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a b s t r a  c t

In this paper we present InstanceRank, a ranking algorithm that reflects the relevance of the instances 
within a dataset. InstanceRank applies a similar solution to that used by PageRank, the web pages ranking 
algorithm in the Google search engine. We also present ISR, an instance selection technique that uses 
InstanceRank. This algorithm chooses the most representative instances from a learning database. Exper-
1. Introduction

The nearest neighbor technique obtains good classification results
using a very simple algorithm. Strictly speaking, there is no learning
stage since no model is built. Each time an instance is classified, it is
compared to all other instances contained in the learning database
and sorted in categories on the basis of the most similar instances.
This allows for the classification algorithm to take into account
possible search space regions which would be left out by other algo-
rithms that do perform data-based generalizations. There are not
only advantages, however; the cost of having a simple and powerful
technique lies in demanding large storage space (given there is no
model, all instances need to be memorized) and time (each instance
to be classified needs to be compared to all those contained in the
dataset) during the classification stage.

In order to solve this problem, there have been proposed several
solutions which could be classified into two categories: those di-
rected towards the reduction of the number of instances in the dat-
abases without losing classification quality (Aha et al., 1991;
Wilson and Martinez, 2000; Brighton and Mellish, 2002; Bezdek
and Kuncheva, 2001; Paredes and Vidal, 2006), and those intended
to speed up the search for the most-similar exemplars with the
help of data and index structures (Papadimitriu and Bentley,
1980; Vidal, 1986; Sproull, 1991; Yianilos, 1993; Brin, 1995;
Gómez-Ballester et al., 2006). In our work we show a ranking that
characterizes the relevance of points in a database and an instance
+34 954557139.
reduction algorithm using this ranking which falls within the first
of the categories above. In spite of appearances, when an instance
reduction technique is applied, it not always get worse classifica-
tion accuracy. In some cases, classification is better in reduced sets
than in the original database. In these cases it is said that the tech-
nique edits the database since it can reduce noisy instances.

We have named the instance ranking developed in our work
‘‘InstanceRank”. This ranking is estimated using similar techniques
to those used in calculating nodes relevance in a graph. Specifically,
we have used an adjustment of the PageRank algorithm which is
one of the criterion in which Google websearch engine is based.
This ranking has been used in an instance selection algorithm
called ISR. This algorithm’s results are statistically equivalent to
those of the best algorithms of this type regarding accuracy; ISR
clearly improves these techniques in instance set size reduction,
except one of them (Explore) which has no significant difference
with ISR.

The rest of the paper is organized as follows: Section 2 presents
InstanceRank; Section 3 contains the ISR algorithm; Section 4 pre-
sents the experimental design, results obtained, their statistical anal-
ysis and an analysis of the set of instances selected by our algorithm;
lastly, Section 5 includes our conclusions and future lines of work.
2. InstanceRank: an instances-ranking criterion

The general idea that has guided our work is the thought that
the relevance measure offered by a ranking of instances might be
useful to determine which ones are more relevant within a
database. A similar idea, TextRank, has been used in the scope of
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Natural Language Processing to arrange the different elements of a
text according to their relevance.

2.1. PageRank

PageRank algorithm was put forward by Brin and Page (1998),
Page et al. (1998). Its foundations can be explained as follows:
Internet can be seen as a directed graph in which nodes are made
up by the different web pages and links between the pages are the
edges. If there is a link between two pages, in the graph there
would be an edge going from the node representing the first page
to the node representing the second page. Taking into account the
topology of this graph, we can calculate a relevance index for each
node, this is PageRank. The theoretical substratum of PageRank is
the existence of a ‘‘random surfer” who visits web pages by clicking
the links in them, or by writing a new address in the browser’s ad-
dress bar, going to a new page which is not connected to the ones
visited before. The mathematical expression of this is as follows:
we name the PageRank of page V as PRðVÞ, the set of pages that
have a link to V (which in graph terminology would be the origin
nodes to which V is linked) as InðVÞ, and the set of nodes to which
V is linked (similarly, the target nodes of the edges which have V as
their origin) as OutðVÞ, then

PRðVÞ ¼ ð1� dÞ þ d
X

W2InðVÞ

PRðWÞ
jOutðWÞj ;

where d parameter is a value between 0 and 1 (in (Brin and Page,
1998) the value of 0.85 is recommended) reflecting the probability
that the ‘‘random surfer” visits pages clicking links, and 1� d is the
probability that the surfer visits any given page by chance. The idea
behind the expression of the PageRank calculation is that there are
more probabilities of a page being reached through links, if there
are many links from pages that have high probabilities of being vis-
ited (having a greater PageRank).

PageRank can be estimated through a simple iterative algorithm
and represents a probability distribution over web pages.

