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Operators whose adjoints are quasi p-nuclear

by

J. M. Delgado, C. Piñeiro and E. Serrano (Huelva)

Abstract. For p ≥ 1, a set K in a Banach space X is said to be relatively p-compact
if there exists a p-summable sequence (xn) in X with K ⊆ {

P
n αnxn : (αn) ∈ B`p′ }. We

prove that an operator T : X → Y is p-compact (i.e., T maps bounded sets to relatively
p-compact sets) iff T ∗ is quasi p-nuclear. Further, we characterize p-summing operators as
those operators whose adjoints map relatively compact sets to relatively p-compact sets.

1. Introduction. In [4], Grothendieck characterized the compact sub-
sets of a Banach space as those sets lying in the closed convex hull of a null
sequence. This result aroused interest in the study of sets sitting inside the
convex hull of certain classes of null sequences.

In [13], Sinha and Karn introduced the notion of p-compact set (p ≥ 1).
A set K of a Banach space X is relatively p-compact if it is contained in the
p-convex hull of a p-summable sequence (xn) in X, i.e. K ⊂ {

∑
n αnxn : (αn)

∈ B`p′}. This notion opens a new approach to the p-approximation prop-
erty. The authors of [13] investigate when the identity map on X can
be approximated by finite rank operators on p-compact subsets of X and
they connect their results with the p-approximation properties defined by
Saphar [12] and Reinov [10] (which were conceived via the tensor prod-
uct route). To this end, there is a previous analysis of the ideal Kp of
p-compact operators (the operators mapping bounded sets to relatively p-
compact sets) and it is proved that the adjoint of a p-compact operator
admits a factorization through a subspace of `p. Using this factorization,
a complete norm κp is defined on the ideal Kp. It is shown that Kp is
contained in the ideal Πd

p of operators with p-summing adjoint [13, Proposi-
tion 5.3] and that Kp(X,Y ) contains the space Nd

p(X,Y ) of operators with
p-nuclear adjoint whenever Y is reflexive (see the remark after [13, Propo-
sition 5.3]).
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The aim of this paper is to deepen the study of Kp and its possible ap-
plications. In Section 3, we show the close relationship between p-compact
operators and quasi p-nuclear operators. Quasi p-nuclear operators, intro-
duced by Persson and Pietsch in [6], are an important tool to obtain re-
sults and counterexamples related to the approximation property of order
p (see [8]). We prove that an operator is quasi p-nuclear iff its adjoint is
p-compact (Proposition 3.8); in fact, the dual result is also true, which im-
proves Proposition 5.3 in [13]. Another important result of that section is
the characterization of p-summing operators as those operators whose ad-
joints map relatively compact sets to relatively p-compact sets. In the last
section, we deal with the Banach ideal Vp of p-completely continuous op-
erators (operators mapping relatively weakly p-compact sets to relatively
p-compact sets) and we show that, though Πp ⊂ Vp [13, Proposition 5.4],
the inclusion is strict in general for every p ≥ 1.

2. Preliminaries and notations. Throughout this paper, X and Y
will be Banach spaces. As usual, we denote the closed unit ball of X by BX ,
the dual of X by X∗, and the space of all bounded (linear) operators from X
into Y by L(X,Y ). The subspace of L(X,Y ) consisting of all compact (re-
spectively, weakly compact) operators from X into Y is denoted by K(X,Y )
(respectively, W(X,Y )).

Given a real number p ∈ [1,∞) and an arbitrary set I, `p(I) (respectively,
`∞(I)) stands for the Banach space of all scalar functions ξ defined on I
satisfying

∑
i∈I |ξi|p < ∞ (respectively, supi∈I |ξi| < ∞) endowed with its

natural norm. As usual, we write `p instead of `p(N).
Let `wp (X) be the space of all weakly p-summable sequences (xn) in X.

It is a Banach space with the norm

‖(xn)‖wp = sup
x∗∈BX∗

(∑
n

|〈xn, x∗〉|p
)1/p

= sup
(αn)∈B`p′

∥∥∥∑
n

αnxn

∥∥∥.
The subspace of `wp (X) consisting of the (strongly) p-summable sequences
is denoted by `p(X), which is also a Banach space endowed with the norm

‖(xn)‖p =
(∑

n

‖xn‖p
)1/p

.

We write `∞(X) for the Banach space of all bounded sequences (xn) in X
with the norm

‖(xn)‖∞ = sup
n
‖xn‖.

We denote by c0(X) the space of all norm null sequences in X, which is a
closed subspace of `∞(X) with the above norm.



