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The x-ray transitions in Cu- and Ni-like tungsten ions in the 5.19–5.26 Å wavelength range that are relevant
as a high-temperature tokamak diagnostic, in particular for JET in the ITER-like wall configuration, have been
studied. Tungsten spectra were measured at the upgraded Shanghai- Electron Beam Ion Trap operated with
electron-beam energies from 3.16 to 4.55 keV. High-resolution measurements were performed by means of a
flat Si 111 crystal spectrometer equipped by a CCD camera. The experimental wavelengths were determined
with an accuracy of 0.3–0.4 mÅ. The wavelength of the ground-state transition in Cu-like tungsten from the
3p53d104s4d [(3/2,(1/2,5/2)2]1/2 level was measured. All measured wavelengths were compared with those
measured from JET ITER-like wall plasmas and with other experiments and various theoretical predictions
including COWAN, RELAC, multiconfigurational Dirac-Fock (MCDF), and FAC calculations. To obtain a higher
accuracy from theoretical predictions, the MCDF calculations were extended by taking into account correlation
effects (configuration-interaction approach). It was found that such an extension brings the calculations closer to
the experimental values in comparison with other calculations.
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I. INTRODUCTION

The study of characteristic x-ray radiation emitted by
highly ionized high-Z atoms is of great importance for both
theoretical and applied atomic physics including fusion appli-
cations [1–3]. Measurements of such radiation can probe strong
relativistic, quantum-electrodynamics (QED), and correlation
effects. Neon-like and nickel-like heavy ions were proposed
for x-ray lasing emission [4,5]. In fusion applications, spectral
analysis of mid- and high-Z atomic systems is used to obtain
key plasma parameters related to metallic impurity concentra-
tions, ion and electron temperatures, plasma rotation velocity,
and effective charge Zeff [6–9].

The selection of tungsten as a plasma-facing material for
the International Thermonuclear Experimental Reactor (ITER)
has brought particular interest in its spectroscopic studies
[10]. Recently, extensive experimental studies were performed
on atomic structure and properties of x-ray transitions in
tungsten, from lithium-like W71+ [2] through neon-like W64+,
potassium-like W55+ [11–14], nickel-like W46+ [3,15], and
palladium-like W28+ [16,17] down to ytterbium-like W4+
tungsten [18]. Measurements of impurity x-ray spectra were
also performed at the ASDEX Upgrade and JT60U tokamaks
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for highly ionized tungsten ions up to Cu-like (W45+) and
Na-like (W63+), respectively [19,20].

The experimental spectroscopic studies of tungsten ions
were supported by extensive theoretical considerations (see,
e.g., Ref. [21] and references therein). In the last few years a
significant improvement has been achieved in the theoretical
approaches, in particular by the development of large-scale
relativistic configuration-interaction (CI) methods taking into
account electron correlation effects. Such a technique was em-
ployed for M1 transitions in Ag-and Cd-like tungsten [17,22],
electric-multipole transitions in Sn-like tungsten [23,24], and
for transitions from low-lying levels in Ni-like tungsten [25].
An extended experimental and theoretical data base on the
tungsten ions can be found in Refs. [26–28].

Recently, in measurements on the Joint European Torus
(JET) with the ITER-like wall (ILW) configuration (beryllium
wall and tungsten divertor) [29,30], the W45+ and W46+ (3p–
4d) x-ray lines were observed. From analysis of tungsten line
intensities, it was found that the W concentration is ∼10−5

for the ELMy H-mode JET plasmas (edge-localized-mode
of plasma operation with high-energy confinement times)
with 2.0–2.5 MA current, 2.7 T toroidal magnetic field and
14–18 MW neutral beam injection (NBI) power. Tungsten
concentration determined from the W45+ line was system-
atically lower than that obtained from W46+ by ∼20% for
different types of JET discharges [7]. It was further shown
that, in order to reproduce the experimental spectra in the
5.192–5.232 Å wavelength range at the measured electron
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temperature ∼4 keV and density ∼3 × 1019 m−3, it is neces-
sary to perform advanced theoretical studies for the W ions con-
sidered, especially for those with open shells (e.g., W45+ and
W47+) [31,32].