2.2. TextRank

TextRank, by Mihalcea and Tarau (2004) is an adaptation of
PageRank to a very different context: the natural language process-
ing; more specifically, the extraction of key words and the genera-
tion of summaries. The main idea is that a word or phrase (in
general, a graph’s vertex) has more or less relevance depending
on how much it is influenced by the rest; this relevance is depicted
by TextRank. The influence of a word or phrase on another depends
on their similarity; that is the reason why, as opposed to PageRank,
influence has a certain weighting: vertex Vi influences vertex Vj

with a certain weight wij (the graph is therefore weighted).
The expression of PageRank, once the weights are introduced,

becomes:

TRðViÞ ¼ ð1� dÞ þ d
X

Vj2InðViÞ

wjiP
vk2OutðVjÞwjk

TRðVjÞ

The influence of a word or phrase on another is reciprocal and
that is why the graph describing this situation is an undirected
graph ðwij ¼ wji; InðVÞ ¼ OutðVÞÞ, which simplifies calculations.

The expression of TextRank, as that of PageRank, can be esti-
mated through an iterative calculus that converges.

2.3. InstanceRank

Our proposal consists in considering the instances of a database
as the vertexes of a graph, similarly to what PageRank and Text-
Rank do. Each edge of this graph represents the similarity between
the instances representing the ends of the edges; this edge is la-
beled with that similarity. Given its nature, this is a complete
and undirected graph. We have defined the similarity between in-
stances as a function of the distance between them; in a sense this
is the reverse of the concept of distance. A similarity function
simðx; yÞ between the instances of a dataset T should fulfill three
properties 8v1;v2 2 T:

0 6 simðv1; v2Þ 6 1
simðv1; v1Þ ¼ 1
simðv1; v2Þ ¼ simðv2;v1Þ

We have used HOEM (Heterogeneous Euclidean-Overlap Met-
ric) (Wilson and Martinez, 1997) for the distance between two in-
stances. It is the Euclidean distance for the continuous features,
adjusted for the maximum and minimum values, and the overlap
distance (0 for the ones with the same value and 1 for those with
different values) for the discrete features. Lastly, the distance is
normalized so that

8v1;v2 2 T 0 6 distðv1;v2Þ 6 1

We have experimented with the following similarity functions:

simðv1; v2Þ ¼ 1� distðv1; v2Þ
k

simðv1; v2Þ ¼
1

1þ kdistðv1;v2Þ

simðv1; v2Þ ¼ e�k
distðv1 ;v2 Þ

ð1�distðv1 ;v2 ÞÞ

simðv1; v2Þ ¼ e�k distðv1 ;v2Þ2

where k ðk > 0Þ is a parameter with a value that should be ade-
quately adjusted. These four functions fulfill the three properties
above. The graph depicting these functions can be seen in Fig. 1,
in which we have represented the values for k ¼ 1 and k ¼ 20 for
each one of them; the rest of the values are included in the area
delimited by these two.

The expression of the InstanceRank calculation on the set of in-
stances T, where instances are fVi;1 6 i 6 jTjg, is as follows:

IRðViÞ ¼ ð1� dÞ þ d
XjTj
j¼1

simðVj;ViÞPjTj
k¼1simðVj;VkÞ

IRðVjÞ: ð1Þ

We have carried out experiments with two types of
InstanceRank:

GlobalInstanceRank: it does not take into account the class to
which each instance belongs to, and it therefore measures the
overall density of instances.

LocalInstanceRank: distinctions are made between each of the
classes so that the similarity between two instances is zero when
both belong to different classes, and its real value if they belong
to the same class.

LocalInstanceRank could be interpreted as follows: a higher rank
value means that the corresponding instance has greater local den-
sity of instances of its same class; a smaller value would mean
either that it is a peripheral instance (in the borderline between
two classes), or that it is an instance surrounded by instances of
another class and that could therefore be a representation of noise.

In general, InstanceRank measures the relevance of an instance
within the dataset. It therefore allows us to establish a ranking
among instances. We have used GlobalInstanceRank in a prelimin-
ary work (Vallejo et al., 2007), but in the ISR algorithm LocalIn-
stanceRank is used as the criterion to select the instances of the
training database because it yields the best results.
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Fig. 1. Similarity functions.
2.3.1. Algebraic justification
We will now see the algebraic justification underlying Instance-

Rank. At this point, and as a means of simplifying our notation, we
will name IRðViÞ as xi and N ¼ jTj. We denote as sij=simðVj;ViÞ and
sj ¼

PN
k¼1skj. Then the expression of InstanceRank calculation could

be expressed in a matrix form as:

x1

x2

..

.

xN

2
66664

3
77775 ¼ ð1� dÞ

1
1
..
.

1

2
66664

3
77775þ d

s11=s1 s12=s2 . . . s1N=sN

s21=s1 s22=s2 . . . s2N=sN

..

. ..
. ..

.

sN1=s1 sN2=s2 . . . sNN=sN

2
66664

3
77775

x1

x2

..