Operators whose adjoints are quasi p-nuclear 293

In addition to the classical Banach ideals [L, ‖·‖], [K, ‖·‖] and [W, ‖·‖],
we deal with the ideals [Πp, πp] of all p-summing operators and [Np, νp] of
all p-nuclear operators. We also consider the injective hull of [Np, νp], which
has been treated in the literature under the name of the Banach ideal of
quasi p-nuclear operators [6]. We denote this Banach ideal by QNp. So, an
operator T : X → Y is quasi p-nuclear iff jY ◦ T ∈ Np(X, `∞(BY ∗)), where
jY is the natural isometric embedding from Y into `∞(BY ∗). It is well known
that T ∈ QNp(X,Y ) iff there exists a sequence (x∗n) ∈ `p(X∗) such that

(1) ‖Tx‖ ≤
(∑

n

|〈x, x∗n〉|p
)1/p

for all x ∈ X. The quasi p-nuclear norm is

νQp (T ) = inf{‖(x∗n)‖p : (1) holds for all x ∈ X}

for all T ∈ QNp(X,Y ). If A is a Banach ideal, then Ad denotes its dual
ideal, that is, Ad(X,Y ) = {T ∈ L(X,Y ) : T ∗ ∈ A(Y ∗, X∗)}.

If p > 1 and p′ = p(p − 1)−1, the map Φp : (xn) ∈ `wp (X) 7→ Φp(xn) ∈
L(`p′ , X), where Φp(xn)(αn) =

∑
n αnxn, is an isometric isomorphism which

allows us to identify the spaces `wp (X) and L(`p′ , X). For p = 1, `w1 (X) is
isometrically isomorphic to L(c0, X) under the corresponding map Φ1.

The following notions were introduced by Sinha and Karn in [13] trying
to extend the characterization of compact sets in Banach spaces as those
sets lying inside of the closed convex hull of a norm null sequence [4]. If
p ∈ [1,∞), the p-convex hull of a sequence (xn) ∈ `wp (X) is

p-co (xn) = Φp(xn)(B`p′ ) =
{∑

n

αnxn : (αn) ∈ B`p′
}

(c0 instead of `p′ if p = 1). It is clear that the p-convex hull of a sequence is
an absolutely convex set; if p > 1, it is also weakly compact so, in particular,
norm closed.

A set K ⊂ X is relatively p-compact if there exists a sequence (xn) ∈
`p(X) such that K ⊂ p-co (xn). Since p-co (xn) is a relatively compact set
when (xn) ∈ `p(X), relatively p-compact sets in X are relatively compact.
If compact sets are viewed as ∞-compact sets, then it is easy to show that
p-compact sets are q-compact for 1 ≤ p < q ≤ ∞. Notice that the convex
hull of a relatively p-compact set is relatively p-compact too.

A set K ⊂ X is relatively weakly p-compact if there exists a sequence
(xn) ∈ `wp (X) such that K ⊆ p-co (xn). If p > 1, relatively weakly p-compact
sets in X are relatively weakly compact. However, p = 1 is a pathological
case: Bc0 is weakly 1-compact since Bc0 = p-co (en), where (en) ∈ `w1 (c0) is
the unit vector basis in c0. Again, it is a standard argument to prove that
weakly p-compact sets are weakly q-compact for 1 < p < q <∞.
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Finally, we recall that an operator T ∈ L(X,Y ) is said to be p-compact
(respectively, weakly p-compact) if T (BX) is relatively p-compact (respec-
tively, weakly p-compact) in Y . The set of p-compact (respectively, weakly
p-compact) operators from X into Y is denoted by Kp(X,Y ) (respectively,
Wp(X,Y )).

3. Main results. The next propositions are the keys to connect p-
compactness and quasi p-nuclearity.

Proposition 3.1. Let p ∈ [1,∞), T ∈ L(X,Y ) and (yn) ∈ `wp (Y ). The
following statements are equivalent:

(a) ‖T ∗y∗‖ ≤ (
∑

n|〈yn, y∗〉|p)1/p for all y∗ ∈ Y ∗.
(b) T (BX) ⊆ p-co (yn).

Proof. (a)⇒(b). By contradiction, assume that there exists x0 ∈ BX so
that Tx0 6∈ p-co (yn). As p-co (yn) is absolutely convex, we can separate Tx0

and p-co (yn) strictly by a closed hyperplane; that is to say, there exist α > 0
and y∗ ∈ Y ∗ such that |〈Tx0, y

