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Featured Application: This research has specific applications in architecture firms developing
Building Information Modeling (BIM) projects where coordinators and managers are willing to
analyze behavioral patterns and efficiency of their modelers and to identify further training needs
and opportunities to increase their performance.

Abstract: Collaborative work in Building Information Modeling (BIM) projects is frequently
understood as the interaction of modelers in an asynchronous way through modification requests or
via e-mail/telephone. However, alternative work methodologies based on creating a common and
synchronous environment allow solving issues instantaneously during the design process. This study
aimed to analyze the behavior and performance of BIM users with different specialties who were
subjected to an experimental exercise in a collaborative environment. For this purpose, a process
was devised to collect, sort, and select the data from the log files generated by the BIM software.
A timeline of the experiment was populated with data on the intensity and types of commands used
by each specialist, which allowed determining behavioral patterns, preferred commands, indicators of
their experience, further training needs, and possible strategies for improving the team’s performance.
In the experiment, the mechanical designer’s performance was 49% and the rest approximately 64%,
with respect to that of the architect. An average rate of 1.66 necessary or auxiliary commands for
each contributory command was detected. The average performance was 200–400 commands per
hour, which intensified by the end of the experiment. Further training needs were detected for the
plumbing designer to reduce the use of backwards commands. Conversely, the electrical designer
showed a positive evolution regarding this aspect during the experiment. The analysis methods here
described become useful for the aforementioned purposes. Nevertheless, combinations with methods
from existing research might improve the outcomes and therefore the specificity of recommendations.

Keywords: building information modeling (BIM); log data mining; modeling performance;
collaborative environment; behavioral patterns
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1. Introduction

With the advance of technology, improvements in industry are generally observed as an increase
in productivity. However, the architecture, engineering and construction (AEC) industry has low
productivity, with fragmentation of activities, lack of added-value and weak standardization [1]. This is
partly due to limited collaboration among the participants in this sector. In this context, Building
Information Modeling (BIM) arises as a collaborative methodology to facilitate information transfer
between the various specialties involved in the design process of a construction project, thus improving
decision-making in the early stages [2]. This methodology enables users to create parametric models
based on multidimensional objects, which are a tool for managing construction projects throughout
their life cycle [3–6].

In recent years, the construction sector has experienced changes in its traditional work system with
the introduction of BIM-based technological solutions. This phenomenon is generating a revolution in
building work practices, which both poses a challenge and provides an opportunity to achieve the
objectives of a given project [7]. Without forgetting BIM’s numerous advantages, it is important to
point out that there are important challenges to be faced regarding the many disciplines that comprise
construction companies, who must prepare to adopt the concept of BIM [8,9].

Despite the great potential that BIM presents for the improvement of collaboration between the
parties involved [9,10], some difficulties have been detected in its successful implementation. For this
reason, in recent years numerous studies have analyzed the gap between the construction industry and
the introduction of Information and Communication Technologies (ICT). Since this problem affects
the performance of the entire process, there is a need to diagnose the cause of current difficulties [11].
From previous studies, Mutai [12] associates the success of BIM with the BIM skills and training
demonstrated by a project team, which are determined by their collaboration. In addition, Azhar [13]
indicates that collaboration between different disciplines and users is essential for the successful
implementation of BIM. Therefore, the need arises to study the collaborative behavior of BIM users in
more detail.

When used properly, BIM promises to improve all the processes in the different stages of design and
construction, reducing the quantity and severity of problems associated with traditional practice [13],
and avoiding nearly all communication difficulties related to information transfer [14]. However, to
achieve this transition process, users face various challenges, mainly derived from the collaboration
required between a variety of specialists in the early stages: architects, engineers, analysts and others,
in conjunction with the client, which is lacking in the current design process [15]. Furthermore,
collaboration in BIM projects usually occurs in an asynchronous way, with each of the specialists
working in their respective offices and communicating whether via e-mail or modification requests on
the central model. This frequently causes problems between the specialists, which eventually translate
into increased redesign time and costs [16]. It is important to notice that BIM is directly driven by
human activities [17] and software merely generates a platform that makes this encounter possible.

Research on collaborative work in BIM has made it possible to detect the possibilities it has to
offer and also the difficulties that arise from it. However, a methodology has not been established yet
to evaluate the behaviors and performance of the different participants of a BIM project, which would
allow developing more effective group work procedures. In order to successfully implement this
methodology, it is necessary to train existing work teams in the development of collaboration skills.
To that end, collaborative work environments have emerged as a suitable means to identify those skills
that each specialist should improve, and therefore as a way to design personalized training.

In this research, the aim was to analyze the behavior and performance of diverse profiles of BIM
modelers during an experimental exercise of BIM collaborative work. To that end, a methodology
was designed and its potential application was demonstrated for their analysis based on the data
generated by a BIM software in its log files. In that experiment, users worked under an architect’s
leadership in the same physical environment with the aim of accelerating the design process and
improving the quality of results [18,19]. This work methodology is based on the hypothesis that a
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better understanding of the performance and activities among participants can provide ideas on how
to increase their efficiency, effectiveness, and organization [20], as well as the interactions between
them that can help to identify bad practices and further training needs.

In the next section, background is provided on collaborative work environments and the study
of BIM users’ behavior through the analysis of log files generated by the software. In Section 3,
the design of the experiment and the case study are presented. The methodology for studying the
participants’ behavior and performance is organized following a sequence of data collection, processing,
and analysis. Results of the identification of relevant actions that contribute to generating a model
of parameterized design and the analysis of information exchanges between the project developers
are presented and discussed in Section 4, based on a comparison of the data obtained from the work
carried out by the different specialists involved. These results are discussed and compared to other
findings from similar studies based on BIM log mining in Section 5, where future research directions
are also highlighted.