Here we report on high-resolution measurements of Cu- and
Ni-like tungsten spectra performed at the Shanghai Electron
Beam Ion Trap (EBIT). Spectra relevant to the high-resolution
x-ray diagnostic in JET were measured in the 5.19–5.26 Å
wavelength region at the energies of the electron beam from
3.16 to 4.55 keV and compared with those measured at JET
and with theoretical spectra calculated by advanced relativistic
codes: FAC, utilizing the modified multiconfigurational Dirac–
Hartree–Fock–Slater (DHFS, but commonly shortened to
DHS) method and GRASP2K, utilizing the multi-configuration
Dirac–Hartree–Fock (MCDHF, but commonly shortened to
MCDF) method. To obtain high-accuracy theoretical predic-
tions within the MCDF-CI method, large-scale CI calculations
were performed.

II. ELECTRON BEAM ION TRAP EXPERIMENT

High-resolution x-ray measurements were performed at the
upgraded Shanghai EBIT laboratory [33]. A general scheme
of the experimental setup at the upgraded Shanghai EBIT
is shown in Fig. 1. Tungsten was injected into EBIT by
sublimation of tungsten hexacarbonyl W(CO)6 through a gas
injection system into the trapping region.

Highly ionized tungsten ions were produced by an electron
quasimonoenergetic beams with energies set in a range from
3.16 to 4.55 keV and a current of 15–70 mA. These conditions
correspond to electron densities of (2.5–11.6) × 1018 m−3, as
determined from the measurements of the diameters of the
electron beam by the slit imaging system [34] (see Fig. 1)
and from accurate measurements of the electron-beam energy
and the current. The electron-beam diameter corresponding to
electron densities at half maximum was found to be less than
70 μm. The full width of the electron-beam energy distribution
at its half maximum was below 50 eV. The magnetic field
in the central trap region was about 3 T. Table I shows the
Shanghai EBIT operation parameters for the present set of
experiments.

FIG. 1. A general scheme of the experimental setup at the up-
graded Shanghai EBIT.

TABLE I. EBIT electron-beam parameters (energy, current, and
corresponding electron density).

Ee (keV) Ie (mA) Ne (1018 m−3)

3.16 15 2.5
3.76 37 6.3
4.34 38 5.1
4.55 70 11.6

The x-ray spectra were registered by a flat-field spectrom-
eter equipped with a Si 111 crystal with dimensions of 5.0 ×
2.5 × 0.5 cm3 and 2d = 6.2712 Å [35] and a charge-coupled
device (CCD) detector with 2048 × 2048 pixels (pixel size
�x = 13.5 μm). The resolving power of the spectrometer was
found to be not worse than λ/�λ ≈ 4200 in the wavelength
region of the investigation. The spectrometer was set to
measure tungsten spectra in the wavelength range from 5.19 to
5.26 Å around the ≈56.5◦ Bragg angle. Data collection time
was between 22 and 86 h per spectrum. Figure 2 shows tungsten
spectra induced by electron beams at energies of 3.16, 3.76,
4.34, and 4.55 keV.

FIG. 2. X-ray spectra of Cu- and Ni-like tungsten ions measured
on the upgraded Shanghai EBIT for electron-beam energies of 3.16,
3.76, 4.34, and 4.55 keV.
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FIG. 3. Tungsten (W45+ and W46+) and molybdenum (Mo32+)
x-ray lines observed in the spectrum measured at JET (shot #85909)
at Te ≈ 3.9 keV and ne ≈ 3.2 × 1019 m−3.

III. JOINT EUROPEAN TORUS MEASUREMENTS

The W45+ and W46+ (3p–4d) x-ray lines were observed
at JET by means of an upgraded high-resolution x-ray spec-
trometer (KX1 diagnostic) in the wavelength region around
5.2 Å [36–38]. Figure 3 shows an example of such spectrum
measured from typical steady-state ion cyclotron resonance
frequency (ICRF) heated plasmas at JET shot #85909 in
the time interval between 16 and 17 s. The corresponding
electron density and temperature profiles measured by LIDAR
Thomson scattering [39] are shown in Fig. 4 (together with
fitting curves). It can be seen that both the electron temperature
and density profiles are almost unchanged over the considered
period of time in JET discharge #85909. The profiles cor-
respond to the average electron temperature 〈Te〉 = 3.9 keV
and density 〈ne〉 = 3.2 × 1019 m−3 of the JET plasmas on the
magnetic axis.

By using the temperature and density profiles with ion-
ization and recombination rates of W ions [19,40] one can
estimate fractional abundance of tungsten ions. Figure 5 shows
the fractional abundance under ionization equilibrium (JET
shot #85909, time 16.0–17.0 s) for W44+, W45+, W46+, and

FIG. 4. Electron density and temperature profiles measured by
LIDAR Thomson scattering at JET shot #85909 at a time between 16
and 17 s from the start of the discharge.