∗〉| > α and |〈y, y∗〉| < α for all y ∈ p-co (yn).
Then

α < |〈Tx0, y
∗〉| ≤ ‖T ∗y∗‖

≤
(∑

n

|〈yn, y∗〉|p
)1/p

= sup
(αn)∈B`p′

∣∣∣〈∑
n

αnyn, y
∗
〉∣∣∣ ≤ α,

a contradiction.
(b)⇒(a). Given ε > 0 and y∗ ∈ BY ∗ , choose x ∈ BX such that ‖T ∗y∗‖ <

|〈x, T ∗y∗〉| + ε/2. Now, take (αn) ∈ B`p′ so that ‖Tx −
∑

n αnyn‖ < ε/2.
Then

‖T ∗y∗‖ < |〈x, T ∗y∗〉|+ ε/2

≤
∣∣∣〈Tx−∑

n

αnyn, y
∗
〉∣∣∣+

∣∣∣〈∑
n

αnyn, y
∗
〉∣∣∣+ ε/2

<
∑
n

|αn| |〈yn, y∗〉|+ ε ≤ ‖(αn)‖p′ ·
(∑

n

|〈yn, y∗〉|p
)1/p

+ ε

≤
(∑

n

|〈yn, y∗〉|p
)1/p

+ ε

and letting ε→ 0 we obtain the conclusion.

Arguing in a similar way, we obtain the dual version of the above result:

Proposition 3.2. Let p ∈ [1,∞), T ∈ L(X,Y ) and (x∗n) ∈ `wp (X∗). The
following statements are equivalent:
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(a) ‖Tx‖ ≤ (
∑

n|〈x, x∗n〉|p)1/p for all x ∈ X.
(b) T ∗(BY ∗) ⊆ p-co (x∗n).

Remark 3.3. In Proposition 3.1 we can use p-co (yn) instead of p-co (yn)
in case p > 1. On the other hand, if p = 1 and (yn) ∈ `1(Y ), we have
{
∑

n αnyn : (αn) ∈ Bc0} = {
∑

n αnyn : (αn) ∈ B`∞} and this set is 1-
compact too. In fact, for δn → ∞ such that

∑
n|δn| ‖yn‖ < ∞, we have

the obvious inclusion{∑
n

αnyn : (αn) ∈ B`∞
}
⊂
{∑

n

αn(δnyn) : (αn) ∈ Bc0
}
.

Corollary 3.4. Let T ∈ L(X,Y ). Then the following properties hold:

(I) If T ∈ Kp(X,Y ), then T ∗ ∈ QNp(Y ∗, X∗).
(II) T ∈ QNp(X,Y ) iff T ∗ ∈ Kp(Y ∗, X∗).

In other words, Kp ⊆ QNd
p and QNp = Kd

p.

The converse of Corollary 3.4(I) cannot be deduced directly from Propo-
sition 3.1. Indeed, if T ∗ ∈ QNp(Y ∗, X∗), then there exists a sequence (y∗∗n ) ∈
`p(Y ∗∗) such that ‖T ∗y∗‖ ≤ (

∑
n|〈y∗∗n , y∗〉|p)1/p for all y∗ ∈ Y ∗, and con-

sequently T (BX) ⊆ p-co (y∗∗n ). In other words, T ∈ Kp(X,Y ∗∗) (although
T (X) ⊂ Y ). In addition, we will need to deal with the ideal of so-called
Np-operators. We recall that T ∈ Np(X,Y ) if there exist sequences (x∗n) ∈
`wp′(X

∗) and (yn) ∈ `p(Y ) such that T admits the representation T =∑
n x
∗
n ⊗ yn (note that Np(X,Y ) ⊆ Kp(X,Y )). The norm in this ideal will

be denoted by νp and is defined by

νp(T ) = inf ‖(yn)‖p · ‖(x∗n)‖wp′
where the infimum is taken over all representations of T as above (see [10]).
We will make use of the following theorem:

Theorem ([10, Theorem 1]). Let p ∈ [1,∞], T ∈ L(X,Y ) and suppose
that either X∗ or Y ∗∗∗ has the approximation property. If T ∈ Np(X,Y ∗∗),
then T ∈ Np(X,Y ). In other words, under these conditions, the p-nuclearity
of T ∗ implies that T ∈ Np(X,Y ).

Let K be a bounded subset of X. We define the following bounded
operators:

uK : `1(K)→ X, (ξx)x∈K 7→
∑
x∈K

ξxx,

jK : X∗ → `∞(K), x∗ 7→ (〈x, x∗〉)x∈K .
Notice that u∗

K
=jK . We write uX and jX instead of uBX

and jBX
, respectively.

Proposition 3.5. Let K be a bounded subset of X. The following state-
ments are equivalent:
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(a) K is relatively p-compact.
(b) uK is p-compact.
(c) jK is p-nuclear.

Proof. (a)⇔(b). This follows from the inclusions K ⊆ uK (B`1(K)) ⊆
co(K).

(b)⇔(c). Let uK be p-compact. By Corollary 3.4, jK is quasi p-nuclear,
and since `∞(K) is an injective space, jK is p-nuclear [6, Theorem 38]. For
the converse, suppose jK is p-nuclear. According to [10, Theorem 1], the
operator uK belongs to Np(`1(K), X) and, a fortiori, it is p-compact.