2. Background

2.1. Collaborative Work Environments

A collaborative work environment is referred to in this study as a common physical room with the
optimal conditions to develop the project, where a group of various professionals work simultaneously
in order to allow direct and synchronous interactions between them [18,19]. In this environment, there
are two communication networks: the human network that is based on the interactions between the
individuals; and the electronic network that computers use to exchange information. While virtual
collaboration experiences based on cloud systems do exist and are more frequent in the development
of BIM projects, physical interaction between the different agents makes it possible to increase the
efficiency of the design process and results in quicker problem-solving and decision-making.

The organization of a collaborative work environment is a complex process in which diverse
participants must adapt their behavior to the peculiarities of this new methodology, selectively monitor
information, and continuously give feedback in order to solve problems, improve project design,
and finally, decrease the associated costs. In these work environments, work is usually organized
into one to three sessions per week; teams consist of a leader and engineers specialized in design
sub-areas; each designer is allowed to work on their design and move freely around the room in search
of the information needed to solve their problems; and when an difficulty pertains to the whole team,
the session is stopped, and the entire group focuses on resolving the problem [21].

Due to its great success, in recent years, the AEC industry has adapted and modified this
methodology. In this case, the sessions are divided into cycles, which should not last more than two
weeks depending on the phase of the project [21]. The work teams are comprised of a leader, designers,
builders, the client, and the suppliers, with some or all of the parties participating, depending on
which are necessary for each cycle. Despite high interest in the use of this methodology with BIM
projects, there is limited evidence regarding the behavior and performance of BIM users in these
work environments.

2.2. BIM Users’ Behavior and Performance and BIM Log Files

One key factor in the study of BIM users’ behavior and performance in a collaborative work
environment is the identification and development of appropriate collaboration models to improve
user performance rates [22]. However, this area of research has mainly focused on using data from
BIM logs to improve collaborative, design, and non-design practices [23–25].

Autodesk Revit is a BIM software with a set of tools to coordinate the different disciplines in a
project, thus minimizing the risk of errors in execution and decreasing production times and associated
costs [10]. This software automatically generates log files as a database in which all the relevant
information is recorded, from the technical specifications of the computer to the commands executed by
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the user, including when and for how long the program was used. Due to the huge amount of data they
contain, reviewing these log files is a considerably complex and time-consuming task; consequently,
they are frequently only used to investigate possible failures in the software or the computer in use.
However, lately, new and innovative uses are being given to these sources of valuable information.

For example, Yarmohammadi et al. [26] analyzed the content of log files from an architecture
and design firm to investigate the presence of design patterns and to characterize the performance of
BIM modelers. To that end, they searched the log files of different modelers, identified patterns of at
least three sequential commands, and quantified the time it took these modelers to execute them, thus
determining both individual work behavior and performance of those modelers.

Zhang and Ashuri [22] developed a systematic procedure for extracting data from BIM log files
in order to monitor and measure productivity in the design process. They used a set of techniques
known as ‘process mining’, which is usually divided into three branches according to the objective:
(1) ‘process discovery’, (2) ‘process conformance’, and (3) ‘process improvement’ [27]. Of these, ‘process
discovery’, which involves using saved records as an input to generate a process model, is the most
widely employed [28]. In their case, Zhang and Ashuri [22] presented a novel methodology that
used these records to capture and model collaboration patterns between designers and generated
social networks according to their behavior. To do this, they used the social network analysis (SNA)
metric-type 2, which, in a design context, measures the number of times two designers interact with
each other to contribute to the same project.

In a second study, Zhang et al. [23] focused on identifying patterns in designer behavior and
found that in general there are three commands of greatest use, which vary among the different
designers. It was also possible to measure which patterns were the most efficient when working on a
project. In this research, the pattern discovery process focused on the description of user operations as
represented by executed commands.

In addition, Oraee et al. [24] developed a conceptual model of collaboration in BIM through a
literature review in order to identify collective behavior. And Kouhestani and Nik-Bakht [25] studied
event logs archived during the design process of building projects using IFC (Industry Foundation
Classes) files, discovering different approaches to support BIM management.

Finally, Pan and Zhang [29] applied fuzzy clustering methods to explore a massive amount of
BIM log files from an international architecture design firm in order to identify productivity patterns in
the modelers’ behavior. They organized the process in three main stages: data preparation, clustering,
and knowledge discovery. The analysis at individual level revealed specific time periods where the
modelers showed better performance. The application of team-level clustering made it possible to
evaluate if grouping designers with similar design productivity would provide better results for
the firm.

3. Materials and Methods

3.1. Design of the Experiment

To implement this experiment for the study of collaborative behavior and performance of BIM
modelers, it was first necessary to determine the technologies the different designers would use, in
addition to organizing their participation in the case study. This process was based on an initial
technical characterization of the project that identified the design and construction conditions for the
various disciplines. This analysis is essential for the development of successful BIM-based projects since
it facilitates understanding and coordination of the various roles and their roles in the design process.