FIG. 5. Fractional abundance for W44+–W47+tungsten ions cal-
culated for JET shot #85909 (time 16.0–17.0 s).

W47+ ions as a function of JET major radius (radial distance
in meters from the main axis of JET torus). It can be seen that
the W46+ and W45+ ions dominate over the other ionization
stages of tungsten in the plasma core. The W46+ and W45+
fractional abundance increase toward the plasma core and have
relatively broad maxima (in the case of W45+ ions, a slightly
hollow structure can be observed). Thus, one can conclude that
the x-ray emission from central regions of the JET plasma can
be well described by considering only W46+ and W45+ lines.

IV. THEORETICAL CALCULATIONS

Transitions corresponding to the x-ray lines appearing in
the spectra are described in Table II.

Calculations of radiative transition wavelengths were car-
ried out with the GRASP2K [41,42] and FAC [43] codes. The
GRASP2K code is based on the MCDF method, and FAC is based
on the DHS method. The methodology of MCDF calculations
performed in the present study is similar to that published
earlier in many papers (see, e.g., Refs. [44–47]). The effective
Hamiltonian for an N -electron system is expressed by

Ĥ =
N∑

i=1

ĥD(i) +
N∑

j>i=1

Cij , (1)

where ĥD(i) is the Dirac operator for the ith electron and the
terms Cij account for electron-electron interactions. In general,
the latter is a sum of the Coulomb interaction operator and the
transverse Breit operator. An atomic state function (ASF) with
the total angular momentum J and parity p is assumed in the

TABLE II. X-ray lines of Ni-and Cu-like tungsten ions observed
in the 5.19–5.26 Å spectral range.

Line Upper level Lower level

Ni1 3p53d104d (3/2,5/2)1 3p63d10 1S0

Cu1 3p53d104s4d [(3/2,(1/2,5/2)2]3/2 3d104s 2S1/2

Cu2 3p53d104s4d [(3/2,(1/2,5/2)2]1/2 3d104s 2S1/2

Cu3 3p53d104s4d [(3/2,(1/2,5/2)3]3/2 3d104s 2S1/2

Ni2 3p53d104d (3/2,3/2)1 3p63d10 1S0
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form

�s(JMp) =
∑

m

cm(s)�(γmJMp), (2)

where �(γmJMp) are the configuration state functions (CSFs),
cm(s) are the configuration mixing coefficients for state s, and
γm represents all information required to define a certain CSF
uniquely. The CSFs are linear combinations of N -electron
Slater determinants, which are antisymmetrized products of
four-component Dirac orbital spinors. In the present calcula-
tions, the initial and final states of considered transitions were
optimized separately, and the biorthonormal transformation
was used [41]. Following this, the so-called relaxation effect
was taken into account. In the GRASP2K code, the Breit inter-
action contribution to the energy was added as a perturbation,
after the radial part of the wave function was optimized. In
addition, two types of quantum electrodynamics (QED) cor-
rections, self-energy (as screened hydrogenic approximation
[48,49] of data of Mohr and coworkers [50]) and vacuum
polarization (as potential of Fullerton an Rinker [51]), were
included.

On the whole, the multiconfiguration DHS method is similar
to the MCDF method, referring to effective Hamiltonian and
multiconfigurational ASF. The main difference between the
Dirac–Hartree–Fock method and the Dirac–Hartree–Fock–
Slater method is that, in the (Dirac–)Hartree–Fock–Slater ap-
proach the nonlocal (Dirac–)Hartree–Fock exchange potential
is approximated by a local potential. The FAC code uses an
improved form of the local exchange potential (see Ref. [43] for
details). The Breit contribution and leading QED contributions
are also included in FAC calculations.

The accuracy of the wave function depends on the CSFs
included in its expansion [52,53]. The accuracy can be im-
proved by extending the CSF set with the CSFs corresponding
to excitations from orbitals occupied in the multireference CSF
set (MR) to unfilled orbitals of the active orbital set (i.e., CSFs
for virtual excited states). The CI method makes it possible to
include the major part of the electron correlation contribution
in the energy of atomic levels. The CI approach requires the
choice of a proper basis of CSFs for the virtual excited states.
It is reached by systematic building of CSF sequences by
extending the active space (AS) of orbitals and monitoring
concurrently the convergence of self-consistent calculations
[17,52,54]. In the present work, large-scale MCDF-CI calcu-
lations were performed to provide theoretical predictions of Ni-
(W46+) and Cu-like (W45+) line wavelength in the 5.19–5.26 Å
region.

