STUDIA MATHEMATICA 197 (3) (2010)

Operators whose adjoints are quasi *p*-nuclear

by

J. M. DELGADO, C. PIÑEIRO and E. SERRANO (Huelva)

Abstract. For $p \ge 1$, a set K in a Banach space X is said to be relatively p-compact if there exists a p-summable sequence (x_n) in X with $K \subseteq \{\sum_n \alpha_n x_n : (\alpha_n) \in B_{\ell_{p'}}\}$. We prove that an operator $T: X \to Y$ is p-compact (i.e., T maps bounded sets to relatively p-compact sets) iff T^* is quasi p-nuclear. Further, we characterize p-summing operators as those operators whose adjoints map relatively compact sets to relatively p-compact sets.

1. Introduction. In [4], Grothendieck characterized the compact subsets of a Banach space as those sets lying in the closed convex hull of a null sequence. This result aroused interest in the study of sets sitting inside the convex hull of certain classes of null sequences.

In [13], Sinha and Karn introduced the notion of p-compact set $(p \ge 1)$. A set K of a Banach space X is *relatively p-compact* if it is contained in the *p*-convex hull of a *p*-summable sequence (x_n) in X, i.e. $K \subset \{\sum_n \alpha_n x_n : (\alpha_n)\}$ $\in B_{\ell_{n'}}$. This notion opens a new approach to the *p*-approximation property. The authors of [13] investigate when the identity map on X can be approximated by finite rank operators on p-compact subsets of X and they connect their results with the *p*-approximation properties defined by Saphar [12] and Reinov [10] (which were conceived via the tensor product route). To this end, there is a previous analysis of the ideal \mathcal{K}_p of *p*-compact operators (the operators mapping bounded sets to relatively *p*compact sets) and it is proved that the adjoint of a p-compact operator admits a factorization through a subspace of ℓ_p . Using this factorization, a complete norm κ_p is defined on the ideal \mathcal{K}_p . It is shown that \mathcal{K}_p is contained in the ideal Π_p^d of operators with p-summing adjoint [13, Proposition 5.3] and that $\mathcal{K}_p(X,Y)$ contains the space $\mathcal{N}_p^d(X,Y)$ of operators with *p*-nuclear adjoint whenever Y is reflexive (see the remark after [13, Proposition 5.3]).

²⁰¹⁰ Mathematics Subject Classification: 47B07, 46B50, 47B10.

Key words and phrases: p-compact sets, p-compact operator, weakly p-compact operator, p-summing operator, quasi p-nuclear operator, p-nuclear operator.

J. M. Delgado et al.

The aim of this paper is to deepen the study of \mathcal{K}_p and its possible applications. In Section 3, we show the close relationship between *p*-compact operators and quasi *p*-nuclear operators. Quasi *p*-nuclear operators, introduced by Persson and Pietsch in [6], are an important tool to obtain results and counterexamples related to the approximation property of order p (see [8]). We prove that an operator is quasi *p*-nuclear iff its adjoint is *p*-compact (Proposition 3.8); in fact, the dual result is also true, which improves Proposition 5.3 in [13]. Another important result of that section is the characterization of *p*-summing operators as those operators whose adjoints map relatively compact sets to relatively *p*-compact sets. In the last section, we deal with the Banach ideal \mathcal{V}_p of *p*-compact sets to relatively *p*-compact sets to rela

2. Preliminaries and notations. Throughout this paper, X and Y will be Banach spaces. As usual, we denote the closed unit ball of X by B_X , the dual of X by X^* , and the space of all bounded (linear) operators from X into Y by $\mathcal{L}(X, Y)$. The subspace of $\mathcal{L}(X, Y)$ consisting of all compact (respectively, weakly compact) operators from X into Y is denoted by $\mathcal{K}(X, Y)$ (respectively, $\mathcal{W}(X, Y)$).

Given a real number $p \in [1, \infty)$ and an arbitrary set I, $\ell_p(I)$ (respectively, $\ell_{\infty}(I)$) stands for the Banach space of all scalar functions ξ defined on I satisfying $\sum_{i \in I} |\xi_i|^p < \infty$ (respectively, $\sup_{i \in I} |\xi_i| < \infty$) endowed with its natural norm. As usual, we write ℓ_p instead of $\ell_p(\mathbb{N})$.

Let $\ell_p^w(X)$ be the space of all weakly *p*-summable sequences (x_n) in X. It is a Banach space with the norm

$$\|(x_n)\|_p^w = \sup_{x^* \in B_{X^*}} \left(\sum_n |\langle x_n, x^* \rangle|^p\right)^{1/p} = \sup_{(\alpha_n) \in B_{\ell_{p'}}} \left\|\sum_n \alpha_n x_n\right\|.$$

The subspace of $\ell_p^w(X)$ consisting of the (strongly) *p*-summable sequences is denoted by $\ell_p(X)$, which is also a Banach space endowed with the norm

$$||(x_n)||_p = \left(\sum_n ||x_n||^p\right)^{1/p}.$$

We write $\ell_{\infty}(X)$ for the Banach space of all bounded sequences (x_n) in X with the norm

$$\|(x_n)\|_{\infty} = \sup_n \|x_n\|.$$

We denote by $c_0(X)$ the space of all norm null sequences in X, which is a closed subspace of $\ell_{\infty}(X)$ with the above norm.

In addition to the classical Banach ideals $[\mathcal{L}, \|\cdot\|]$, $[\mathcal{K}, \|\cdot\|]$ and $[\mathcal{W}, \|\cdot\|]$, we deal with the ideals $[\Pi_p, \pi_p]$ of all *p*-summing operators and $[\mathcal{N}_p, \nu_p]$ of all *p*-nuclear operators. We also consider the injective hull of $[\mathcal{N}_p, \nu_p]$, which has been treated in the literature under the name of the Banach ideal of quasi *p*-nuclear operators [6]. We denote this Banach ideal by \mathcal{QN}_p . So, an operator $T: X \to Y$ is quasi *p*-nuclear iff $j_Y \circ T \in \mathcal{N}_p(X, \ell_\infty(B_{Y^*}))$, where j_Y is the natural isometric embedding from Y into $\ell_\infty(B_{Y^*})$. It is well known that $T \in \mathcal{QN}_p(X, Y)$ iff there exists a sequence $(x_n^*) \in \ell_p(X^*)$ such that