The participants in this experiment included a group of three civil engineers, a building engineer,
and an architect who also had a coordination role. Each participant had received previous training in
Autodesk Revit and collaborative work with different roles. The participants were junior professionals
aged between 25 and 35 years old with an average experience of three years, except for the architect
and coordinator, who had 10 years of experience in architecture firms. As shown in Figure 1, all the
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designers interacted in a common work environment, supported by modeling technologies to carry
out the work. The work was done using a central file shared through a local network, and a local copy
for each specialist. Access was granted to the central file to save or to obtain the data of the other
members in real time through Autodesk Revit´s synchronization features.
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Figure 1. Layout and implementation of the collaborative work environment.

The activity was organized into 18 3-h sessions conducted over six weeks, in which the participants
worked together on the modeling of a two-story building for university classrooms (see Figure 2)
based on previously existing plans of the project. The participants attended to all the sessions, with the
exceptions of the mechanical and the electrical specialists, who were absent in three and two entire
sessions, respectively, and took several long pauses throughout the experiment. The parts of the
project were first distributed among the disciplines in sub-projects (namely ‘worksets’ in the selected
BIM software) in order to organize permissions to modify objects. The experiment was performed
in a collaborative work environment so that the participants were able to directly compare, evaluate,
and solve problems due to clashes between models—whether that be the coincidence of two elements
in the same physical space or inconsistencies in the design detected by the program or the specialists
themselves-by generating a continuous exchange of information between them.
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3.2. Collection and Processing of Data from Log Files

Subsequently, the activities performed by each specialist were analyzed through the content of
the log files, which also allowed identifying certain behavioral patterns regarding pauses in modeling
activity or dependencies among the various specialties in the design process. Autodesk Revit records
activities in a text file that describes how the designer uses the software [23]. Log files are generated for
each session with the corresponding date and time of each action. These files include information about
the project name, current user, session, commands used, and computer characteristics (see Figure 3),
thus enabling the extraction of information about all the operations performed within the model.
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During this experiment, the log files were collected from each computer after the end of each
session and subsequently stored and organized into folders per day of work to correctly identify the
data corresponding to each session. A session is defined as the set of activities carried out by a user
from the moment the BIM software is loaded until the moment it is closed [30].

Data registered in the server generated a large number of files, thereby making it necessary to
clean and organize the information to obtain a structured, reliable, and integrated database to study
the frequency of execution of each command. These cleaning and organization processes were carried
out as follows:

1. Data cleaning: In this first step, a simple program was developed to parse the information from
the log files and exclude a large number of records related to the configuration and monitoring
of operations, which are not relevant for the characterization of tasks. The result was a text
file containing all the commands executed by each user and indicating their ID (command
identification code), access route, a short description, and the date and time of execution.

2. Data organization: After the previous data cleaning process, the information was transferred to
a spreadsheet and organized into tables for each designer, which made it possible to count the
number of executions of each command for an initial analysis.

Additionally, each session was divided into five periods of equal duration in order to generate
more data for the analysis of distributions and to better allocate isolated events that might arise related
to users’ behavior. Two main categories, contributory and non-contributory commands, with three
sub-categories each (described in Table 1), were created to classify the commands executed by each
designer, in this way producing a more precise analysis.
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Table 1. Classification system for executed commands.

Category Sub-Category Description Examples

Contributory

Geometrical
modeling

Modeling commands that translate into a
virtual object in the model

Wall, Door, Beam, Finish
sketch, Move, Align

Non-geometrical
modeling

Commands to modify object parameters,
project configuration, or templates

Edit type, Annotations,
Level, Grid, Schedule

Collaborative Commands with an implied interaction
with the other designers

Save to master file,
Relinquish all mine,
Editing requirements

Non-contributory

Backwards Commands that imply a step backwards in
the contribution to the final product

Undo, Delete, Cancel
sketch

Necessary
Commands that do not contribute to the
modeling process, but are necessary for
software design reasons

Cancel, Open file,
Temporal hide,
Visualization option

Unnecessary

Commands that should not have been
executed, whether because they correspond
to a different specialty, or are completely
unnecessary for the advance of the project

More than two ‘Cancel’
in a row

3.3. Methods for Analysis

To analyze the behavior and performance of users, the relevance of the commands used by each
specialist was studied. First, a preliminary analysis was conducted to detect certain behavioral patterns
for each designer based on the overall quantity of executions of each sub-category of commands
and the effect that these had on the development of the project. Additionally, the compliance of
each designer’s contributions with the Pareto principle (also known as the 80/20 rule) was studied.
The Pareto principle states that in any group of elements that contribute to the same effect, a few (~20%)
are usually responsible for most of that effect (~80%). Therefore, non-contributory commands were
excluded from this analysis.

Pareto charts consisting of a bar graph and a curve were created for each designer. In these
charts, the commands are sorted in descending order by their total number of executions and the
curve represents the relative frequency of these commands. The Pareto principle, supported by the
chart, is a simple visual tool for focusing and analyzing relationships, studying results, and planning
for continuous improvement, and has been proven to be valid in numerous situations [31]. Thus, in
accordance with the Pareto principle, the number of contributory commands that make up 80% of
the total number of executions (relative frequency) should be approximately 20% of the number of
different contributory commands executed by a designer.

In order to gain a better understanding of the events occurred during the experiment and their
timing, the 18 sessions were divided into five periods each, for a total of 90 periods. This made it
possible to detect behavioral patterns, such as pause times, non-modeling activities, and performance
metrics, such as modeling intensities-the rate of commands per hour-, as well as training priorities.
As a first step, pauses longer than two minutes were quantified, considering that designers frequently
stop modeling for a short time to think, to consult other documents, such as standards, books or
catalogues, or to solve issues with other designers, given that BIM workflows are known to be hybrid
and not solely BIM-based [32], and sometimes they take longer pauses to rest. Therefore, the rate
of commands per hour (work intensity) for each specialist in each section was calculated both with
respect to real time (the actual duration of the period) and to active time (subtracting pauses longer
than two minutes).