Corollary 3.6. Le K be a subset of X. If K is relatively p-compact
in X∗∗, then K is p-compact in X. In particular, an operator T ∈ L(X,Y )
is p-compact iff T ∗∗ is p-compact.

Proof. By Proposition 3.5, JK : x∗∗∗ ∈ X∗∗∗ 7→ (〈x, x∗∗∗〉)x∈K ∈ `∞(K)
is p-nuclear, hence so is jK = JK |X∗ : x∗ ∈ X∗ 7→ (〈x, x∗〉)x∈K ∈ `∞(K).
Again a call to Proposition 3.5 tells us that K is p-compact in X.

Remark 3.7. Let A be a bounded subset of X∗. As in the proof of
Proposition 3.5, A is relatively p-compact iff the operator ̂A : x ∈ X 7→
(〈x, x∗〉)x∗∈A ∈ `∞(A) is p-nuclear.

In Corollary 3.4, it is shown that Kp ⊆ QNd
p. Now if T ∈ L(X,Y ) is such

that T ∗ ∈ QNp(Y ∗, X∗) then T ∗∗ ∈ Kp(X∗∗, Y ∗∗) (Corollary 3.4). From
the above result, it follows that T ∈ Kp(X,Y ). This leads to the following
proposition which improves Proposition 5.3 in [13].

Proposition 3.8. Kp = QNd
p.

In a recent paper [14], Sinha and Karn have dealt with the Banach
operator ideals Kd

p and Kdd
p . The above results simplify the understanding

of that paper, since Kd
p = QNp and Kdd

p = Kp.

Corollary 3.9. An operator T ∈L(X,Y ) is such that T ∗∈QNp(Y ∗, X∗)
if and only if there exists (yn) ∈ `p(Y ) such that ‖T ∗y∗‖ ≤ (

∑
n|〈yn, y∗〉|p)1/p

for all y∗ ∈ Y ∗.
As we have mentioned in the introduction, p-compact operators have

been characterized as those operators whose adjoints factor through a sub-
space of `p [13, Theorem 3.1]. This factorization yields a complete norm
defined on Kp(X,Y ). Having in mind the preceding results, we have ob-
tained the same factorization for the adjoints of p-compact operators in a
much simpler way. In fact, Theorem 3.1 in [13] can be stated in the following
manner:

Proposition 3.10. Let X and Y be Banach spaces and p ∈ [1,∞). The
following statements are equivalent:



Operators whose adjoints are quasi p-nuclear 297

(a) T ∈ Kp(X,Y ).
(b) There exists a closed subspace H of `p and operators R∈QNp(Y ∗, H)

and S ∈ L(H,X∗) such that T ∗ = S ◦R.

Proof. (a)⇔(b). If T ∈ Kp(X,Y ), there exists a sequence (yn) ∈ `p(Y )
such that ‖T ∗y∗‖ ≤ (

∑
n|〈yn, y∗〉|p)1/p for all y∗ ∈ Y ∗ (Proposition 3.1). Put

H = {(〈yn, y∗〉) : y∗ ∈ Y ∗}

and define the operators R : y∗ ∈ Y ∗ 7→ (〈yn, y∗〉) ∈ H and S : (〈yn, y∗〉) ∈
H 7→ T ∗y∗ ∈ Y ∗. It is easy to check that H, R and S satisfy the required
conditions. The converse is trivial via Proposition 3.8.

If T ∈ Kp(X,Y ), we define

kp(T ) = inf ‖(yn)‖p

where the infimum is taken over all sequences (yn) ∈ `p(Y ) satisfying

T (BX) ⊆
{∑

n

αnyn : (αn) ∈ B`p′
}
.

The inequality kp(T ) ≥ νQp (T ∗) (respectively, the equality kp(T ∗) = νQp (T ))
is a direct consequence of Proposition 3.1 (respectively, Proposition 3.2).
Now, [Kp, kp] becomes a Banach ideal and the proof is similar to that in [6,
p. 31] showing that [QNp, ν

Q
p ] is a Banach ideal (both proofs can be con-

nected via Proposition 3.1). According to [7, Theorem 6.1.8], the norm kp is
equivalent to the norm κp defined by Sinha and Karn in [13]. Moreover, at
the end of this section we prove that these norms coincide (Proposition 3.15).

Proposition 3.11. [Kp, kp] is the surjective hull of [Np, νp] for all p ∈
[1,∞).

Proof. If T ∈ L(X,Y ) and T ◦ uX (BX) [`1(BX)
u

X→ X
T→ Y ] is relatively

p-compact, then so is T (BX). In other words, Kp is surjective, and since
Np ⊆ Kp, we have (Np)s ⊆ Kp.