(1)
$$||Tx|| \le \left(\sum_{n} |\langle x, x_n^* \rangle|^p\right)^{1/p}$$

for all $x \in X$. The quasi *p*-nuclear norm is

 $\nu_p^Q(T) = \inf\{\|(x_n^*)\|_p \colon (1) \text{ holds for all } x \in X\}$

for all $T \in \mathfrak{QN}_p(X, Y)$. If \mathcal{A} is a Banach ideal, then \mathcal{A}^d denotes its dual ideal, that is, $\mathcal{A}^d(X, Y) = \{T \in \mathcal{L}(X, Y) : T^* \in \mathcal{A}(Y^*, X^*)\}.$

If p > 1 and $p' = p(p-1)^{-1}$, the map $\Phi_p: (x_n) \in \ell_p^w(X) \mapsto \Phi_p(x_n) \in \mathcal{L}(\ell_{p'}, X)$, where $\Phi_p(x_n)(\alpha_n) = \sum_n \alpha_n x_n$, is an isometric isomorphism which allows us to identify the spaces $\ell_p^w(X)$ and $\mathcal{L}(\ell_{p'}, X)$. For p = 1, $\ell_1^w(X)$ is isometrically isomorphic to $\mathcal{L}(c_0, X)$ under the corresponding map Φ_1 .

The following notions were introduced by Sinha and Karn in [13] trying to extend the characterization of compact sets in Banach spaces as those sets lying inside of the closed convex hull of a norm null sequence [4]. If $p \in [1, \infty)$, the *p*-convex hull of a sequence $(x_n) \in \ell_p^w(X)$ is

$$p\text{-}\mathrm{co}(x_n) = \Phi_p(x_n)(B_{\ell_{p'}}) = \left\{\sum_n \alpha_n x_n \colon (\alpha_n) \in B_{\ell_{p'}}\right\}$$

(c_0 instead of $\ell_{p'}$ if p = 1). It is clear that the *p*-convex hull of a sequence is an absolutely convex set; if p > 1, it is also weakly compact so, in particular, norm closed.

A set $K \subset X$ is relatively *p*-compact if there exists a sequence $(x_n) \in \ell_p(X)$ such that $K \subset p$ -co (x_n) . Since p-co (x_n) is a relatively compact set when $(x_n) \in \ell_p(X)$, relatively *p*-compact sets in X are relatively compact. If compact sets are viewed as ∞ -compact sets, then it is easy to show that *p*-compact sets are *q*-compact for $1 \leq p < q \leq \infty$. Notice that the convex hull of a relatively *p*-compact set is relatively *p*-compact too.

A set $K \subset X$ is relatively weakly *p*-compact if there exists a sequence $(x_n) \in \ell_p^w(X)$ such that $K \subseteq p$ -co (x_n) . If p > 1, relatively weakly *p*-compact sets in X are relatively weakly compact. However, p = 1 is a pathological case: B_{c_0} is weakly 1-compact since $B_{c_0} = p$ -co (e_n) , where $(e_n) \in \ell_1^w(c_0)$ is the unit vector basis in c_0 . Again, it is a standard argument to prove that weakly *p*-compact sets are weakly *q*-compact for 1 .

Finally, we recall that an operator $T \in \mathcal{L}(X, Y)$ is said to be *p*-compact (respectively, weakly *p*-compact) if $T(B_X)$ is relatively *p*-compact (respectively, weakly *p*-compact) in Y. The set of *p*-compact (respectively, weakly *p*-compact) operators from X into Y is denoted by $\mathcal{K}_p(X, Y)$ (respectively, $\mathcal{W}_p(X, Y)$).

3. Main results. The next propositions are the keys to connect *p*-compactness and quasi *p*-nuclearity.

PROPOSITION 3.1. Let $p \in [1, \infty)$, $T \in \mathcal{L}(X, Y)$ and $(y_n) \in \ell_p^w(Y)$. The following statements are equivalent:

(a)
$$||T^*y^*|| \le (\sum_n |\langle y_n, y^* \rangle|^p)^{1/p}$$
 for all $y^* \in Y^*$.

(b)
$$T(B_X) \subseteq \overline{p\text{-co}(y_n)}$$
.

Proof. (a) \Rightarrow (b). By contradiction, assume that there exists $x_0 \in B_X$ so that $\underline{Tx_0 \notin p}$ -co (y_n) . As \overline{p} -co (y_n) is absolutely convex, we can separate Tx_0 and \overline{p} -co (y_n) strictly by a closed hyperplane; that is to say, there exist $\alpha > 0$ and $y^* \in Y^*$ such that $|\langle Tx_0, y^* \rangle| > \alpha$ and $|\langle y, y^* \rangle| < \alpha$ for all $y \in \overline{p}$ -co (y_n) . Then

$$\alpha < |\langle Tx_0, y^* \rangle| \le ||T^*y^*||$$

$$\le \left(\sum_n |\langle y_n, y^* \rangle|^p\right)^{1/p} = \sup_{(\alpha_n) \in B_{\ell_{p'}}} \left| \left\langle \sum_n \alpha_n y_n, y^* \right\rangle \right| \le \alpha_n$$

a contradiction.

(b) \Rightarrow (a). Given $\varepsilon > 0$ and $y^* \in B_{Y^*}$, choose $x \in B_X$ such that $||T^*y^*|| < |\langle x, T^*y^* \rangle| + \varepsilon/2$. Now, take $(\alpha_n) \in B_{\ell_{p'}}$ so that $||Tx - \sum_n \alpha_n y_n|| < \varepsilon/2$. Then

$$\begin{split} \|T^*y^*\| &< |\langle x, T^*y^*\rangle| + \varepsilon/2\\ &\leq \left|\left\langle Tx - \sum_n \alpha_n y_n, y^*\right\rangle\right| + \left|\left\langle \sum_n \alpha_n y_n, y^*\right\rangle\right| + \varepsilon/2\\ &< \sum_n |\alpha_n| \left|\langle y_n, y^*\rangle\right| + \varepsilon \leq \|(\alpha_n)\|_{p'} \cdot \left(\sum_n |\langle y_n, y^*\rangle|^p\right)^{1/p} + \varepsilon\\ &\leq \left(\sum_n |\langle y_n, y^*\rangle|^p\right)^{1/p} + \varepsilon \end{split}$$

and letting $\varepsilon \to 0$ we obtain the conclusion.