Then, the distributions of real-time execution intensities of each command sub-category during
the experiment were studied by generating boxplot charts for each designer, which help detecting
differences between the types of commands each specialist executed, as well as identifying those
modelers with higher collaborative behavior and those applying bad practices and therefore needing
further training to improve their performance.
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Finally, timelines of the shares of commands of each sub-category executed by the different
designers were generated that allow detecting sessions without active modeling participation, excessive
shares of non-contributory commands, and evolution of the modeling behavior of each specialist
during the experiment, among others.

4. Results

4.1. Preliminary Analysis

In the experiment, each designer worked for approximately 54 h total. The data extracted from the
log files were analyzed to evaluate the performance and collaborative behavior of each user, which can
be related to the execution of commands from each sub-category in Table 1. In addition, the percentage
of use of each contributory command executed was analyzed for all the designers in order to validate
the Pareto principle.

The intensity of commands executed by each designer can be considered a confounding indicator
in this preliminary analysis since this measurement can alternately demonstrate high efficiency in the
use of commands and/or greater experience in the use of the BIM software, or on the contrary, lack of
knowledge or lower experience as evidenced by the execution of commands that provide little advance
to the project. Therefore, higher performance cannot be inferred from this raw data, and further
analysis is required in order to identify those commands actually contributing to the model.

As can be seen in Table 2, while the total number of commands used by the architect was the highest,
this designer also executed a great quantity of unnecessary commands, which were nearly all ‘Cancel’
(ESC key). In Autodesk Revit, a designer must use the ESC key twice to exit the current command,
although on occasion users push this key more than twice, perhaps while thinking. Although this
does not affect their performance, it must not be taken into account as productive work. Conversely,
the mechanical designer executed the lowest number of commands, both total and unnecessary,
which apparently could indicate a more efficient use of commands, but also lower performance.

Table 2. Total number of commands executed by each designer.

Designer Total
Contributory Commands Non-Contributory Commands Contributory

Vs BackwardsG NG C N U B

Architectural 9430 1770 169 372 3291 3228 657 2150
Structural 6433 1353 203 228 2470 920 1296 1425

Mechanical 5555 1032 121 141 2496 726 1039 1052
Electrical 6523 1296 165 184 2918 994 966 1401
Plumbing 7360 1190 366 165 3101 776 1762 1309

G: Geometrical modeling; NG: Non-geometrical modeling; C: Collaborative; N: Necessary; U: Unnecessary;
B: Backwards.

As was expected, the architectural designer also stands out with the highest number of geometrical
modeling commands, which not only reflects the need to define the building’s spaces and shape,
but also the subsequent modifications to improve the design and resolve clashes between models.
On the other hand, the plumbing designer executed the highest quantity of non-geometrical modeling
commands. Through a deeper analysis of the specific commands executed by this specialist, it was
detected that this was mainly due to the definition of numerous family types, creation of schedules,
and inclusion of annotations in the model. The architectural and structural designers executed the
highest number of collaborative commands, the former significantly more, which was also expected
given that these two specialties provide most of the information that mechanical, electrical and
plumbing (MEP) specialties require. In return, the three MEP designers supplied a similar amount of
information that made it possible to detect and solve clashes between models.

Regarding non-contributory commands, all the specialists executed a large amount of necessary
commands. These auxiliary commands, such as those to modify the view configuration or temporarily



Appl. Sci. 2020, 10, 2199 9 of 20

hide elements, are frequently needed to advance, but do not provide new information or elements
to the model. While it has not still been determined what would be an appropriate rate of necessary
to contributory commands, in this experiment an average rate of 1.66 necessary commands for each
contributory command was detected. Therefore, the data indicate how the specialists rely on the use of
auxiliary commands during their modeling process. As was mentioned previously, the architectural
designer pushed the ESC key excessively, while the other specialists’ use of unnecessary commands was
all similar to one another. Alternately, the architectural designer used the lowest quantity of backwards
commands, whilst the plumbing designer executed a large amount of these. This may mean a greater
number of corrections, less experience in BIM modeling, and/or bad modeling practices, and therefore
a need for further training. However, identifying specific recommendations for improving a modeler’s
modeling practices would require an analysis of command execution patterns, which is not within the
scope of the present study.

Additionally, the balance between backwards and contributory commands was studied since it
can be assumed that these cause opposite effects that essentially cancel each other out. Given that
‘Undo’ commands can affect commands from all the sub-categories including ‘Delete’ commands in the
backwards sub-category, they were subtracted proportionally from the quantity of contributory
commands. From this examination, it can be inferred that the architectural designer had the
most effective modeling behavior, while the mechanical designer presented the lowest performance.
These overall results show that the mechanical designer’s performance in the experiment was 49%
with respect to that of the architect, while the rest of designers’ was around 64%. This means that,
even though the architect used a significant number of unnecessary commands, that designer had
the highest performance during the experiment by a significant difference. This excessive use of the
ESC key, while considered a bad practice, did not affect his/her performance. However, it could be
advisable to address it through further training focused on developing a more fluent modeling process.