.

xN

2
66664

3
77775:

If we name the above square matrix as S and the N � 1 ones vec-
tor as u, then the expression above could be rewritten as:

x ¼ ð1� dÞuþ dSx: ð2Þ

Matrix S is a stochastic matrix: on the one hand its values, the quo-
tients sij=sj ¼ sij

PN
k¼1skj

.
, are obviously within the 0–1 range; on the

other hand, the sum of the elements in column i is

X
j

sji

si
¼ 1

si

X
j

sji ¼
1
si

si ¼ 1:

If x is normalized, so that kxk1 ¼ N, that is, the sum of the com-
ponents is N (if we start from a vector with no negative elements it
will always remain non-negative since the elements of S are so),
then we have that

uT x ¼ N

so that expression (2) of the calculation of x could be written as

x ¼ ð1� dÞu 1
N

uT xþ dSx

or

x ¼ ðð1� dÞeuT þ dSÞx;

where e is a vector with elements that are equal to 1=N.
euT is again a stochastic matrix: all of its elements are within

the 0–1 range (they are all equal to 1=N) and its columns add up
to 1.

If we name

M ¼ ðð1� dÞeuT þ dSÞ

the system is written as

x ¼Mx

M is the convex combination (linear combination with positive
coefficients whose sum is 1) of two stochastic matrices, so M is also
stochastic. Its values are within the 0–1 range and it is normalized
(its columns add up to 1), therefore, as a result of the Perron–Frobe-
nius theorem, has 1 as an eigenvalue and the rest are lower than 1
in module (they could be complex). The solution to the above sys-
tem is an eigenvector corresponding to the eigenvalue 1.

2.3.2. Convergence of InstanceRank
Calculating x (that is, InstanceRank) can be done from expres-

sion (1) through an iterative process which converges:
If

xkþ1 ¼ ð1� dÞuþ dSxk

and

xk ¼ ð1� dÞuþ dSxk�1

then

kxkþ1 � xkk ¼ dkSðxk � xk�1Þk 6 dkSkkxk � xk�1k

for any compatible vector and matrix norm. For example using 1-
norm,

kxk1 ¼
XN

i¼1

jxij;

and

kSk1 ¼ max
j¼1;...;N

XN

i¼1

jsijj:

In this case kSk1 ¼ 1, and as d < 1, so convergence is guaranteed.

3. ISR: Instance Selection based on Ranking

In this section we present ISR (Instance Selection based on Rank-
ing), an instance-based learning algorithm that allows us to assess
the usefulness of sorting instances by InstanceRank applied to the
issue of selecting instances. The design of our algorithm is rooted
in the premise that the ranking offered by InstanceRank may be
useful in determining which instances in a database are more rel-
evant, just as PageRank measures the relevance of a web page in
the Internet or TextRank of a word or phrase in a text.

Our inspiration in designing ISR derived from the WITS algo-
rithm presented by Morring and Martinez (Morring and Martinez,
2004), an instance selection algorithm depending on the order in
which instances are processed; this algorithm considers instances
following a criterion known as typicality. This concept was pro-
posed by Zhang (1992) as a measure of an instance’s representativ-
ity within a class. It is defined as the quotient of the instance’s
average similarity with the rest of instances in its class (intra-class
similarity) and the average similarity with all instances of a differ-
ent class (extra-class similarity). The similarity between two in-
stances x and y is defined as 1� distðx; yÞ.

Just as the WITS algorithm is based on typicality, ISR is based on
the ranking produced by InstanceRank to determine the order in



which instances are processed. Taking this ranking as its founda-
tion, ISR produces a set S as output in which instances of a database
T are weighted. This weight can be interpreted as the radius of the
influence sphere of the instance and allows this algorithm to better
adjust to the data area (Cost and Salzberg, 1993, 2006). The
pseudocode of the ISR algorithm can be seen in Algorithm 1.
The algorithm works incrementally; initially the set of selected
instances S is empty and the general idea is to include in it the ele-
ments that significantly improve the number of correctly classified
instances of the training set T.

The main steps of the algorithm are:

1. The InstanceRank of all the instances of the training set T is cal-
culated (line 1).

2. The training set T is sorted in reversed order of InstanceRank
(line 2); we call it relevance order.
3. For each class in the training set T, it is created an empty queue,
called bucket. Each instance of T is assigned to its corresponding
bucket maintaining its relevance order (lines 3–5).

4. The following process is performed iteratively until there are no
errors (it is impossible to improve S) or there are no more
instances in the buckets:
(a) The most relevant instance p of the bucket j with the larg-
est number of misclassified instances is selected (lines 10–
11).

(b) A weight for p that minimizes the number of errors when p
is added to the selected instances set S, is calculated (lines
13–20).

(c) If the addition of p (weighted with its best weight), signif-
icantly improves S, then p is selected (lines 21–26). The
parameter G defines the meaning of a ‘‘significant
improvement”.