Arguing in a similar way, we obtain the dual version of the above result:

PROPOSITION 3.2. Let $p \in [1, \infty)$, $T \in \mathcal{L}(X, Y)$ and $(x_n^*) \in \ell_p^w(X^*)$. The following statements are equivalent:

(a) $||Tx|| \leq (\sum_{n} |\langle x, x_n^* \rangle|^p)^{1/p}$ for all $x \in X$.

(b)
$$T^*(B_{Y^*}) \subseteq p\text{-co}(x_n^*).$$

REMARK 3.3. In Proposition 3.1 we can use p-co (y_n) instead of $\overline{p$ -co (y_n) in case p > 1. On the other hand, if p = 1 and $(y_n) \in \ell_1(Y)$, we have $\overline{\{\sum_n \alpha_n y_n : (\alpha_n) \in B_{c_0}\}} = \{\sum_n \alpha_n y_n : (\alpha_n) \in B_{\ell_\infty}\}$ and this set is 1compact too. In fact, for $\delta_n \to \infty$ such that $\sum_n |\delta_n| ||y_n|| < \infty$, we have the obvious inclusion

$$\Big\{\sum_{n} \alpha_{n} y_{n} : (\alpha_{n}) \in B_{\ell_{\infty}}\Big\} \subset \Big\{\sum_{n} \alpha_{n}(\delta_{n} y_{n}) : (\alpha_{n}) \in B_{c_{0}}\Big\}.$$

COROLLARY 3.4. Let $T \in \mathcal{L}(X, Y)$. Then the following properties hold:

- (I) If $T \in \mathcal{K}_p(X, Y)$, then $T^* \in \mathfrak{QN}_p(Y^*, X^*)$.
- (II) $T \in \mathfrak{QN}_p(X,Y)$ iff $T^* \in \mathcal{K}_p(Y^*,X^*)$.

In other words, $\mathcal{K}_p \subseteq \mathcal{QN}_p^d$ and $\mathcal{QN}_p = \mathcal{K}_p^d$.

The converse of Corollary 3.4(I) cannot be deduced directly from Proposition 3.1. Indeed, if $T^* \in \mathfrak{QN}_p(Y^*, X^*)$, then there exists a sequence $(y_n^{**}) \in \ell_p(Y^{**})$ such that $||T^*y^*|| \leq (\sum_n |\langle y_n^{**}, y^* \rangle|^p)^{1/p}$ for all $y^* \in Y^*$, and consequently $T(B_X) \subseteq p$ -co (y_n^{**}) . In other words, $T \in \mathcal{K}_p(X, Y^{**})$ (although $T(X) \subset Y$). In addition, we will need to deal with the ideal of so-called \mathcal{N}^p -operators. We recall that $T \in \mathcal{N}^p(X, Y)$ if there exist sequences $(x_n^*) \in \ell_{p'}(X^*)$ and $(y_n) \in \ell_p(Y)$ such that T admits the representation $T = \sum_n x_n^* \otimes y_n$ (note that $\mathcal{N}^p(X, Y) \subseteq \mathcal{K}_p(X, Y)$). The norm in this ideal will be denoted by ν^p and is defined by

$$\nu^{p}(T) = \inf \|(y_{n})\|_{p} \cdot \|(x_{n}^{*})\|_{p'}^{w}$$

where the infimum is taken over all representations of T as above (see [10]). We will make use of the following theorem:

THEOREM ([10, Theorem 1]). Let $p \in [1, \infty]$, $T \in \mathcal{L}(X, Y)$ and suppose that either X^* or Y^{***} has the approximation property. If $T \in \mathcal{N}^p(X, Y^{**})$, then $T \in \mathcal{N}^p(X, Y)$. In other words, under these conditions, the p-nuclearity of T^* implies that $T \in \mathcal{N}^p(X, Y)$.

Let K be a bounded subset of X. We define the following bounded operators:

$$\begin{split} u_{K} \colon \ell_{1}(K) \to X, \quad & (\xi_{x})_{x \in K} \mapsto \sum_{x \in K} \xi_{x} x, \\ j_{K} \colon X^{*} \to \ell_{\infty}(K), \quad & x^{*} \mapsto (\langle x, x^{*} \rangle)_{x \in K}. \end{split}$$

Notice that $u_K^* = j_K$. We write u_X and j_X instead of u_{B_X} and j_{B_X} , respectively.

PROPOSITION 3.5. Let K be a bounded subset of X. The following statements are equivalent:

- (a) K is relatively p-compact.
- (b) u_K is p-compact.
- (c) j_K is *p*-nuclear.

Proof. (a) \Leftrightarrow (b). This follows from the inclusions $K \subseteq u_K(B_{\ell_1(K)}) \subseteq \overline{co}(K)$.

(b) \Leftrightarrow (c). Let u_K be *p*-compact. By Corollary 3.4, j_K is quasi *p*-nuclear, and since $\ell_{\infty}(K)$ is an injective space, j_K is *p*-nuclear [6, Theorem 38]. For the converse, suppose j_K is *p*-nuclear. According to [10, Theorem 1], the operator u_K belongs to $\mathcal{N}^p(\ell_1(K), X)$ and, a fortiori, it is *p*-compact.

COROLLARY 3.6. Le K be a subset of X. If K is relatively p-compact in X^{**} , then K is p-compact in X. In particular, an operator $T \in \mathcal{L}(X,Y)$ is p-compact iff T^{**} is p-compact.

Proof. By Proposition 3.5, $J_K : x^{***} \in X^{***} \mapsto (\langle x, x^{***} \rangle)_{x \in K} \in \ell_{\infty}(K)$ is *p*-nuclear, hence so is $j_K = J_K|_{X^*} : x^* \in X^* \mapsto (\langle x, x^* \rangle)_{x \in K} \in \ell_{\infty}(K)$. Again a call to Proposition 3.5 tells us that K is *p*-compact in X.

REMARK 3.7. Let A be a bounded subset of X^* . As in the proof of Proposition 3.5, A is relatively p-compact iff the operator $\hat{j}_A : x \in X \mapsto (\langle x, x^* \rangle)_{x^* \in A} \in \ell_{\infty}(A)$ is p-nuclear.