In this preliminary analysis, absolute and relative frequencies were obtained for all the commands
executed by each designer in order to identify those of preferential use and to check compliance with
the Pareto principle. As an example, Table 3 shows the contributory commands most frequently used
by the architectural designer, which account for 80% of his/her total contributory command executions.
It can be seen that most of these commands are related to geometrical modeling, whether direct
commands for creating objects or those for defining sketches that eventually will enable the creation of
sketch-based objects. Similar tables for the other four designers are shown in Appendix A, where the
close relationship between the commands executed and their corresponding specialty can be observed.

Table 3. Contributory commands most frequently used by the architectural designer.

Command ID Description Absolute
Frequency

Relative
Frequency

ID_EDIT_MOVE Move selected objects or their copies 369 16.0%
ID_FINISH_SKETCH Finish sketch 339 30.6%
ID_OBJECTS_WALL Create a wall 237 40.9%
ID_FILE_SAVE_TO_MASTER_SHORTCUT Save the active project to the central model again 182 48.8%
ID_OBJECTS_CURVE_LINE Create a line 169 56.1%
ID_FILE_SAVE_TO_MASTER Save the active project to the central model again 125 61.5%
ID_EDIT_MOVE_COPY Move copies of selected objects 113 66.4%
ID_OBJECTS_CURVE_RECT Create a rectangle 56 68.8%
ID_SPLIT Divide walls and lines 45 70.7%
ID_REVIT_FILE_SAVE Save the active project 44 72.7%
ID_EDIT_MATCH_TYPE Copy the object type to other objects 40 74.4%
ID_OBJECTS_DOOR Create a door 39 76.1%
ID_OBJECTS_CW_GRID Create a grid line in a curtain wall 38 77.7%
ID_OBJECTS_MULLION Create a mullion 33 79.1%
ID_LOAD_INTO_PROJECTS Load document into open projects 33 80.6%

Based on this analysis, the Pareto charts in Figure 4 were produced for each designer, where the
horizontal axes show the total number of different contributory commands executed, and the command
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(in descending order by quantity of executions) with which at least 80% of the contributory command
executions is reached. By adopting a simplified assumption whereby each contributory command
makes the same contribution to the final product, it can be said that the Pareto principle applies to all
the specialists except for the structural designer, who showed a more balanced number of executions
of a variety of commands: the 80% threshold was reached with 31.3% of the contributory commands
used. Although the architectural and plumbing designers attained 80% with 22% of their contributory
commands, this was considered a fair approximation to the Pareto principle. The identification of each
designer’s preferred commands can be useful for detecting bad modeling practices or which actions
should be given focus in further personalized training.
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4.2. Session/Period-Based Analysis

A detailed analysis of the commands executed by each specialist during the different
sessions/periods of time of the experiment was carried out according to the methods explained
in Section 3.3. Thus, as can be seen in Figure 5, real time intensities are lower than active time intensities,
since the latter do not take into account pause times. The real time and active time intensity curves are
slightly separate in sections where the designer took a few short pauses, while there is greater separation
where the designer took a longer pause (>10 min) or a greater quantity of short pauses. In those
periods where the designers did not execute any command, both curves go to zero, which represents a
long pause in their work.
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From this analysis, it can be observed that all the designers frequently took short and long pauses,
except for the plumbing specialist, who often took long pauses that bring the curve to zero. However,
while working this designer executed commands more uniformly, which is reflected in the frequent
coincidence of both curves. The intensity of the architectural designer’s commands was clearly the
highest, with rates of between 300 and 500 commands per hour. The rest of specialists presented rates
of between 200 and 350 commands per hour, with the exception of the plumbing designer, whose work
intensity increased to 300 to 600 commands per hour in the last 20 periods (i.e., four sessions). It is
worth mentioning that the calculations for these intensities included non-contributory commands and
consequently a deeper analysis should be carried out in order to identify anomalies. For example,
given the data shown in Table 2, the architectural designer’s higher command intensity could have
been triggered by the great amount of ‘Cancels’ he executed during the experiment.

During the experiment, the team worked together, but not everyone worked with the same
intensity at all times mainly due to the need to generate a base model for other specialists to begin.
Figure 5 shows the evolution of each specialist’s work over the 18 sessions (90 time periods), of which
the first several were dedicated to preparation and to determining and creating elements and families
to be used within the project. In these initial sessions, the architectural and structural designers were
of great importance, since their early work determined heights and spaces where the MEP specialists
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could install their elements. It can also be observed how their command intensities followed a somehow
paired curve, with long pauses in periods 20, 34, and 67.

As the experiment progressed, it can be observed how the MEP designers intensified their work,
which was initially on standby due to required prior information to be able to advance. In the final
phase of the project, all the specialists intensified their activity. This was on account of delays generated
during the process that had to be compensated for to finish the project on time. In addition, the need to
model construction details, solve clashes between models, and generate quantification tables had a
significant influence in this final stage. While the mechanical and electrical designers had a uniform
work intensity during the experiment, the plumbing designer showed a remarkable increment from
period 70 until the end, whose cause would be worth studying in detail.