In the generalization phase, distances are weighted according to
the weights assigned to instances. The nearest neighbor’s class
ðk ¼ 1Þ is chosen as the instance class to be generalized, according
to that weighted distance.

Assuming n to be the number of instances of the database, the
complexity of the algorithm is as follows: the computation of
InstanceRank (line 2) is Oðn2Þ. The loop in line 12 is executed n
times and the body of the loop is OðnÞ, so the complexity of the
whole algorithm is Oðn2Þ. The storage requirements are also Oðn2Þ.
4. Experimentation

4.1. Databases used and comparison criteria

In order to carry out a consistent research on the goodness of
the algorithm we had developed, we have carried out an experi-
mentation with the same 31 databases that was used in the work
by Wilson and Martinez (2000); in it they presented, among others,
the DROP3 algorithm which has proven to be one of the best algo-
rithms developed up to the moment regarding the family based on
the nearest neighbor. Databases were taken from the UCI Reposi-
tory of Machine Learning Databases, University of California Irvine
(Asuncion and Newman, 2007), whose characteristics are well
known.

We have compared the results of ISR with the results of the near-
est neighbor technique (1NN) and those of all the instance selection
techniques reported in (Wilson and Martinez, 2000), we have taken
accuracy and reduction values of these algorithms from this paper.
In our experiments we have used stratified 10-fold cross validation,
which is the most used and standardized measure in the sphere of
data mining. We have obtained the accuracy values of the nearest
neighbor technique from the IB1 algorithm of Weka implementa-
tion (Witten and Frank, 2005). We also implemented the ISR algo-
rithm within the Weka environment using its API, which greatly
facilitates writing the classifier and especially its assessment.

We have measured accuracy as the percentage of the number of
correct classified instances over the total number of instances in
the test set. We have measured size as the quotient (displayed in
percentages) between the number of instances selected using the
technique and the total number of instances in the corresponding
fold of the training set. This means that a smaller numerical value
indicates that the set size of selected instances is also smaller, and
consequently, that the algorithm has a greater reduction capacity.
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4.2. Algorithms description

In this subsection we include a brief description of the instance
selection algorithms that ISR is compared to:

IB3 (Aha et al., 1991): an instance x is selected and added to S if
the nearest acceptable instance in S has a different class than x.
The acceptability is defined by a confidence interval determined
by a confident expression. After an instance is accepted it could
be rejected if the performance of the classifier becomes signifi-
cantly poor.
Explore (Cameron-Jones, 1995): it has a growing phase where
an instance is retained if it reduces the total cost of the system.
There is another phase where an instance is removed if that
deletion does not increase the cost. Both phases are repeated
iteratively. The cost of the system is the sum of several values
that characterizes the impact of misclassified instances, the
number of instances kept, etc.
DROP2 (Wilson and Martinez, 2000): the associate set of an
instance x is the set of all the instances that have x as one of
their k nearest neighbors. The method considers instances from
the furthest to nearest enemy (an instance of other class), and
then prune the training set according to the rule ‘‘Remove x if
at least as many of the original training instances would be clas-
sified correctly without it”.
DROP3 (Wilson and Martinez, 2000): an extension of DROP2
with a preliminary phase in which a rule is applied to eliminate
noisy instances.
DROP4 (Wilson and Martinez, 2000): an extension of DROP3
that eliminates ‘‘center” points.
DROP5 (Wilson and Martinez, 2000): it goes from closest to fur-
thest enemies, removing noisy instances in order to smooth
decision boundaries.
DEL (Wilson and Martinez, 2000): like Explore, it applies the
concept of the cost of the system, working in a decremental
way as the DROP family do.
4.3. Parameters adjustment

We had to adjust several parameters in the development of
algorithm ISR until optimum results were reached: the possible
influence of an instance on itself in the calculation of InstanceRank,
the value of d in this calculation, the similarity function used and
the value of parameter k in these similarity functions. Regarding
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to the influence of an instance on itself, we noted that it was better
to use a value close to zero (0 causes convergence problems in clas-
ses with only one instance). In order to adjust the other parame-
ters, we carried out experiments for each of the similarity
functions with a wide range of k values (1–20) and d values
(0.65–1.0, with 0.05 intervals), analyzing in each case the values
of these parameters and obtaining the highest accuracy and high-
est reduction averages in the 31 databases considered. We saw that
reduction values remained approximately stable for the best accu-
racy values, and we therefore took those parameter values yielding
the best accuracy average.
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Table 1
Accuracy of all techniques and ISR.