On the other hand, if T ∈ Kp(X,Y ), then T ∗ ∈ QNp(Y ∗, X∗) (Corol-
lary 3.4). Thus, jX ◦ T ∗ ∈ QNp(Y ∗, `∞(BX)) = Np(Y ∗, `∞(BX)), and since
jX ◦ T ∗ = (T ◦ uX )∗ and `∞(BX) has the approximation property, it follows
that T ◦ uX ∈ Np(`1(BX), Y ) ([10, Theorem 1]). So, we have obtained the
equality (Np)s = Kp.

Now, a standard argument shows that

(Np(`1(I), Y ), νp) = (Kp(`1(I), Y ), kp) (isometrically)

for all nonempty sets I. In particular, this proves that kp = (νp)s.
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Now, we can state our main result. We will need the following theorem:

Theorem ([11, Proposition 6.14]). Let 1 ≤ p <∞ and let X and Y be
Banach spaces. An operator T : X → Y is p-summing if and only if there
exists a positive constant C such that for every finite-dimensional subspace E
of X and every finite-codimensional subspace F of Y , the finite-dimensional
operator

qF ◦ T ◦ iE : E → X → Y → Y/F

satisfies πp(qF ◦ T ◦ iE ) ≤ C. Furthermore, we have πp(T ) = inf C, where
the infimum is taken over all such pairs E, F .

Theorem 3.12. Let T ∈ L(X,Y ) and p ∈ [1,∞). The following state-
ments are equivalent:

(a) T is p-summing.
(b) T ∗ maps relatively compact subsets of Y ∗ to relatively p-compact

subsets of X∗.

Proof. (a)⇒(b). Let (y∗n) be a null sequence in Y ∗ and define S : y ∈
Y 7→ (〈y, y∗n〉) ∈ c0. Obviously, S is ∞-nuclear; therefore, S ◦ T is p-nuclear
and

νp(S ◦ T ) ≤ ν∞(S)πp(T ) ≤ πp(T ) sup
n
‖y∗n‖

[16, Theorem 9.13]. Then (S ◦ T )∗ : en ∈ `1 7→ T ∗y∗n ∈ X∗ belongs to
Np(`1, X∗) and νp((S ◦ T )∗) ≤ νp(S ◦ T ). As mentioned before, Kp(`1, X∗)
and Np(`1, X∗) are isometric, so

kp((S ◦ T )∗) ≤ νp(S ◦ T ) ≤ πp(T ) sup
n
‖y∗n‖.

This proves that the linear map

U : c0(Y ∗)→ Kp(`1, X∗), (y∗n) 7→
∑
n

e∗n ⊗ T ∗y∗n,

is well defined and ‖U‖ ≤ πp(T ) (this inequality will be used in the next
proposition). Notice that, in particular, we have proved that the set {T ∗y∗n :
n ∈ N} is relatively p-compact.

(b)⇒(a). To prove (a) we will use [11, Proposition 6.14]. Let E be a
finite-dimensional subspace of X and F a subspace of Y whose codimension
is finite. Given the sequence

E
i
E→ X

T→ Y
q
F→ Y/F,

we obtain

F⊥
q∗
F→ Y ∗

T ∗→ X∗
i∗
E→ X∗/E⊥.
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For simplicity, we identify the operator Q : en ∈ `1 7→ y∗n ∈ Y ∗ with the
sequence (y∗n). Now, consider the map

φ : K(`1, Y ∗)→ Kp(`1, X∗), (y∗n) 7→ (T ∗y∗n).

The map φ is linear and has closed graph, so it is continuous. Thus, there
exists a positive constant C such that kp(T ∗y∗n) < C for every relatively
compact sequence (y∗n) in BY ∗ .

Choose (y∗n) dense in BF⊥ . Since kp(T ∗y∗n) < C, there exists a sequence
(x∗n) in `p(X∗) such that ‖(x∗n)‖p < C and {T ∗y∗n} ⊂ p-co (x∗n). By density,
we also have T ∗(BF⊥) ⊂ p-co (x∗n). This yields kp(T ∗ ◦ q∗F ) ≤ ‖(x∗n)‖p < C
and therefore kp(i∗E ◦ T

∗ ◦ q∗
F

) < C. Now, we can conclude that kp(i∗E ◦ T
∗

◦ q∗
F

) = νQp (qF ◦ T ◦ iE ) < C (see the comment after the definition of kp on
page 297). Finally, recall that πp ≤ νQp .

Proposition 3.13. Let X, Y and Z be Banach spaces and p ≥ 1. If the
operator T : X → Y is p-summing and S : Z → Y ∗ is compact, then T ∗ ◦ S
is p-compact and kp(T ∗ ◦ S) ≤ πp(T )‖S‖.

Proof. Given S ∈ K(Z, Y ∗) and ε > 0 there exists a null sequence (y∗n)
such that S(BZ) ⊂ co (y∗n) and

sup
n
‖y∗n‖ < sup

‖z‖≤1
‖Sz‖+ ε = ‖S‖+ ε.