In Figure 6, the distribution of the real-time execution intensities for each sub-category of
commands is presented. The architectural designer provided geometrical content for the model with
the highest uniform intensity of all the specialties (~10 to ~60 commands per hour in 50% of the time
periods). Alternately, the plumbing designer stands out with the highest rate of non-geometrical
modeling commands (0 to ~11 commands per hour), while the mechanical designer hardly ever
provided this kind of information to the model. It is worth mentioning that all the designers present
numerous non-frequent values (points) in this chart, indicating frequent peaks in the provision of
non-geometrical information, which is a common behavior in BIM modeling. The architectural and
structural designers had a higher rate of collaborative actions, through which they updated the central
model and received new information from it 0 to ~8–10 times per hour in 50% of the time periods.
This was an expected behavior from these specialists, since information was frequently requested from
them during the experiment. These events affected their focus, thereby generating errors in their work
that involved redoing elements and delivering the information to the central file once again. A possible
improvement could consist in the more precise timing of information delivery in order to achieve
a better flow of activities and more equitable work. This should be organized by the coordinator
previously to the design process to alleviate the pressure on the main designers to deliver information.

Regarding non-contributory commands, the mean rates of necessary commands executed by the
various designers were usually similar (~30 to ~80 commands per hour), with the plumbing designer
presenting a more extended interquartile range (~10 to ~120 commands per hour). As was expected
from the data in Table 2, the architectural designer had the highest rate of unnecessary commands,
probably triggered by the aforementioned ‘Cancels’. Again, experience in BIM modeling is reflected
in the backwards commands chart, where the architectural designer had the lowest rate (~0 to ~20),
while the plumbing specialist executed ~5 to ~60 backwards commands per hour. From this data and
the balanced rate of forwards vs backwards commands, it can be inferred that the plumbing designer
would need further training in BIM modeling. Therefore, it would be worth studying this designer’s
command patterns during the experiment in more detail in order to identify bad practices that need
being addressed.
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experiment´s 90 time periods.

When these distributions are studied in detail for each of the experiment´s 90 time periods,
the shares of each sub-category for the different designers provide new data worth analyzing.
In Figure 7, the architectural designer shows a significant share of unnecessary commands throughout
the experiment, with a maintained share of around 40% in the middle 30 time periods, while his share
of backwards commands is the lowest of the five specialties (<10%). This confirms the aforementioned
excessive use of the ESC key, as well as better skills in BIM modeling, hence requiring fewer corrections
in the design process. His share of necessary commands stays nearly constant and balanced with
contributory commands (~30% each). A higher share of collaborative commands can be detected
during the initial time periods of the experiment (~10%), where this designer must provide basic
information in the model to the other specialists, while constant interaction with the other designers
can be identified throughout the rest of the process.

The structural designer shows a higher variability in the shares for each sub-category, with
a high share of backwards commands in some time periods (~40–50%), which become negative
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contributions or massive corrections. This could indicate that a great number of mistakes had been
made in previous time periods, or that the modeler was using auxiliary lines (detail lines) that were
subsequently deleted. Nevertheless, both can be considered bad practices in BIM modeling that should
be corrected. This designer’s share of necessary commands is balanced with that of contributory
commands, as well (~20–30%). The designer presents higher shares of non-geometrical modeling
in the initial sessions (~20%), when families were being defined, and a higher share of geometrical
modeling for the rest of the experiment (~30%), which are considered normal behaviors for this
specialist. In addition, it was expected that the structural designer would demonstrate a more constant
share of collaborative commands than he in fact did (~5%), since clashes are common between this and
the other disciplines’ models.
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The timeline for the mechanical designer shows at least three entire sessions without participation
(periods 16–20 and 65–74), and several long pauses (periods 1–2, 9–10, 27–28, 35, 86, and 90).
This non-contributory behavior is to be expected at the initial stages of the project since MEP specialists
are waiting for the architect and structural engineer to provide the basic elements of the building
in order to model the installations. However, the initial stages should be dedicated to defining the
necessary families for the project, and in more advanced stages a better planning of workflows should
provide the various specialists with tasks that ensure constant contribution to the project. It can also be
observed that the necessary commands executed by the mechanical designer (~40%) approximately
doubled the amount of contributory commands (~20%), which could indicate that this specialist used
an excessive number of auxiliary commands, such as hiding elements or modifying visualization
options. This kind of modeling practices require a more detailed analysis of the command patterns
executed in order to increase the designer’s performance by providing personalized training.

The electrical specialist did not participate in two entire sessions (periods 11–20) and took several
long pauses throughout the experiment (periods 21, 26, 41–42, 56, 59–60, and 76). A significant share of
backwards commands can be identified in the first half of the timeline (~20–40%), which decreases in
the second half (~5–15%). This may indicate an improvement in the modeling skills of this designer.
Again, his share of necessary commands (~40–50%) is virtually double that of contributory commands
(~20–25%), while a nearly constant share of collaborative commands is evident (~3%), through which
this specialist received updates from the rest of the designers.

Finally, the plumbing designer shows a large constant share of backwards commands (~20–40%),
but the lowest share of unnecessary commands (~10%). Additionally, a high proportion of necessary
commands with respect to contributory commands is apparent (~40–50% to ~20–25%), as well as a high
provision of non-geometrical information to the model (~10%) and a variable share of collaborative
commands (~5–30%).

According to this analysis, it would be advisable to train the architectural designer in order
to reduce the use of unnecessary ‘Cancels’, which apparently this specialist does while thinking.
The structural, mechanical and plumbing designers’ training should focus on reducing the number
of backwards commands, for which a deeper analysis of the specific causes should be performed
previously. This analysis should be based on detecting bad practices through the study of command
patterns. All the MEP designers should receive training in order to reduce the quantity of necessary
commands that they execute to produce a more effective modeling process, since necessary commands
do not really contribute to the model but are only auxiliary commands that sometimes can be avoided
through good modeling practices. While the plumbing specialist’s command intensity and distribution
was more constant than that of the other MEP designers, the analysis indicates that this designer needs
further training in BIM modeling in order to avoid using that significant share of backwards commands.