In Corollary 3.4, it is shown that $\mathcal{K}_p \subseteq \mathfrak{QN}_p^d$. Now if $T \in \mathcal{L}(X, Y)$ is such that $T^* \in \mathfrak{QN}_p(Y^*, X^*)$ then $T^{**} \in \mathcal{K}_p(X^{**}, Y^{**})$ (Corollary 3.4). From the above result, it follows that $T \in \mathcal{K}_p(X, Y)$. This leads to the following proposition which improves Proposition 5.3 in [13].

PROPOSITION 3.8. $\mathcal{K}_p = \mathcal{QN}_p^d$.

In a recent paper [14], Sinha and Karn have dealt with the Banach operator ideals \mathcal{K}_p^d and \mathcal{K}_p^{dd} . The above results simplify the understanding of that paper, since $\mathcal{K}_p^d = \Omega \mathcal{N}_p$ and $\mathcal{K}_p^{dd} = \mathcal{K}_p$.

COROLLARY 3.9. An operator $T \in \mathcal{L}(X, Y)$ is such that $T^* \in \mathfrak{QN}_p(Y^*, X^*)$ if and only if there exists $(y_n) \in \ell_p(Y)$ such that $||T^*y^*|| \leq (\sum_n |\langle y_n, y^* \rangle|^p)^{1/p}$ for all $y^* \in Y^*$.

As we have mentioned in the introduction, *p*-compact operators have been characterized as those operators whose adjoints factor through a subspace of ℓ_p [13, Theorem 3.1]. This factorization yields a complete norm defined on $\mathcal{K}_p(X, Y)$. Having in mind the preceding results, we have obtained the same factorization for the adjoints of *p*-compact operators in a much simpler way. In fact, Theorem 3.1 in [13] can be stated in the following manner:

PROPOSITION 3.10. Let X and Y be Banach spaces and $p \in [1, \infty)$. The following statements are equivalent:

296

- (a) $T \in \mathcal{K}_p(X, Y)$.
- (b) There exists a closed subspace H of ℓ_p and operators $R \in \mathfrak{QN}_p(Y^*, H)$ and $S \in \mathcal{L}(H, X^*)$ such that $T^* = S \circ R$.

Proof. (a) \Leftrightarrow (b). If $T \in \mathcal{K}_p(X, Y)$, there exists a sequence $(y_n) \in \ell_p(Y)$ such that $||T^*y^*|| \leq (\sum_n |\langle y_n, y^* \rangle|^p)^{1/p}$ for all $y^* \in Y^*$ (Proposition 3.1). Put

$$H = \overline{\{(\langle y_n, y^* \rangle) : y^* \in Y^*\}}$$

and define the operators $R: y^* \in Y^* \mapsto (\langle y_n, y^* \rangle) \in H$ and $S: (\langle y_n, y^* \rangle) \in H \mapsto T^*y^* \in Y^*$. It is easy to check that H, R and S satisfy the required conditions. The converse is trivial via Proposition 3.8.

If $T \in \mathcal{K}_p(X, Y)$, we define

$$k_p(T) = \inf \|(y_n)\|_p$$

where the infimum is taken over all sequences $(y_n) \in \ell_p(Y)$ satisfying

$$T(B_X) \subseteq \Big\{ \sum_n \alpha_n y_n : (\alpha_n) \in B_{\ell_{p'}} \Big\}.$$

The inequality $k_p(T) \ge \nu_p^Q(T^*)$ (respectively, the equality $k_p(T^*) = \nu_p^Q(T)$) is a direct consequence of Proposition 3.1 (respectively, Proposition 3.2). Now, $[\mathcal{K}_p, k_p]$ becomes a Banach ideal and the proof is similar to that in [6, p. 31] showing that $[\mathcal{QN}_p, \nu_p^Q]$ is a Banach ideal (both proofs can be connected via Proposition 3.1). According to [7, Theorem 6.1.8], the norm k_p is equivalent to the norm κ_p defined by Sinha and Karn in [13]. Moreover, at the end of this section we prove that these norms coincide (Proposition 3.15).

PROPOSITION 3.11. $[\mathcal{K}_p, k_p]$ is the surjective hull of $[\mathbb{N}^p, \nu^p]$ for all $p \in [1, \infty)$.

Proof. If $T \in \mathcal{L}(X, Y)$ and $T \circ u_X(B_X)$ $[\ell_1(B_X) \xrightarrow{u_X} X \xrightarrow{T} Y]$ is relatively *p*-compact, then so is $T(B_X)$. In other words, \mathcal{K}_p is surjective, and since $\mathcal{N}^p \subseteq \mathcal{K}_p$, we have $(\mathcal{N}^p)^s \subseteq \mathcal{K}_p$.

On the other hand, if $T \in \mathcal{K}_p(X, Y)$, then $T^* \in \Omega \mathcal{N}_p(Y^*, X^*)$ (Corollary 3.4). Thus, $j_X \circ T^* \in \Omega \mathcal{N}_p(Y^*, \ell_\infty(B_X)) = \mathcal{N}_p(Y^*, \ell_\infty(B_X))$, and since $j_X \circ T^* = (T \circ u_X)^*$ and $\ell_\infty(B_X)$ has the approximation property, it follows that $T \circ u_X \in \mathcal{N}^p(\ell_1(B_X), Y)$ ([10, Theorem 1]). So, we have obtained the equality $(\mathcal{N}^p)^s = \mathcal{K}_p$.

Now, a standard argument shows that

$$(\mathcal{N}^p(\ell_1(I), Y), \nu^p) = (\mathcal{K}_p(\ell_1(I), Y), k_p) \quad \text{(isometrically)}$$

for all nonempty sets I. In particular, this proves that $k_p = (\nu^p)^s$.

J. M. Delgado et al.

Now, we can state our main result. We will need the following theorem:

THEOREM ([11, Proposition 6.14]). Let $1 \le p < \infty$ and let X and Y be Banach spaces. An operator $T: X \to Y$ is p-summing if and only if there exists a positive constant C such that for every finite-dimensional subspace E of X and every finite-codimensional subspace F of Y, the finite-dimensional operator

$$q_{\scriptscriptstyle F} \circ T \circ i_{\scriptscriptstyle E} \colon E \to X \to Y \to Y/F$$

satisfies $\pi_p(q_F \circ T \circ i_E) \leq C$. Furthermore, we have $\pi_p(T) = \inf C$, where the infimum is taken over all such pairs E, F.