Database 1NN IB3 Explore DROP

Anneal 98.12 91.35 91.11 95.61
Australian 82.03 85.22 85.80 83.62
Breast cancer (WI) 95.28 96.57 96.71 95.86
Bridges 54.72 64.73 57.18 61.18
Crx 81.16 86.09 85.51 84.64
Echocardiogram 89.19 72.86 94.82 94.82
Flags 56.70 49.47 56.16 62.79
Glass 70.56 62.14 63.98 65.04
Heart 75.19 80.00 81.85 81.85
Heart (Cleveland) 76.24 81.16 82.15 79.55
Heart (Hungarian) 76.87 79.20 82.30 78.52
Heart (Long beach VA) 69.50 70.00 74.50 70.00
Heart (More) 72.10 76.31 73.13 73.98
Heart (Swiss) 91.06 93.46 93.46 93.46
Hepatitis 80.65 73.08 78.67 80.75
Horse colic 67.44 66.75 67.09 70.74
Image segmentations 93.10 92.14 89.76 92.86
Ionosphere 86.32 85.75 80.89 86.60
Iris 95.33 94.67 92.67 94.67
Led creator + 17 50.84 60.70 72.20 69.20
LED creator 61.80 70.40 72.10 71.80
Liver (Bupa) 62.90 58.24 57.65 67.77
Pima diabetes 70.18 69.78 75.27 70.44
Promoters 83.96 91.64 91.36 84.91
Sonar 86.54 69.38 70.29 80.88
Soybean (Large) 91.21 86.63 85.92 86.60
Vehicle 69.86 67.62 60.76 67.37
Voting 92.41 95.64 94.25 94.50
Vowel 99.43 89.57 57.77 91.08
Wine 94.94 91.50 95.46 93.24
Zoo 96.67 92.22 95.56 88.89

Average 79.75 78.85 79.24 81.07
Best results were consistently found using the similarity func-
tion simðv1;v2Þ ¼ 1� distðv1;v2Þ=k. In Fig. 2 we can see the evolu-
tion of the accuracy depending on the values of parameters k and d
for this similarity function, and Fig. 3 shows the corresponding
evolution of the set size. We then proceed to analyze the results
for this function using smaller intervals and we finally reached
the conclusion that the best accuracy values were those for
k ¼ 14:2 and d ¼ 0:802. We have obtained the experimental results
using these values for all datasets.

After trying values between 0.05 and 0.00001, we set G, the
parameter that decides if an instance improves the classification,
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94.11 94.36 95.24 93.85 90.98
83.91 84.78 83.91 84.78 84.35
96.14 96.28 95.71 96.28 96.14
56.36 57.36 62.82 64.27 64.76
85.80 85.51 83.77 83.62 84.78
93.39 94.82 93.39 93.39 90.54
61.29 59.58 58.13 56.18 58.25
65.02 65.91 65.45 69.59 66.36
83.33 81.85 81.11 78.89 83.70
80.84 78.19 79.84 79.49 80.53
80.29 79.22 79.60 77.18 81.97
73.50 74.00 73.00 70.00 75.00
76.38 74.36 74.63 75.15 76.83
93.46 93.46 92.63 92.69 93.50
81.87 78.75 83.29 80.00 81.94
70.13 67.73 68.45 67.73 80.16
92.62 94.05 89.29 91.90 91.67
87.75 86.90 86.90 86.32 91.17
95.33 95.33 94.00 93.33 95.33
70.40 69.50 69.80 66.60 42.37
71.70 71.90 72.00 72.30 74.20
60.84 62.60 65.50 61.38 62.90
75.01 72.53 73.05 71.61 75.78
86.82 86.82 87.00 83.09 70.75
78.00 82.81 79.88 83.29 83.17
84.97 86.29 83.73 87.27 81.11
65.85 67.03 70.22 68.10 63.59
95.87 95.87 95.86 94.27 94.25
89.56 90.70 93.36 93.17 71.59
94.93 94.93 96.08 94.38 96.07
90.00 91.11 95.56 90.00 96.67

81.14 81.11 81.39 80.65 80.01



to 0.005 because it obtains the best balance between accuracy and
set size. With this value, in small datasets (in datasets under 200
instances) one more instance correctly classified is a good
improvement, while in larger ones (for example, Pima) a new in-
stance is accepted if it classifies correctly at least four more
instances.

We also adjusted the parameter of the iterative calculation of
InstanceRank which indicates the acceptable level of error below
which all iterations stop. We took an appropriate value that
achieves enough accuracy in the calculations to guarantee the cor-
rect sorting of instances. We also analyzed the number of iterations
necessary to reach that level of accuracy and results show that they
remain at a more than acceptable level (between 3 and 10
iterations).
4.4. Experimental results and statistical analysis

It is hard to balance the size reduction of the set of instances
and at the same time to achieve the best accuracy possible. Fig. 4
Table 2
Ranks of the Friedman test for accuracy values.

Technique Average rank

1NN 4.06
IB3 4.21
Explore 4.73
DROP2 4.95
DROP3 5.50
DROP4 5.63
DROP5 5.44
DEL 4.53
ISR 5.95

Table 3
Size of the set of instances selected by all techniques and ISR.