When working individually, where only information is required and not delivered to others,
clashes between models are prone to occur. A greater emphasis on the delivery of information would
imply a lower rate of errors and avoid the emergence of problems during the project. During this
experiment, the flow of information from the MEP designers was not as regular with respect to other
specialties, which is contradictory since these are usually the specialties that generate more conflicts
during collaborative work. In general, this team of designers should receive training in a more
comprehensive plan of interaction regarding the sharing of information through the ‘Save to master’
command to ensure better and more frequent synchronization of the local models. This would avoid
unnecessary mistakes, and therefore some of the backwards commands executed, thus improving the
individual performance of each designer.

5. Discussion

The increased use of BIM worldwide has created an opportunity to study the log files generated
by the available software. The analysis of these files can be oriented towards analyzing the modelers’
performance and behavior in order to improve productivity, but requires a preliminary data cleaning
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and organization process to be able to identify problems, causes, and possible solutions. In this
research, a method for studying these log files was proposed in order to identify good and bad user
practices during the design phase of a building project that could subsequently be useful for elaborating
personalized training proposals and to increase both individual and collaborative performance of
designers. By analyzing the events occurred during the experiment’s timeline, specifically pauses in
the specialists’ work, it was also possible to detect behaviors directly related to their roles in the project
development workflow.

BIM log mining has been used before to analyze the commands executed by a modeler.
Zhang et al. [33] presented an experience where the most repeated commands could have been
common to the five designers considered in the present study, including ‘Cancel’, ‘Disallow join’,
‘Temporary hide’, ‘Delete’, ‘Align’, ‘Undo’, and ‘Reference plane’. In their analysis they noticed that
some of the most used commands identified were somehow necessary or auxiliary. However, this
method also allowed detecting bad modeling practices, such as an excessive use of ‘Disallow join’,
which is not common and needs finding the cause for that behavior in order to correct it. The analysis
applied in the present study also made it possible to detect bad practices with a general classification
and overview of the executed commands. For example, it was noticed that the plumbing specialist
used a significant amount of backwards commands, which made this designer’s work less efficient.
In addition, a positive evolution in this aspect was detected for the electrical designer, who started
using more of these commands in the initial time periods, and then reduced them by the end of the
experiment. Nevertheless, a combination of both analysis methods would certainly allow generating
more personalized recommendations for further training.

In this study, the performance of BIM users participating in the experiment was measured through
their command execution intensities, which usually were within the range of 200 to 400 commands
per hour. Modeling performance has been measured before through BIM log mining. For example,
Yarmohammadi et al. [26] obtained the time it took different modelers to execute a certain command
pattern. Their method required finding for all the modelers a same pattern, which was obtained
from the analysis of log files from different workstations in an architecture firm. As occurred in their
study, finding command patterns common to the five specialties in the experiment here described
would require these to be based on basic commands, such as hiding, copying, and moving, rotating, or
aligning elements. However, most of the contributory work carried out by each specialist is based
on commands exclusively related to their discipline, as was shown in Table 3 and Tables A1–A4.
Nevertheless, the method used in the present study does not consider that some commands take more
time to complete than others. Therefore, a more complex analysis might be necessary to measure
modelers’ performance, since current methods do not capture these differences between disciplines
or commands.

Zhang et al. [23] also presented a command pattern discovery method based on BIM log mining,
which they used to measure and analyze productivity. Their study was oriented identify command
patterns associated to a certain task and to evaluate modelers’ performance executing those patterns
in order to better allocate resources to different design tasks in design projects. In the present study,
the main focus was put on studying the use that the various specialists showed regarding a set
of general categories of commands. Those categories were created according to the contribution
of commands to the design process, classifying them into geometrical modeling, non-geometrical
modeling, collaborative, necessary, unnecessary, and backwards. The study of the distributions of
these categories for each designer during the experiment allowed detecting bad modeling practices
and further training needs. By populating a timeline of the experiment with data specific for each
time period, it was possible to study the evolution of users’ behavior and performance regarding these
categories, which proved useful for better planning information workflows in future projects.

As mentioned before, workflows in the development of BIM projects are hybrid and not solely
BIM-based, making it necessary to use other platforms, such as sketches on paper or consulting
documents online [32]. These activities cannot be detected by studying BIM log files and therefore need
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a more thorough observation of the designers throughout the design process. From that observation,
qualitative data could arise that complements and validates the detection of certain events in the study
of short and long pauses in the log files, thus allowing to review collective behavior.

The experience and method described here has clear applications in architecture firms developing
BIM projects where coordinators and managers are willing to analyze behavioral patterns and
efficiency of their modelers and to identify further training needs and opportunities to increase their
performance. The collaborative work environment built for this experiment provided a singular means
that strengthened teamwork and allowed a constant flow of information between the participants,
who supported each other to find solutions to the issues that would arise during the design process.
This method is useful not only to analyze users’ performance in BIM modeling, but also to better
understand their behavior and identify improvement strategies. This analysis was carried out using
spreadsheets in a semi-manual process. However, given the large amount of data to be managed,
it would be advisable to implement the entire process in software to increase the automation of
the analysis.
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Appendix A. Most Used Commands by Each Designer

Table A1. Contributory commands most frequently used by the structural designer.