THEOREM 3.12. Let $T \in \mathcal{L}(X, Y)$ and $p \in [1, \infty)$. The following statements are equivalent:

- (a) T is p-summing.
- (b) T^* maps relatively compact subsets of Y^* to relatively p-compact subsets of X^* .

Proof. (a) \Rightarrow (b). Let (y_n^*) be a null sequence in Y^* and define $S: y \in Y \mapsto (\langle y, y_n^* \rangle) \in c_0$. Obviously, S is ∞ -nuclear; therefore, $S \circ T$ is p-nuclear and

$$\nu_p(S \circ T) \le \nu_\infty(S)\pi_p(T) \le \pi_p(T) \sup_n \|y_n^*\|$$

[16, Theorem 9.13]. Then $(S \circ T)^*$: $e_n \in \ell_1 \mapsto T^*y_n^* \in X^*$ belongs to $\mathcal{N}^p(\ell_1, X^*)$ and $\nu^p((S \circ T)^*) \leq \nu_p(S \circ T)$. As mentioned before, $\mathcal{K}_p(\ell_1, X^*)$ and $\mathcal{N}^p(\ell_1, X^*)$ are isometric, so

$$k_p((S \circ T)^*) \le \nu_p(S \circ T) \le \pi_p(T) \sup_n \|y_n^*\|.$$

This proves that the linear map

$$U\colon c_0(Y^*)\to \mathcal{K}_p(\ell_1,X^*), \quad (y_n^*)\mapsto \sum_n e_n^*\otimes T^*y_n^*,$$

is well defined and $||U|| \leq \pi_p(T)$ (this inequality will be used in the next proposition). Notice that, in particular, we have proved that the set $\{T^*y_n^*: n \in \mathbb{N}\}$ is relatively *p*-compact.

(b) \Rightarrow (a). To prove (a) we will use [11, Proposition 6.14]. Let *E* be a finite-dimensional subspace of *X* and *F* a subspace of *Y* whose codimension is finite. Given the sequence

$$E \xrightarrow{i_E} X \xrightarrow{T} Y \xrightarrow{q_F} Y/F,$$

we obtain

$$F^{\perp} \xrightarrow{q_F^*} Y^* \xrightarrow{T^*} X^* \xrightarrow{i_E^*} X^* / E^{\perp}.$$

298

For simplicity, we identify the operator $Q: e_n \in \ell_1 \mapsto y_n^* \in Y^*$ with the sequence (y_n^*) . Now, consider the map

$$\phi \colon \mathcal{K}(\ell_1, Y^*) \to \mathcal{K}_p(\ell_1, X^*), \quad (y_n^*) \mapsto (T^* y_n^*).$$

The map ϕ is linear and has closed graph, so it is continuous. Thus, there exists a positive constant C such that $k_p(T^*y_n^*) < C$ for every relatively compact sequence (y_n^*) in B_{Y^*} .

Choose (y_n^*) dense in $B_{F^{\perp}}$. Since $k_p(T^*y_n^*) < C$, there exists a sequence (x_n^*) in $\ell_p(X^*)$ such that $||(x_n^*)||_p < C$ and $\{T^*y_n^*\} \subset \overline{p\text{-co}(x_n^*)}$. By density, we also have $T^*(B_{F^{\perp}}) \subset \overline{p\text{-co}(x_n^*)}$. This yields $k_p(T^* \circ q_F^*) \leq ||(x_n^*)||_p < C$ and therefore $k_p(i_E^* \circ T^* \circ q_F^*) < C$. Now, we can conclude that $k_p(i_E^* \circ T^* \circ q_F^*) = \nu_p^Q(q_F \circ T \circ i_E) < C$ (see the comment after the definition of k_p on page 297). Finally, recall that $\pi_p \leq \nu_p^Q$.

PROPOSITION 3.13. Let X, Y and Z be Banach spaces and $p \ge 1$. If the operator $T: X \to Y$ is p-summing and $S: Z \to Y^*$ is compact, then $T^* \circ S$ is p-compact and $k_p(T^* \circ S) \le \pi_p(T) ||S||$.

Proof. Given $S \in \mathcal{K}(Z, Y^*)$ and $\varepsilon > 0$ there exists a null sequence (y_n^*) such that $S(B_Z) \subset \overline{\operatorname{co}}(y_n^*)$ and

$$\sup_{n} \|y_n^*\| < \sup_{\|z\| \le 1} \|Sz\| + \varepsilon = \|S\| + \varepsilon.$$

Now, we define the operator $A: (\alpha_n) \in \ell_1 \mapsto \sum_n \alpha_n T^* y_n^* \in X^*$. In the above theorem we have proved that

$$k_p(A) \le \pi_p(T) \sup_n \|y_n^*\|.$$

Thus, given $\delta > 0$, there exists (x_n^*) in $\ell_p(X^*)$ such that $\overline{\operatorname{co}}(T^*y_n^*) \subseteq p\operatorname{-co}(x_n^*)$ and $||(x_n^*)||_p < \pi_p(T)||(y_n^*)||_{\infty} + \delta$. Consequently, $T^*(S(B_Z)) \subseteq \overline{\operatorname{co}}(T^*y_n^*) \subseteq p\operatorname{-co}(x_n^*)$ and these inclusions yield

$$k_p(T^* \circ S) \le ||(x_n^*)||_p < \pi_p(T)||(y_n^*)||_\infty + \delta.$$

Letting $\delta \to 0$, we obtain $k_p(T^* \circ S) \le \pi_p(T) ||(y_n^*)||_{\infty}$. Finally, since $||(y_n^*)||_{\infty} \le ||S|| + \varepsilon$ we deduce

$$k_p(T^* \circ S) \le \pi_p(T)(||S|| + \varepsilon).$$

The proof concludes by letting $\varepsilon \to 0$.

The dual version of the main theorem is also valid.

THEOREM 3.14. Let $T \in \mathcal{L}(X, Y)$ and $p \in [1, \infty)$. The following statements are equivalent:

- (a) T^* is p-summing.
- (b) T maps relatively compact subsets of X to relatively p-compact subsets of Y.

