoint and intersects the $u-v$ pocket, say in a point r^{\prime} (see Fig. 10). We can assume r^{\prime} to be very close to v, i.e., the length of the segment $r^{\prime} v$ is some $\varepsilon>0$; the other endpoint of s, denoted by r, is located outside the pocket. As Fig. 10 shows, given diametral points $p, q \in P$, segment s shortens one of the $p-q$ paths in P; the figure distinguishes three cases according to the possible positions of p and q. Moreover, by taking ε small enough, $\operatorname{ecc}(z)<\operatorname{diam}(P)$ for every $z \in s$. Hence, s is a shortcut and so statement (ii) follows.

Not all triangulations of polygons admit a shortcut; Fig. 11 illustrates an example that requires two segments to decrease the diameter. However, it seems that most polygon triangulations have shortcut number equal to one. One can check this, for example, for fan triangulations of convex polygons (it suffices to add a sufficiently small segment that intersects all incident edges with the apex of the triangulation).

Fig. 12. Diametral points p, q on a planar embedding of K_{4}.

Remark. As it was explained in the Introduction, De Carufel et al. [2] consider shortcuts for cycles that are always simple. Thus, their Lemma 3.1 says that no polygon admits a simple shortcut as we also prove in Proposition 12. Since our definition of shortcut set differs from their shortcuts, we have included Proposition 12 to show how to deal with non-simple shortcuts, which is the content of statement (ii). The other statements are included for completeness.

4.2. The complete graph K_{4}

Non-trivial Euclidean networks obtained from planar embeddings of complete graphs K_{n} only appear for $n=3$ and $n=$ 4. As an abuse of notation, let K_{3} and K_{4} denote those Euclidean networks, and $\left(K_{3}\right)_{\ell}$ and $\left(K_{4}\right)_{\ell}$ their locus. For $n=3$, Proposition 12 yields $\operatorname{scn}\left(\left(K_{3}\right)_{\ell}\right)=2$.

Proposition 13. The shortcut number of $\left(K_{4}\right)_{\ell}$ is equal to 1 .
Proof. Let $V\left(K_{4}\right)=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ where u_{4} lies in the interior of the triangle T of vertices u_{1}, u_{2}, u_{3}. Let per (T) denote the perimeter of T. It follows that diam $\left(\left(K_{4}\right) \ell\right) \geq \operatorname{per}(T) / 2$ since there is always a point $w \in u_{2} u_{3}$ such that $d\left(u_{1}, w\right)=\operatorname{per}(T) / 2$. Also, it holds that $d\left(u_{1}, u_{4}\right)+d\left(u_{4}, u_{2}\right)>d\left(u_{1}, u_{2}\right)$ and $d\left(u_{1}, u_{4}\right)+d\left(u_{4}, u_{3}\right)>d\left(u_{1}, u_{3}\right)$, and so there is a point $z \in u_{1} u_{4}$ sufficiently close to u_{1} satisfying that $d(z, w)=d\left(z, u_{1}\right)+d\left(u_{1}, w\right)$. This implies that diam $\left(\left(K_{4}\right)_{\ell}\right)>\operatorname{per}(T) / 2$; otherwise one would have $d(z, w)=d\left(z, u_{1}\right)+d\left(u_{1}, w\right)=d\left(z, u_{1}\right)+\operatorname{diam}\left(\left(K_{4}\right)_{\ell}\right)$. Therefore, given two diametral points p, q in $\left(K_{4}\right)_{\ell}$, we can assume $p \in T$ and $q \notin T$. Without loss of generality, suppose that $p \in u_{2} u_{3}$ and $q \in u_{1} u_{4}$ (see Fig. 12).

By Lemma 5, there exist at least two shortest $p-q$ paths in $\left(K_{4}\right)_{\ell}$, one of them containing vertex u_{3} and the other containing vertex u_{2}. Further, one of those paths contains vertex u_{1}. Hence, every vertex among u_{1}, u_{2}, u_{3} belongs to a certain shortest $p-q$ path. Thus, a segment s placed sufficiently close to u_{1} (it also applies for u_{2} and u_{3}) and intersecting all incident edges with u_{1} is a shortcut for $\left(K_{4}\right)_{\ell}$. Observe that s must be located close to u_{1} to guarantee that $\operatorname{ecc}(z)<\operatorname{diam}\left(\left(K_{4}\right)_{\ell}\right)$ for every $z \in s$.

5. Concluding remarks

The concept of shortcut set is natural in the context of Euclidean networks, and we believe that its study is of interest not only from the theoretical point of view but also for the already mentioned applications of those networks to road networks, robotics, telecommunications networks, etc. This paper presents the first approach to its study for general plane Euclidean networks. As main results we highlight that, while the problem of minimizing the size of a shortcut set is NP-complete, plane Euclidean networks whose locus admits a shortcut can be identified in polynomial time.

Our study opens many possibilities in this type of problems, such as its extension to other network parameters or to design methods for computing optimal shortcut sets.

Acknowledgments

D. G. and M. L. P. were partially supported by project MTM2015-63791-R (MINECO/FEDER). A. M. was partially supported by project BFU2016-74975-P (MINECO/FEDER).