Database 1NN IB3 Explore DROP

Anneal 100.00 9.79 0.75 8.08
Australian 100.00 4.78 0.32 7.28
Breast cancer (WI) 100.00 3.47 0.32 3.13
Bridges 100.00 28.83 5.67 17.30
Crx 100.00 4.28 0.32 7.31
Echocardiogram 100.00 11.57 3.01 10.51
Flags 100.00 34.14 2.06 20.62
Glass 100.00 33.80 3.53 23.10
Heart 100.00 13.58 0.82 12.22
Heart (Cleveland) 100.00 11.11 0.73 11.92
Heart (Hungarian) 100.00 9.90 0.75 8.80
Heart (Long beach VA) 100.00 4.89 1.11 11.83
Heart (More) 100.00 9.36 0.14 10.71
Heart (Swiss) 100.00 3.70 0.90 2.53
Hepatitis 100.00 5.09 1.29 10.54
Horse colic 100.00 8.49 0.37 8.20
Image segmentations 100.00 16.01 2.43 10.45
Ionosphere 100.00 14.59 0.63 7.79
Iris 100.00 19.78 2.30 14.22
LED creator + 17 100.00 32.31 1.40 12.98
LED creator 100.00 22.04 1.52 11.85
Liver (Bupa) 100.00 10.66 0.64 24.77
Pima diabetes 100.00 10.97 0.29 17.59
Promoters 100.00 18.12 2.10 13.63
Sonar 100.00 12.02 1.07 26.60
Soybean (Large) 100.00 30.33 7.78 22.77
Vehicle 100.00 28.36 2.47 21.49
Voting 100.00 5.44 0.51 4.90
Vowel 100.00 36.60 6.65 44.66
Wine 100.00 16.60 2.12 11.42
Zoo 100.00 29.38 8.40 15.80

Average 100.00 16.13 2.01 14.03
graphically expresses this trade off. In it we can see the accuracy
and the size of the set of instances selected by the algorithms ana-
lyzed in (Wilson and Martinez, 2000), and also the values for ISR
and 1NN.

The size of the set of instances selected by the algorithm is rep-
resented on the horizontal axis, so that values falling more to the
left represent algorithms producing smaller, and therefore better,
sets of instances selected. For example, the nearest neighbor tech-
nique is further to the right since it did not yield a reduction and
the set size of instances selected is therefore 100% of the original
set of instances.

The accuracy reached by each algorithm is represented on the
vertical axis so that the higher an algorithm is depicted the more
accurate, and therefore better, it will be. It is therefore desirable
to have an instance reduction algorithm depicted on the top left
corner of the graph: this indicates that it is a very accurate algo-
rithm with a smaller set size of instances. We can see that algo-
rithms falling in this place are ISR, Explore (Cameron-Jones,
1995), and the algorithms developed by Wilson and Martinez,
DROP2, DROP3, DROP4, DROP5 and DEL (Wilson and Martinez,
2000); algorithm IB3 (Aha et al., 1991) is also close by.

We proceed to analyze more closely the results of ISR and these
algorithms in the following sections.

4.4.1. Accuracy
Table 1 shows the accuracy values of the techniques that we

have compared. ISR obtains the best accuracy results in 11 of the
31 databases analyzed (in three of them it levels scores with an-
other technique).

As compared to the nearest neighbor technique (we have to
remember it does not have any reductions), ISR obtains better
accuracy results in 19 of the databases; results are leveled in other
3. This shows that ISR has a great power of edition.
2 DROP3 DROP4 DROP5 DEL ISR

8.65 11.67 9.93 9.30 1.21
5.96 7.99 9.18 2.56 0.98
3.58 4.05 4.07 1.89 0.48

17.60 21.28 22.22 35.64 16.40
5.46 7.33 7.68 3.08 1.01

10.66 10.96 9.16 6.91 3.60
20.45 27.09 25.26 45.88 14.78
23.88 29.54 24.81 38.42 20.40
13.62 16.71 16.67 4.73 3.62
12.76 15.26 15.37 13.64 3.34

9.86 11.53 11.15 12.28 2.34
4.50 11.72 14.94 19.28 4.22
9.14 13.19 14.62 16.81 0.72
1.81 2.35 5.42 4.25 0.90
7.81 9.75 9.39 7.59 8.46

10.30 20.41 14.14 21.82 3.80
10.98 12.41 11.35 11.11 3.12

7.06 10.60 9.78 12.88 3.99
14.81 14.89 12.15 9.56 6.37
12.66 16.37 14.96 20.90 0.29
11.93 13.71 12.33 13.92 1.17
24.99 32.56 31.08 38.36 2.96
16.90 21.76 21.95 12.64 1.75
16.67 16.67 12.58 7.34 13.63
26.87 31.20 29.81 29.86 14.21
25.26 28.41 25.44 24.76 11.15
23.00 27.88 26.71 32.51 4.36

5.11 5.36 7.13 2.02 3.35
45.22 46.02 42.66 36.15 9.26
16.11 16.17 9.74 9.05 4.56
20.00 21.60 17.16 18.27 10.74

14.31 17.30 16.09 16.88 5.72



Table 4
Ranks of the Friedman test and post-hoc analysis for set size values.