Proof. (a) \Rightarrow (b). This is an easy consequence of Theorem 3.12 and Corollary 3.6.

 $(b) \Rightarrow (a)$. By Proposition 3.5, we can consider the linear map

$$V: c_0(X) \to \mathcal{N}_p(Y^*, \ell_\infty), \quad (x_n) \mapsto \sum_n T x_n \otimes e_n$$

 $((e_n)$ is the canonical basis of c_0). The operator V is continuous because its graph is closed. Let J be the restriction of V^* to $\Pi_{p'}(\ell_{\infty}, Y^*)$. A straightforward argument shows that $J: \Pi_{p'}(\ell_{\infty}, Y^*) \to \ell_1(X^*)$ is the continuous linear map defined by $J(A) = (T^* \circ A(e_n))$. As $\pi_{p'}(A) \leq \nu_{p'}(A)$ for all $A \in \mathcal{N}_{p'}(\ell_{\infty}, Y^*)$, it follows that the map

$$J_0: \mathcal{N}_{p'}(\ell_{\infty}, Y^*) \to \ell_1(X^*), \quad A \mapsto (T^* \circ A(e_n)).$$

is continuous. Now we consider $J_0^* \colon \ell_\infty(X^{**}) \to \Pi_p(Y^*, \ell_\infty^{**})$ and $\phi = J_0^*|_{c_0(X^{**})}$. If $(x_n^{**}) \in c_0(X^{**}), y^* \in Y^*$ and $\mu \in \ell_\infty^*$, then

$$\begin{split} \langle J_0^*(x_n^{**})(y^*), \mu \rangle &= J_0^*(x_n^{**})(\mu \otimes y^*) = \langle (x_n^{**}), J_0(\mu \otimes y^*) \rangle \\ &= \langle (x_n^{**}), (T^*[\mu \otimes y^*(e_n)]) \rangle = \sum_n \langle x_n^{**}, T^*(\langle \mu, e_n \rangle y^*) \rangle \\ &= \sum_n \langle T^{**}x_n^{**}, y^* \rangle \langle \mu, e_n \rangle = \Big\langle \sum_n \langle T^{**}x_n^{**}, y^* \rangle e_n, \mu \Big\rangle. \end{split}$$

This proves that ϕ maps $c_0(X^{**})$ into $\Pi_p(Y^*, \ell_\infty)$ and $\phi(x_n^{**}) = \sum_n T^{**} x_n^{**} \otimes e_n$. Finally, we will show that $\phi(c_0(X^{**})) \subseteq \mathcal{N}_p(Y^*, \ell_\infty)$. First, for each $n \in \mathbb{N}$, we define

(2)
$$\phi_n \colon \ell_\infty^n(X^{**}) \to \Pi_p(Y^*, \ell_\infty^n), \quad (x_k^{**})_{k=1}^n \mapsto \sum_{k=1}^n T^{**} x_k^{**} \otimes e_k.$$

By the ideal properties, we have $\|\phi_n\| \leq \|\phi\|$ for all $n \in \mathbb{N}$. In view of [16, Corollary 9.5], $\pi_p(u) = \nu_p(u)$ for all $u \in \mathcal{L}(Y^*, \ell_\infty^n)$. Thus, we can write (2) in the form

(3)
$$\phi_n \colon \ell_\infty^n(X^{**}) \to \mathcal{N}_p(Y^*, \ell_\infty^n), \quad (x_k^{**})_{k=1}^n \mapsto \sum_{k=1}^n T^{**} x_k^{**} \otimes e_k.$$

Let us prove that $(\phi(x_1^{**}, \ldots, x_n^{**}, 0, \ldots))_n$ is a Cauchy sequence in $\mathcal{N}_p(Y^*, \ell_\infty)$ for all $(x_k^{**}) \in c_0(X^{**})$. According to (3) and the ideal properties of \mathcal{N}_p we have

$$\nu_p(\phi(x_1^{**}, \dots, x_n^{**}, 0, \dots) - \phi(x_1^{**}, \dots, x_m^{**}, 0, \dots)) = \nu_p(\phi(\dots, 0, x_{m+1}^{**}, \dots, x_n^{**}, 0, \dots)) \le \|\phi\| \cdot \sup_{m < k \le n} \|x_k^{**}\|$$

for n > m. Thus, $(\phi(x_1^{**}, \ldots, x_n^{**}, 0, \ldots))_n$ converges to an operator $S \in \mathcal{N}_p(Y^*, \ell_\infty)$ and this operator is necessarily equal to $\phi(x_n^{**}) = \sum_n T^{**} x_n^{**} \otimes e_n$. In particular, this implies that T^{**} maps relatively compact sets in X^{**} to

300

relatively p-compact sets in Y^{**} . Now, a call to Theorem 3.12 tells us that T^* is p-summing.

We finish this section by showing that our definition of k_p coincides with that in [13]. An operator $T \in \mathcal{L}(X, Y)$ belongs to $\mathcal{K}_p(X, Y)$ if and only if there exists $\hat{y} = (y_n) \in \ell_p(Y)$ such that $T^* = S_{\hat{y}} \circ \phi_{\hat{y}}^*$, where $\phi_{\hat{y}}^* : y^* \in$ $Y^* \mapsto (\langle y_n, y^* \rangle) \in H := \overline{\{(\langle y_n, y^* \rangle) : y^* \in Y^*\}}$ and $S_{\hat{y}} : (\langle y_n, y^* \rangle) \in H \mapsto$ $T^*y^* \in X^*$ [13, Theorem 3.2]. Using this decomposition, we can endow $\mathcal{K}_p(X, Y)$ with the norm κ_p defined by

$$\kappa_p(T) = \inf\{\|S_{\hat{y}}\| \cdot \|\hat{y}\|_p : \hat{y} = (y_n) \in \ell_p(Y), \ T^* = S_{\hat{y}} \circ \phi_{\hat{y}}^*\}.$$

PROPOSITION 3.15. Let X and Y be Banach spaces and $p \ge 1$. Then $k_p(T) = \kappa_p(T)$ for all $T \in \mathcal{K}_p(X, Y)$.