Now, we define the operator A : (αn) ∈ `1 7→
∑

n αnT
∗y∗n ∈ X∗. In the above

theorem we have proved that

kp(A) ≤ πp(T ) sup
n
‖y∗n‖.

Thus, given δ > 0, there exists (x∗n) in `p(X∗) such that co (T ∗y∗n) ⊆
p-co (x∗n) and ‖(x∗n)‖p < πp(T )‖(y∗n)‖∞ + δ. Consequently, T ∗(S(BZ)) ⊆
co (T ∗y∗n) ⊆ p-co (x∗n) and these inclusions yield

kp(T ∗ ◦ S) ≤ ‖(x∗n)‖p < πp(T )‖(y∗n)‖∞ + δ.

Letting δ → 0, we obtain kp(T ∗ ◦S) ≤ πp(T )‖(y∗n)‖∞. Finally, since ‖(y∗n)‖∞
≤ ‖S‖+ ε we deduce

kp(T ∗ ◦ S) ≤ πp(T )(‖S‖+ ε).

The proof concludes by letting ε→ 0.

The dual version of the main theorem is also valid.

Theorem 3.14. Let T ∈ L(X,Y ) and p ∈ [1,∞). The following state-
ments are equivalent:

(a) T ∗ is p-summing.
(b) T maps relatively compact subsets of X to relatively p-compact sub-

sets of Y .
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Proof. (a)⇒(b). This is an easy consequence of Theorem 3.12 and Corol-
lary 3.6.

(b)⇒(a). By Proposition 3.5, we can consider the linear map

V : c0(X)→ Np(Y ∗, `∞), (xn) 7→
∑
n

Txn ⊗ en

((en) is the canonical basis of c0). The operator V is continuous because its
graph is closed. Let J be the restriction of V ∗ to Πp′(`∞, Y ∗). A straight-
forward argument shows that J : Πp′(`∞, Y ∗) → `1(X∗) is the continuous
linear map defined by J(A) = (T ∗ ◦ A(en)). As πp′(A) ≤ νp′(A) for all
A ∈ Np′(`∞, Y ∗), it follows that the map

J0 : Np′(`∞, Y ∗)→ `1(X∗), A 7→ (T ∗ ◦A(en)),

is continuous. Now we consider J∗0 : `∞(X∗∗)→Πp(Y ∗, `∗∗∞) andφ=J∗0 |c0(X∗∗).
If (x∗∗n ) ∈ c0(X∗∗), y∗ ∈ Y ∗ and µ ∈ `∗∞, then

〈J∗0 (x∗∗n )(y∗), µ〉 = J∗0 (x∗∗n )(µ⊗ y∗) = 〈(x∗∗n ), J0(µ⊗ y∗)〉
= 〈(x∗∗n ), (T ∗[µ⊗ y∗(en)])〉 =

∑
n

〈x∗∗n , T ∗(〈µ, en〉y∗)〉

=
∑
n

〈T ∗∗x∗∗n , y∗〉〈µ, en〉 =
〈∑

n

〈T ∗∗x∗∗n , y∗〉en, µ
〉
.

This proves that φ maps c0(X∗∗) into Πp(Y ∗, `∞) and φ(x∗∗n ) =
∑

n T
∗∗x∗∗n

⊗ en. Finally, we will show that φ(c0(X∗∗)) ⊆ Np(Y ∗, `∞). First, for each
n ∈ N, we define

(2) φn : `n∞(X∗∗)→ Πp(Y ∗, `n∞), (x∗∗k )nk=1 7→
n∑
k=1

T ∗∗x∗∗k ⊗ ek.

By the ideal properties, we have ‖φn‖ ≤ ‖φ‖ for all n ∈ N. In view of [16,
Corollary 9.5], πp(u) = νp(u) for all u ∈ L(Y ∗, `n∞). Thus, we can write (2)
in the form

(3) φn : `n∞(X∗∗)→ Np(Y ∗, `n∞), (x∗∗k )nk=1 7→
n∑
k=1

T ∗∗x∗∗k ⊗ ek.

Let us prove that (φ(x∗∗1 , . . . , x
∗∗
n , 0, . . .))n is a Cauchy sequence in Np(Y ∗, `∞)

for all (x∗∗k ) ∈ c0(X∗∗). According to (3) and the ideal properties of Np we
have

νp(φ(x∗∗1 , . . . , x
∗∗
n , 0, . . .)− φ(x∗∗1 , . . . , x

∗∗
m , 0, . . .))

= νp(φ(. . . , 0, x∗∗m+1, . . . , x
∗∗
n , 0, . . .)) ≤ ‖φ‖ · sup

m<k≤n
‖x∗∗k ‖

for n > m. Thus, (φ(x∗∗1 , . . . , x
∗∗
n , 0, . . .))n converges to an operator S ∈

Np(Y ∗, `∞) and this operator is necessarily equal to φ(x∗∗n )=
∑

n T
∗∗x∗∗n ⊗en.