Command ID Description Absolute
Frequency

Relative
Frequency

ID_OBJECTS_BEAM Create a beam 190 10.7%
ID_FILE_SAVE_TO_MASTER Save the active project to the central model again 181 20.8%
ID_OBJECTS_CURVE_LINE Create a line 132 28.2%
ID_FINISH_SKETCH Finish sketch 125 35.2%
ID_EDIT_MOVE Move selected objects or their copies 99 40.8%
ID_EDIT_MOVE_COPY Move copies of selected objects 87 45.6%
ID_OBJECTS_PROJECT_CURVE Create a straight line or an arc 84 50.3%
ID_VIEW_NEW_SCHEDULE Create a schedule 69 54.2%
ID_OBJECTS_CURVE_RECT Create a rectangle 52 57.1%
ID_TRUSS_WEB_CURVE Create a truss web 44 59.6%
ID_OBJECTS_LEVEL Create a level 42 61.9%
ID_FINISH_SWEEP Finish sweep 40 64.2%
ID_OBJECTS_FOOTING_SLAB Create a footing slab 37 66.3%
ID_END_INPLACE_FAMILY Finish the family 34 68.2%
ID_REVIT_FILE_SAVE Save the active project 33 70.0%
ID_LOAD_INTO_PROJECTS Load document into open projects 33 71.9%
ID_OBJECTS_TRUSS Create a truss beam 32 73.7%
ID_EDIT_MIRROR Mirror selected objects 31 75.4%
ID_EDIT_ROTATE Rotate selected objects 31 77.1%
ID_FINISH_SKETCH_PATH Finish a sketch of sweep path 29 78.8%
ID_SKETCH_2D_PATH Create or edit the path through a sketch in a plane 28 80.3%
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Table A2. Contributory commands most frequently used by the mechanical designer.

Command ID Description Absolute
Frequency

Relative
Frequency

IDS_RBS_CREATE_PIPE Create pipe 467 36.1%
ID_FILE_SAVE_TO_MASTER Save the active project to the central model again 122 45.5%
ID_ALIGN Align references 118 54.6%
IDS_RBS_CREATE_DUCT Create duct 91 61.7%
ID_RBS_MECHANICAL_DIFFUSER Insert an air diffuser 51 65.6%
ID_RBS_MECHANICAL_EQUIPMENT Create mechanical equipment 50 69.5%
IDS_RBS_CREATE_FLEX Create flexible duct 49 73.3%
ID_RBS_PIPE_PIPE Create pipes 43 76.6%
ID_EDIT_ROTATE Rotate selected elements 39 79.6%
ID_LOAD_INTO_PROJECTS Load document into open projects 23 81.4%

Table A3. Contributory commands most frequently used by the electrical designer.

Command ID Description Absolute
Frequency

Relative
Frequency

ID_OBJECTS_DETAIL_CURVES Create a detail line or arc 242 14.7%
ID_RBS_ELECTRICAL_DEVICE Add electrical devices 190 26.3%
ID_RBS_LIGHTING_FIXTURE Add lighting fixtures 170 36.6%
ID_FILE_SAVE_TO_MASTER Save the active project to the central model again 163 46.5%
IDS_RBS_CREATE_CONDUIT Create conduit 154 55.9%
ID_EDIT_ROTATE Rotate selected elements 130 63.8%
ID_EDIT_PASTE_NO_EVENT Paste element 106 70.2%
ID_RBS_ELECTRICAL_LIGHTING_DEVICE Create a lighting device 46 73.0%
ID_VIEW_NEW_SCHEDULE Create a schedule 34 75.1%
ID_FAMILY_LOAD Load a family into the project 31 77.0%
ID_EDIT_COPY Copy the selection and keep it in the clipboard 24 78.4%
ID_RBS_ELECTRICAL_EQUIPMENT Add electrical equipment 22 79.8%
ID_RBS_PIPE_PIPE Create pipe 21 81.0%

Table A4. Contributory commands most frequently used by the plumbing designer.

Command ID Description Absolute
Frequency

Relative
Frequency

ID_RBS_PIPE_PIPE Create pipes 408 23.7%
ID_RBS_PLUMBING_FIXTURE Insert a plumbing fixture 145 32.1%
IDS_RBS_CREATE_PIPE Create a pipe 108 38.4%
ID_FAMILY_TYPE Modify predefined types for this family 105 44.5%
ID_REVIT_FILE_SAVE Save the active project 62 48.1%
ID_EDIT_ROTATE Rotate selected elements 61 51.7%
ID_RBS_ADD_PIPE_CONNECTOR Add pipe connector to the family 59 55.1%
ID_LOAD_INTO_PROJECTS Load document into open projects 57 58.4%
ID_FILE_SAVE_TO_MASTER_SHORTCUT Save the active project to the central model again 53 61.5%
ID_EDIT_MOVE Move selected objects or their copies 52 64.5%
ID_VIEW_NEW_SCHEDULE Create a schedule 48 67.3%
ID_FILE_SAVE_TO_MASTER Save the active project to the central model again 47 70.0%
IDC_APPLY_MovePropsDialogBar Apply to an object the same properties from another object 41 72.4%
ID_ANNOTATIONS_DIMENSION_ALIGNED Create aligned annotation 40 74.7%
ID_OBJECTS_LEVEL Create a level 36 76.8%
ID_OBJECTS_REFERENCE_CURVE Create a reference line 35 78.8%
ID_EDIT_MOVE_COPY Move copies of selected objects 32 80.7%
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