Proof. Given $T \in \mathcal{K}_p(X,Y)$ and $\hat{y} = (y_n) \in \ell_p(Y)$, we know that $||T^*y^*|| \leq ||(\langle y_n, y^* \rangle)||_p$ for all $y^* \in Y^*$ if and only if $T(B_X) \subset p$ -co (y_n) (Proposition 3.1). Since $||S_{\hat{y}}(\langle y_n, y^* \rangle)|| = ||T^*y^*||$, it follows that $||S_{\hat{y}}|| \leq 1$ and $\kappa_p(T) \leq k_p(T)$.

Now, given $0 < \varepsilon < 1$, consider $\hat{y} = (y_n) \in \ell_p(Y)$ such that

$$\kappa_p(T) + \varepsilon > \|S_{\hat{y}}\| \cdot \|\hat{y}\|_p.$$

Moreover, \hat{y} can be chosen so that $||S_{\hat{y}}|| > 1 - \varepsilon$. Otherwise, $||T^*y^*|| = ||S_{\hat{y}}(\langle y_n, y^* \rangle)|| \le ||(\langle (1 - \varepsilon)y_n, y^* \rangle)||_p$ for all $y^* \in Y^*$ and this means that $T(B_X) \subset p$ -co $((1 - \varepsilon)y_n)$ (Proposition 3.1). But then

$$\begin{split} \|S_{(1-\varepsilon)\hat{y}}\| &= \sup\{\|T^*y^*\| : \|(\langle (1-\varepsilon)y_n, y^*\rangle)\|_p \le 1\} \\ &= \sup\left\{\left\|T^*\left(\frac{1}{1-\varepsilon}z^*\right)\right\| : \left\|\left(\left\langle (1-\varepsilon)y_n, \frac{1}{1-\varepsilon}z^*\right\rangle\right)\right\|_p \le 1\right\} \\ &= \frac{\|S_{\hat{y}}\|}{1-\varepsilon}, \end{split}$$

which implies $\kappa_p(T) + \varepsilon > \|S_{(1-\varepsilon)\hat{y}}\| \cdot \|(1-\varepsilon)\hat{y}\|_p$. By induction, we have $T(B_X) \subset p$ -co $((1-\varepsilon)^m y_n)$ for all $m \in \mathbb{N}$, which is impossible if $T \neq 0$. So

$$\kappa_p(T) + \varepsilon > (1 - \varepsilon) \|\hat{y}\|_p > (1 - \varepsilon)k_p(T),$$

and since ε can be chosen arbitrarily, $\kappa_p(T) \ge k_p(T)$.

4. The operator ideal \mathcal{V}_p . We will denote by $\mathcal{V}_p(X,Y)$ the vector space of all operators from X into Y that map relatively weakly *p*-compact subsets of X to relatively *p*-compacts subsets of Y. In [13], the authors proved that $\Pi_p(X,Y) \subset \mathcal{V}_p(X,Y)$. First of all, we give sufficient conditions for which the converse inclusion holds for p = 1, 2. We will denote by $\ell_p^u(X)$ the subspace of $\ell_p^w(X)$ consisting of all unconditionally *p*-summable sequences in X, that is, those sequences (x_n) satisfying

$$\lim_{n \to \infty} \left(\sup_{\|x^*\| \le 1} \sum_{m \ge n} |\langle x_m, x^* \rangle|^p \right) < \infty$$

PROPOSITION 4.1. If Y is an \mathcal{L}_1 -space, then $\Pi_1(X,Y) = \mathcal{V}_1(X,Y)$ for every Banach space X.

Proof. If
$$(x_n) \in \ell_1^u(X)$$
 and $T \in \mathcal{V}_1(X, Y)$, then the set $\left\{ \sum_n \alpha_n T(x_n) : (\alpha_n) \in B_{c_0} \right\}$

is relatively 1-compact in Y. So, the operator $A : e_n \in c_0 \mapsto T(x_n) \in Y$ is 1-compact. By Corollary 3.4, its adjoint $A^* : Y^* \to \ell_1$ is quasi 1-nuclear, and therefore it is 1-summing. As Y^* is an \mathcal{L}_{∞} -space, A^* is integral. Actually, A^* is nuclear because ℓ_1 is a dual space and has the Radon–Nikodym property. According to [3, Theorem VIII.7], A is nuclear. This yields $\sum_n ||T(x_n)|| < \infty$.

PROPOSITION 4.2. If Y is a Banach space isomorphic to a Hilbert space, then $\Pi_2(X,Y) = \mathcal{V}_2(X,Y)$ for every Banach space X.

Proof. Let $T \in \mathcal{V}_2(X, Y)$ and $(x_n) \in \ell_2^w(X)$. By hypothesis, the operator $S : \ell_2 \to Y$ defined by $S(e_n) = T(x_n)$ is 2-compact, and therefore its adjoint $S^* : y^* \in Y^* \mapsto (\langle T(x_n), y^* \rangle) \in \ell_2$ is quasi 2-nuclear (Corollary 3.4). According to [2, Theorem 4.19], S^* has a 2-summing adjoint because Y^* is isomorphic to a Hilbert space. In particular, S is 2-summing and this implies that $\sum_n ||T(x_n)||^2 < \infty$. So, we have proved that T is 2-summing.

However, in general, $\Pi_p(X, Y)$ is strictly contained in $\mathcal{V}_p(X, Y)$ for all $p \in [1, \infty)$. The following relationships are obvious for all $p \ge 1$:

(4)
$$\Pi_p(\ell_{p'}, X) \subset \Phi_p(\ell_p(X)) \subset \mathcal{K}_p(\ell_{p'}, X) = \mathcal{V}_p(\ell_{p'}, X).$$

If p > 1, the first inclusion is strict whenever X is not a subspace of a quotient of an L_p -space [15, Theorem 3.1]. So, only the case p = 1 needs to be studied.

Let $1 \leq p < 2$. Let \mathcal{C}_p be the ideal of all operators mapping weakly *p*-summable sequences to unconditionally *p*-summable sequences. First of all, we will prove that $\Pi_p^d \circ \mathcal{C}_p \subset \mathcal{V}_p$ for every $p \geq 1$. So, let $T = T_2 \circ T_1$, where T_1 belongs to $\mathcal{C}_p(X, Y)$ and $T_2 \in \Pi_p^d(Y, Z)$. If (x_n) is a weakly *p*-summable sequence in X and $A = \{\sum_n \alpha_n x_n : (\alpha_n) \in B_{\ell_{p'}}\}$, notice that $T_1(A)$ is relatively compact in Y. Then $T_2(T_1(A))$ is relatively *p*-compact (Theorem 3.12).