In particular, this implies that T ∗∗ maps relatively compact sets in X∗∗ to



Operators whose adjoints are quasi p-nuclear 301

relatively p-compact sets in Y ∗∗. Now, a call to Theorem 3.12 tells us that
T ∗ is p-summing.

We finish this section by showing that our definition of kp coincides with
that in [13]. An operator T ∈ L(X,Y ) belongs to Kp(X,Y ) if and only if
there exists ŷ = (yn) ∈ `p(Y ) such that T ∗ = Sŷ ◦ φ∗ŷ, where φ∗ŷ : y∗ ∈
Y ∗ 7→ (〈yn, y∗〉) ∈ H := {(〈yn, y∗〉) : y∗ ∈ Y ∗} and Sŷ : (〈yn, y∗〉) ∈ H 7→
T ∗y∗ ∈ X∗ [13, Theorem 3.2]. Using this decomposition, we can endow
Kp(X,Y ) with the norm κp defined by

κp(T ) = inf{‖Sŷ‖ · ‖ŷ‖p : ŷ = (yn) ∈ `p(Y ), T ∗ = Sŷ ◦ φ∗ŷ}.

Proposition 3.15. Let X and Y be Banach spaces and p ≥ 1. Then
kp(T ) = κp(T ) for all T ∈ Kp(X,Y ).

Proof. Given T ∈ Kp(X,Y ) and ŷ = (yn) ∈ `p(Y ), we know that
‖T ∗y∗‖ ≤ ‖(〈yn, y∗〉)‖p for all y∗ ∈ Y ∗ if and only if T (BX) ⊂ p-co (yn)
(Proposition 3.1). Since ‖Sŷ(〈yn, y∗〉)‖ = ‖T ∗y∗‖, it follows that ‖Sŷ‖ ≤ 1
and κp(T ) ≤ kp(T ).

Now, given 0 < ε < 1, consider ŷ = (yn) ∈ `p(Y ) such that

κp(T ) + ε > ‖Sŷ‖ · ‖ŷ‖p.

Moreover, ŷ can be chosen so that ‖Sŷ‖ > 1 − ε. Otherwise, ‖T ∗y∗‖ =
‖Sŷ(〈yn, y∗〉)‖ ≤ ‖(〈(1 − ε)yn, y∗〉)‖p for all y∗ ∈ Y ∗ and this means that
T (BX) ⊂ p-co ((1− ε)yn) (Proposition 3.1). But then

‖S(1−ε)ŷ‖ = sup{‖T ∗y∗‖ : ‖(〈(1− ε)yn, y∗〉)‖p ≤ 1}

= sup
{∥∥∥∥T ∗( 1

1− ε
z∗
)∥∥∥∥ :

∥∥∥∥(〈(1− ε)yn,
1

1− ε
z∗
〉)∥∥∥∥

p

≤ 1
}

=
‖Sŷ‖
1− ε

,

which implies κp(T ) + ε > ‖S(1−ε)ŷ‖ · ‖(1 − ε)ŷ‖p. By induction, we have
T (BX) ⊂ p-co ((1− ε)myn) for all m ∈ N, which is impossible if T 6= 0. So

κp(T ) + ε > (1− ε)‖ŷ‖p > (1− ε)kp(T ),

and since ε can be chosen arbitrarily, κp(T ) ≥ kp(T ).

4. The operator ideal Vp. We will denote by Vp(X,Y ) the vector
space of all operators from X into Y that map relatively weakly p-compact
subsets of X to relatively p-compacts subsets of Y . In [13], the authors
proved that Πp(X,Y ) ⊂ Vp(X,Y ). First of all, we give sufficient condi-
tions for which the converse inclusion holds for p = 1, 2. We will denote by
`up(X) the subspace of `wp (X) consisting of all unconditionally p-summable
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sequences in X, that is, those sequences (xn) satisfying

lim
n→∞

(
sup
‖x∗‖≤1

∑
m≥n
|〈xm, x∗〉|p

)
<∞.

Proposition 4.1. If Y is an L1-space, then Π1(X,Y ) = V1(X,Y ) for
every Banach space X.

Proof. If (xn) ∈ `u1(X) and T ∈ V1(X,Y ), then the set{∑
n

αnT (xn) : (αn) ∈ Bc0
}

is relatively 1-compact in Y . So, the operator A : en ∈ c0 7→ T (xn) ∈ Y is
1-compact. By Corollary 3.4, its adjoint A∗ : Y ∗ → `1 is quasi 1-nuclear, and
therefore it is 1-summing. As Y ∗ is an L∞-space, A∗ is integral. Actually, A∗

is nuclear because `1 is a dual space and has the Radon–Nikodym property.
According to [3, Theorem VIII.7], A is nuclear. This yields

∑
n‖T (xn)‖

<∞.