References

[1] C.E. Chen, R.S. Garfinkel, The generalized diameter of a graph, Networks 12 (1982) 335-340.
[2] J.L. De Carufel, C. Grimm, A. Maheshwari, M. Smid, Minimizing the continuous diameter when augmenting paths and cycles with shortcuts, in: Proceedings of the Fifteenth Scandinavian Symposium and Workshops on Algorithm Theory, SWAT, 2016, pp. 27:1-27:14.
[3] P. Hansen, M. Labbé, B. Nicolas, The continuous center set of a network, Discr. Appl. Math. 30 (1991) 181-195.
[4] P. Bose, K. Dannies, J.L. De Carufel, C. Doell, C. Grimm, A. Maheshwari, S. Schirra, M. Smid, Networks farthest-point diagrams and their application to feed-link network extension, J. Comput. Geom. 4 (1) (2013) 182-211.
[5] B. Aronov, K. Buchin, M. Buchin, B. Jansen, T. de Jong, M. van Kreveld, M. Löffler, J. Luo, R.I. Silveira, B. Speckmann, Connect the dot: computing feed-links for network extension, J. Spat. Inf. Sci. 3 (2011) 3-31.
[6] M. Savić, M. Stojaković, Linear time algorithm for optimal feed-link placement, Comput. Geom. Theory Appl. 48 (2015) 189-204.
[7] J. Li, J. Wang, S. Sun, C. Xia, Cascading crashes induced by the individual heterogeneity in complex networks, Appl. Math. Comput. 323 (2018a) 182-192.
[8] C. Li, L. Wang, S. Sun, C. Xia, Identification of influential spreaders based on classified neighbors in real world complex networks, Appl. Math. Comput. 320 (2018b) 512-523.
[9] B. Aronov, M. de Berg, O. Cheong, J. Gudmundsson, H. Haverkort, M. Smid, A. Vigneron, Sparse geometric graphs with small dilation, Comput. Geomet. Theory Appl. 40 (3) (2008) 207-219.
[10] A.M. Farley, A. Proskurowski, D. Zappala, K.J. Windish, Spanners and message distribution in networks, Discr. Appl. Math. 137 (2004) 159-171.
[11] X.Y. Li, Applications of computational geometry in wireless and ad hoc networks, 2003. X.Z. Cheng, X. Huang, D.Z. Du, eds. Add Hoc Wireless Networking, Kluwer.
[12] P. Erdős, A. Gyárfás, M. Ruszinkó, How to decrease the diameter of triangle-free graphs, Combinatorica 18 (4) (1998) 493-501.
[13] F. Frati, S. Gaspers, J. Gusmundsson, L. Mathieson, Augmenting graphs to minimize the diameter, Algoritmica 72 (2015) 995-1010.
[14] U. Große, J. Gudmunsson, C. Knauer, M. Smid, F. Stehn, Fast algorithms for diameter-optimally augmenting paths, in: Proceedings of the Forty-second International Colloquium on Automata, Languages, and Programming (ICALP), 2015, pp. 678-688.
[15] F. Hurtado, C.D. Tóth, Plane geometric graph augmentation: a generic perspective, in: J. Pach (Ed.), Proceedings of the Thirty Essays on Geometric Graph Theory, Algorithms and Combinatorics, 29, Springer, 2013, pp. 327-354.
[16] M. Farshi, P. Giannopoulos, J. Gudmundsson, Improving the stretch factor of a geometric network by edge augmentation, SIAM J. Comput. 38 (1) (2008) 226-240.
[17] J. Luo, C. Wulff-Nilsen, Computing best and worst shortcuts of graphs embedded in metric spaces, in: Proceedings of the Nineteenth International Symposium on Algorithms and Computation, in: Lectures Notes in Computer Science, Springer, 2008.
[18] C. Wulff-Nilsen, Computing the dilation of edge-augmented graphs in metric spaces, Comput. Geom. Theory Appl. 43 (2) (2010) 68-72.
[19] B. Yang, Euclidean chains and their shortcuts, Theor. Comput. Sci. 497 (2013) 55-67.
[20] J.L. De Carufel, C. Grimm, S. Schirra, M. Smid, Minimizing the continuous diameter when augmenting a tree with a shortcut, in: Proceedings of the Algorithms and Data Structures, WADS 2017, in: Lecture Notes in Computer Science, 10389, 2017, pp. 301-312.
[21] S.W. Bae, M. de Berg, O. Cheong, J. Gudmundsson, C. Levcopoulos, Shortcuts for the circle, in: Proceedings of the Twenty-eighth International Symposium on Algorithms and Computation, ISAAC, 2017, pp. 9:1-9:13.
[22] B. Chazelle, L.J. Guibas, Visibility and intersection problems in plane geometry, Discr. Comput. Geom. 4 (1989) 551-581.
[23] H. Edelsbrunner, L. Guibas, J. Pach, R. Pollack, R. Seidel, M. Sharir, Arrangements of curves in the plane-topology, combinatorics, and algorithms, Theor. Comput. Sci. 92 (1992) 319-336.
[24] M. Atallah, C. Bajaj, Efficient algorithms for common transversal, Inf. Process. Lett. 25 (1987) 87-91.
[25] N. Megiddo, A. Tamir, On the complexity of locating linear facilities in the plane, Oper. Res. Lett. 1 (5) (1982) 194-197.

[^0]: * Corresponding author.

 E-mail addresses: jcaceres@ual.es (J. Cáceres), dgarijo@us.es (D. Garijo), gonzalezh@unizar.es (A. González), almar@us.es (A. Márquez), mpuertas@ual.es (M.L. Puertas), pribeiro@ualg.pt (P. Ribeiro).

[^1]: ${ }^{1}$ The diameter of \mathcal{N}_{ℓ} is the generalized diameter of \mathcal{N}, which was introduced in [1] and called continuous diameter in, for example [2,3], but we use the context of locus because it fits better to our purpose in this paper.
 ${ }^{2}$ In fact, the restriction of Problem 1 to inserting only one segment to the locus of a general plane Euclidean network was proposed by Cai as a personal communication to Yang [19].