Now we are going to show that the inclusion $\Pi_p \subset \mathcal{V}_p$ is, in general, strict for every $1 \leq p < 2$. Denote by $I_{2,0}$ the identity map from ℓ_2 into c_0 . According to [1, Lemma 6] the identity map from ℓ_2 onto ℓ_2 belongs to \mathbb{C}_p for every p < 2. On the other hand, $(I_{2,0})^*$ is *p*-summing, so $I_{2,0} \in \Pi_p^d \circ \mathfrak{C}_p \subset \mathcal{V}_p$ for all p < 2. Nevertheless, $I_{2,0}$ is not *p*-summing.

Finally, we have obtained the following result about the biadjoint of an operator $T \in \mathcal{V}_2$. Here, \mathcal{I}_p denotes the Banach ideal of *p*-integral operators.

PROPOSITION 4.3. Let X be a Banach space such that $I_{X^{**}} \in \mathcal{C}_2$. If $T \in \mathcal{V}_2(X,Y)$, then $T^{**} \in \mathcal{V}_2(X^{**},Y^{**})$.

Proof. Given $T \in \mathcal{V}_2(X, Y)$, consider the linear map

$$U: (x_n) \in \ell_2^u(X) \mapsto \sum_n Tx_n \otimes e_n \in \mathfrak{QN}_2(Y^*, \ell_2).$$

It is easy to prove that U has closed graph, and therefore it is continuous. Its adjoint maps $\mathcal{I}_2(\ell_2, Y^{***})$ into $\mathcal{I}_1(\ell_2, X^*)$. Put $V = U^*|_{\mathcal{N}_2(\ell_2, Y^*)}$. Since $\mathcal{N}_1(\ell_2, X^*)$ is isometric to a subspace of $\mathcal{I}_1(\ell_2, X^*)$ it follows easily that V maps $\mathcal{N}_2(\ell_2, Y^*)$ into $\mathcal{N}_1(\ell_2, X^*)$. We also denote by V the operator

$$\sum_{n} e_n^* \otimes y_n^* \in \mathcal{N}_2(\ell_2, Y^*) \mapsto \sum_{n} e_n^* \otimes T^* y_n^* \in \mathcal{N}_1(\ell_2, X^*).$$

Taking adjoints again we obtain the operator

(5)
$$(x_n^{**}) \in \mathcal{L}(X^*, \ell_2) \xrightarrow{V^*} \sum_n T^{**} x_n^{**} \otimes e_n \in \Pi_2(Y^*, \ell_2).$$

As every 2-summing operator is 2-integral and the 2-summing norm coincides with the 2-integral norm, (5) can be written in the form

$$(x_n^{**}) \in \mathcal{L}(X^*, \ell_2) \stackrel{V^*}{\mapsto} \sum_n T^{**} x_n^{**} \otimes e_n \in \mathfrak{I}_2(Y^*, \ell_2).$$

Now, as in the proof of (b) \Rightarrow (a) in Theorem 3.14, we can prove that V^* maps $\ell_2^u(X^{**})$ into $\mathcal{N}_2(Y^*, \ell_2)$. This shows that the operator $A : y^* \in Y^* \mapsto (\langle T^{**}x_n^{**}, y^* \rangle) \in \ell_2$ is 2-nuclear whenever (x_n^{**}) is unconditionally 2-summable in X^{**} , and therefore its adjoint $A^* : e_n \in \ell_2 \mapsto T^{**}x_n^{**} \in Y^{**}$ belongs to \mathcal{N}^2 . So, A^* is 2-compact and this concludes the proof.

Acknowledgments. This research was supported by MTM2009-14483-C02-01 project (Spain).

References

- [1] J. M. Castillo, On Banach spaces X such that $\mathcal{L}(L_p, X) = \mathcal{K}(L_p, X)$, Extracta Math. 10 (1995), 27–36.
- [2] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Stud. Adv. Math. 43, Cambridge Univ. Press, Cambridge, 1995.
- [3] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys Monogr. 15, Amer. Math. Soc., Providence, RI, 1977.

- [4] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
- [5] H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981.
- [6] A. Persson und A. Pietsch, p-nukleare und p-integrale Abbildungen in Banachräumen, Studia Math. 33 (1969), 19–62.
- [7] A. Pietsch, Operator Ideals, North-Holland, 1978.
- [8] O. I. Reinov, Approximation properties of order p and the existence of non-p-nuclear operators with p-nuclear second adjoints, Math. Nachr. 109 (1982), 125–134.
- [9] —, Disappearance of tensor elements in the scale of p-nuclear operators, in: Operator Theory and Function Theory, no. 1, Leningrad. Univ., Leningrad, 1983, 145–165.
- [10] —, On linear operators with p-nuclear adjoint, Vestnik St. Petersburg Univ. Math. 33 (2000), no. 4, 19–21.
- [11] R. Ryan, Introduction to Tensor Products of Banach Spaces, Springer, London, 2002.
- [12] P. D. Saphar, Hypothèse d'approximation à l'ordre p dans les espaces de Banach et approximation d'applications p absolument sommantes, Israel J. Math. 13 (1972), 379–399.
- [13] D. P. Sinha and A. K. Karn, Compact operators whose adjoints factor through subspaces of ℓ_p, Studia Math. 150 (2002), 17–33.
- [14] —, —, Compact operators which factor through subspaces of ℓ_p , Math. Nachr. 3 (2008), 412–423.
- [15] Y. Takahashi and Y. Okazaki, Characterization of subspaces, quotients and subspaces of quotients of L_p, Hokkaido Math. J. 15 (1986), 233–241.
- [16] N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Longman Sci. Tech., London, 1989.

J. M. Delgado, C. Piñeiro, E. Serrano Departamento de Matemáticas Campus Universitario del Carmen Universidad de Huelva Avda. de las Fuerzas Armadas s/n 21071 Huelva, Spain E-mail: jmdelga@uhu.es candido@uhu.es eserrano@uhu.es

Received June 24, 2009

(6656)