Proposition 4.2. If Y is a Banach space isomorphic to a Hilbert space,
then Π2(X,Y ) = V2(X,Y ) for every Banach space X.

Proof. Let T ∈ V2(X,Y ) and (xn) ∈ `w2 (X). By hypothesis, the operator
S : `2 → Y defined by S(en) = T (xn) is 2-compact, and therefore its
adjoint S∗ : y∗ ∈ Y ∗ 7→ (〈T (xn), y∗〉) ∈ `2 is quasi 2-nuclear (Corollary 3.4).
According to [2, Theorem 4.19], S∗ has a 2-summing adjoint because Y ∗ is
isomorphic to a Hilbert space. In particular, S is 2-summing and this implies
that

∑
n‖T (xn)‖2 <∞. So, we have proved that T is 2-summing.

However, in general, Πp(X,Y ) is strictly contained in Vp(X,Y ) for all
p ∈ [1,∞). The following relationships are obvious for all p ≥ 1:

(4) Πp(`p′ , X) ⊂ Φp(`p(X)) ⊂ Kp(`p′ , X) = Vp(`p′ , X).

If p > 1, the first inclusion is strict whenever X is not a subspace of a
quotient of an Lp-space [15, Theorem 3.1]. So, only the case p = 1 needs to
be studied.

Let 1 ≤ p < 2. Let Cp be the ideal of all operators mapping weakly
p-summable sequences to unconditionally p-summable sequences. First of
all, we will prove that Πd

p ◦ Cp ⊂ Vp for every p ≥ 1. So, let T = T2 ◦ T1,
where T1 belongs to Cp(X,Y ) and T2 ∈ Πd

p (Y,Z). If (xn) is a weakly p-
summable sequence in X and A = {

∑
n αnxn : (αn) ∈ B`p′}, notice that

T1(A) is relatively compact in Y . Then T2(T1(A)) is relatively p-compact
(Theorem 3.12).

Now we are going to show that the inclusion Πp ⊂ Vp is, in general,
strict for every 1 ≤ p < 2. Denote by I2,0 the identity map from `2 into c0.
According to [1, Lemma 6] the identity map from `2 onto `2 belongs to Cp for
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every p < 2. On the other hand, (I2,0)∗ is p-summing, so I2,0 ∈ Πd
p ◦Cp ⊂ Vp

for all p < 2. Nevertheless, I2,0 is not p-summing.
Finally, we have obtained the following result about the biadjoint of an

operator T ∈ V2. Here, Ip denotes the Banach ideal of p-integral operators.

Proposition 4.3. Let X be a Banach space such that IX∗∗ ∈ C2. If
T ∈ V2(X,Y ), then T ∗∗ ∈ V2(X∗∗, Y ∗∗).

Proof. Given T ∈ V2(X,Y ), consider the linear map

U : (xn) ∈ `u2(X) 7→
∑
n

Txn ⊗ en ∈ QN2(Y ∗, `2).

It is easy to prove that U has closed graph, and therefore it is continuous.
Its adjoint maps I2(`2, Y ∗∗∗) into I1(`2, X∗). Put V = U∗|N2(`2,Y ∗). Since
N1(`2, X∗) is isometric to a subspace of I1(`2, X∗) it follows easily that V
maps N2(`2, Y ∗) into N1(`2, X∗). We also denote by V the operator∑

n

e∗n ⊗ y∗n ∈ N2(`2, Y ∗) 7→
∑
n

e∗n ⊗ T ∗y∗n ∈ N1(`2, X∗).

Taking adjoints again we obtain the operator

(5) (x∗∗n ) ∈ L(X∗, `2) V
∗
7→
∑
n

T ∗∗x∗∗n ⊗ en ∈ Π2(Y ∗, `2).

As every 2-summing operator is 2-integral and the 2-summing norm coin-
cides with the 2-integral norm, (5) can be written in the form

(x∗∗n ) ∈ L(X∗, `2) V
∗
7→
∑
n

T ∗∗x∗∗n ⊗ en ∈ I2(Y ∗, `2).

Now, as in the proof of (b)⇒(a) in Theoren 3.14, we can prove that V ∗

maps `u2(X∗∗) into N2(Y ∗, `2). This shows that the operator A : y∗ ∈
Y ∗ 7→ (〈T ∗∗x∗∗n , y∗〉) ∈ `2 is 2-nuclear whenever (x∗∗n ) is unconditionally
2-summable in X∗∗, and therefore its adjoint A∗ : en ∈ `2 7→ T ∗∗x∗∗n ∈ Y ∗∗
belongs to N2. So, A∗ is 2-compact and this concludes the proof.
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