Average rank Ri � RISR z p (uni) p (bil)

1NN 9.00 6.84 9.83312 < 0:001 < 0:001
IB3 5.77 3.61 5.18970 < 0:001 < 0:001
Explore 1.08 �1.08 �1.55260 0.060 0.121
DROP2 4.31 2.15 3.09082 < 0:001 0:002
DROP3 4.66 2.50 3.59398 < 0:001 < 0:001
DROP4 6.63 4.47 6.42603 < 0:001 < 0:001
DROP5 6.00 3.84 5.52035 < 0:001 < 0:001
DEL 5.39 3.23 4.64342 < 0:001 < 0:001
ISR 2.16 0.00 0.00000
We can see that there are three remarkable low results: in Led
Creator + 17, Promoters and Vowel, accuracy drops more than 16%
as compared to DROP3. We have tried to estimate specific sets of
parameters for each of them but we do not have achieved a signif-
icant improvement respect to the results shown in Table 1.

We have performed a statistical analysis of the results in order
to objectively assess the algorithm ISR. We have compared the re-
sults of all techniques using the Friedman test, which is the meth-
od required to compare the performance of one new technique
versus others on different databases (Demšar, 2006, 2008). Fried-
man test ðv2

F ¼ 14:871; df ¼ 8; p ¼ 0:062Þ shows no significant dif-
ferences among the accuracies of the techniques analyzed (with
a ¼ 0:05). Ranks of Friedman test are shown in Table 2. Although
there is no significant difference between the techniques, these
ranks suggest that the best algorithm, regarding accuracy, is ISR,
followed by DROP4, DROP3 and DROP5.

4.4.2. Reduction
Table 3 shows the size of the sets of instances selected by every

technique in the datasets. The best reduction ratio is achieved by
Explore, followed by ISR.

Friedman test applied to the size values ðv2
F ¼ 183:744;

df ¼ 8; p < 0:001Þ shows significant differences among the algo-
rithms. The average ranks of Friedman test are shown in Table 4.
Note that the rank of ISR is the second after Explore.

Following Demšar (2006) and García and Herrera (2008), we
performed a post-hoc analysis (Table 4). The meaning of the col-
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umns is as follows: ‘‘Avr. Rank” is the Friedman rank, ‘‘Ri � RISR”
is the difference between the Friedman rank of the technique

and the Friedman rank of ISR, ‘‘z”¼ ðRi � RISRÞ
ffiffiffiffiffiffiffiffiffiffi
kðkþ1Þ

6N

q�
(where

k ¼ 9 is the number of techniques and N ¼ 31 the number of dat-
abases), ‘‘p(uni)” is the unilateral p-value for z and ‘‘p(bil)” is the
bilateral one.

According to the Bonferroni–Dunn correction, differences are
significant if p is lower than a=ðk� 1Þ, that is 0.00625 for
a ¼ 0:05. ISR is significantly better ðp < 0:001Þ than all the other
techniques except Explore. However, the difference between ISR
and Explore is not significant ðp ¼ 0:121Þ.
4.4.3. Summary of results and additional remarks
We have shown in the previous sections that Friedman test fol-

lowed by the post-hoc test establishes that ISR is significantly bet-
ter in reduction than all the other algorithms analyzed except
Explore.

In terms of accuracy, there are no significant differences be-
tween ISR and the rest of algorithms, but ranks of Friedman test
suggest that the best technique is ISR.

If we compare only Explore and ISR using Wilcoxon signed rank
test (Demšar, 2006), we find that ISR is significantly better than Ex-
plore in accuracy ðz ¼ 1:861; p ¼ 0:032Þ although it is significantly
worse in set size ðz ¼ 4:556; p < 0:001Þ.

It must be taken into account that the results of ISR algorithm
(and also 1NN) have been obtained using stratified 10-fold cross
validation while for the rest of the algorithms the results were ta-
ken from (Wilson and Martinez, 2000), where non stratified 10-
fold cross validation was used. There is a slight difference between
using stratification or not, but statistical results are exactly the
same: ISR non stratified has an average accuracy of 79.32%, and
an average set size reduction of 5.51%. Friedman test shows that
there are not significant differences among ISR and the others algo-
rithms in accuracy ðv2

F ¼ 8:839; df ¼ 8; p ¼ 0:356Þ. Regarding set
size, Friedman test shows that there are significant differences
ðv2

F ¼ 183:983; df ¼ 8; p < 0:001Þ. The post-hoc analysis shows
that ISR is better than the other algorithms ðp < 0:001Þ except Ex-
plore ðp ¼ 0:124Þ. As the statistical results are the same, we have
preferred to maintain the results of ISR using stratification because
1NN
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Fig. 5. Instances selected by ISR in Iris.
this can be considered nowadays as the standard in our research
field.

We have also performed experiments using a non weighted dis-
tance. We have found that the weighted distance gets better accu-
racy results (80.01% versus 79.39%) although gets slightly worse
size reduction results (5.68% versus 5.57%). Statistical analysis ob-
tains the same conclusions using both the weighted and the un-
weighted distance.

The reduction capacity of the algorithm can be observed, for
example, in the well known database Pima. The dataset size ob-
tained with ISR is 1.75% in the average of all 10 folds, which means
that there are an average of about 12 elements in the set of in-
stances selected in each fold (as compared to the about 691 ele-
ments in each fold of the original training set). The average
accuracy achieved with them in the classification of the corre-
sponding test set is 75.78% (nearest neighbor technique obtains
70.18%). Extrapolating this result to the whole set (768 instances),
there would be 14 elements in the classifier.

Execution times were in accordance to the complexity of the
algorithm ðOðn2ÞÞ, ranging from 360 ms in Zoo (90 instances) to
469 min in Led creator + 17 (10 000 instances). Average time
(16.14 min) is strongly biased due to this last database; leaving it
out, average time reduces to 60.82 s.

In the parameter adjustment process we chose those values
which produced the best results. Anyway, small variations in those
parameters do not affect too much the average accuracy or the
average size of the reduced sets. For example, for k ¼ 16:0 and
d ¼ 1:0 the average of the accuracies obtained is 79.16%, only
0.85% below the result for the best parameters values, while the
average size of the reduced set is 5.65%, even slightly better –
0.03% – than that for the best parameters.
4.5. Sets of data selected

In this subsection we study the nature of instances selected by
ISR. We analyze this in the Iris database because it is widely known
within the machine learning community.

In Iris, ISR classifies the whole set of data using only an average
6.37% of elements in the original base. If we take into account the
whole set of data, then it could be classified using only 9 elements
(6% of the elements, or in other words, reaching a reduction of 94%
of the original set size). Fig. 5 shows the instances from the Iris
database projected over two of its features, petallength and
petalwidth, which are the most representative ones (they were
chosen by the feature selection algorithm Correlation-based Fea-
ture Subset Selection (CFS) (Hall, 1998)). Blank shapes represent
all 150 instances, whereas the black ones are the nine elements se-
lected by ISR, labeled as S-Iris-setosa, S-Iris-versicolor and S-Iris-
virginica. ISR has selected one instance from the Iris-setosa class,
three from the Iris-versicolor and five from the Iris-virginica. We
can see that ISR selects central instances in the clusters formed
by different classes; in this dataset they are clearly differentiated.
With the instances selected, ISR achieves an accuracy level of
98.67% when it is assessed over its own training set (a resubstitu-
tion error of 1.33%).
5. Conclusions and future works

In this paper we have presented a novel instance relevance
ranking calculated using an algorithm similar to PageRank. This
ranking was used in algorithm ISR, which is an instance selection
technique that uses the information offered by the aforementioned
ranking to determine the order in which to process the elements of
a training database.

Results yielded by the experiments prove that our approach is a
very competitive approximation as compared to the most relevant
instance reduction algorithms based on the nearest neighbor
method. With regard to accuracy ISR achieves the best results in
11 of the databases analyzed, with an average accuracy of
80.01%. The statistical analysis shows that the differences among
techniques analyzed are not significant; this is an excellent result
taken into account that we have compared ISR to the best instance
selection algorithms. In the aspect of set size reduction, our tech-
nique obtains excellent results with an average reduction rate of
94.32%. The statistical analysis shows that ISR is significantly bet-
ter than all the other techniques except Explore, and that the dif-
ference between ISR and Explore is not significant. Furthermore,
ISR achieves a good balance between both aims: accuracy and size.

We would also like to highlight the editing capacity (or removal
of noisy instances) of the technique we have developed: by reduc-
ing the number of instances in the classifier, it improves results ob-



tained using the nearest neighbor method in 19 of the 31 databases
considered, with equal results in three of the remaining ones.

The most important conclusion is that interpreting the training
database through a graph allows us to use graph algorithms (that,
as PageRank, have been proven to be effective in other domains) in
the field of machine learning.

There are several research directions that look attractive for fu-
ture exploration. Some of them are: to compare ISR with other
families of instance reduction algorithms, to experience with more
similarity (and dissimilarity) measures, to apply InstanceRank to
other instance selection algorithms, or to analyze the possibilities
of using InstanceRank as a means to characterize the internal
structure of databases.
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