Table III shows the numbers of CSFs in different ac-
tive spaces used for upper and lower states in calculations
of the |[Mg]3p53d104d1〉J=1 → |[Mg]3p63d10〉J=0 transi-
tions in Ni-like (W46+) and |[Mg]3p53d104s14d1〉J=1/2,3/2 →
|[Mg]3p63d104s1〉J=1/2 transitions in Cu-like (W45+) tungsten
ions. Some CSFs are excluded by using the jjreduce3 program,
a part of the GRASP2K program set. In this way, the number
of CSFs was reduced by up to 35%. The MR set (labeled as
AS0) represents the [Mg]3p53d104d1 upper and [Mg]3p63d10

lower states of transitions in W46+ and [Mg]3p53d104s14d1

upper and [Mg]3p63d104s1 lower states of transitions in W45+.
Table IV lists the theoretical wavelengths of the Ni1, Ni2,

Cu1, Cu2, and Cu3 lines for the following extensions of our

TABLE III. Numbers of CSFs for different active spaces used
in calculations of considered transitions in Ni- and Cu-like tungsten
ions.

Number of CSFs (reduced)

Stage Model Upper states Lower state

W46+

AS0 3 1
AS1 8845 302
AS2 58344 1417
AS3 152800 3370
AS4 292213 6161

W45+

AS0 11 1
AS1 4571 77
AS2 26594 362
AS3 68624 866
AS4 130661 1589

calculations. In the first step we have calculated the wave-
lengths by means of the pure Dirac–Fock approach followed
by Breit and QED corrections (the first three rows in Table IV).
The Breit and QED contributions shift the considered tungsten
lines by about 10 mÅ and 1 mÅ, respectively.

In the present paper, the following active spaces of virtual
orbitals were taken into account: AS1 containing subshells
with n = 4 and l = 0–3, AS2 for subshells with n = 4–5 and
l = 0–4, AS3 for subshells with n = 4–6 and l = 0–4, and
AS4 for subshells with n = 4–7 and l = 0–4. For W46+ we
considered all possible single (S) and double (D) substitutions
from 3s, 3p, 3d, 4d occupied subshells. In this case, the
inactive core contains 1s, 2s, and 2p subshells. Because the
size of expansions increases with the size of the MR set, for
W45+ we used another model, which is a common approach
(see e.g., Refs. [17,55]). The occupied subshells were divided
into three kinds: inactive core, active core (C), and valence (V)
subshells. All open subshells (i.e., 3p, 4s, and 4d for upper
states of transitions and 4s for lower state) are considered as
valence subshells. The n = 1, 2 subshells are an inactive core
and the n = 3 subshells are an active core. Then, for W45+ we
considered SD substitutions divided into two groups: VV (both
substituted electrons are from valence subshells) and CV (first
substituted electron is from a valence subshell and the other is
from an active core subshell).

TABLE IV. Wavelengths (in Å) of transitions in Cu-like (W45+)
and Ni-like (W46+) from different theoretical GRASP2K calculations.
Transition labels are explained in Table II.

Calculation Ni1 Ni2 Cu1 Cu2 Cu3

DF 5.1831 5.2383 5.2067 5.2091 5.2191
+ Breit 5.1938 5.2476 5.2170 5.2198 5.2299
+ QED 5.1947 5.2486 5.2178 5.2207 5.2308
+ CI: AS1 5.1698 5.2224 5.2207 5.2242 5.2326

AS2 5.1959 5.2484 5.2214 5.2246 5.2333
AS3 5.1994 5.2518 5.2246 5.2276 5.2365
AS4 5.1994 5.2517 5.2251 5.2280 5.2370
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As described above, the correlation effects were included
by taking into consideration SD electron replacements within
an active set of virtual orbitals (with a restricted number of
CSFs for Cu-like open-shell configurations). The wavelengths
calculated in the extension within the active set up to n = 7
are higher from the MR values (DF + Breit + QED) by 2.3–
4.7 mÅ. With this theoretical approach, a good convergence
was obtained for both the Cu- and Ni-like ions.

V. RESULTS AND DISCUSSION

As shown in Sec. II, we studied four EBIT spectra of
W ions over the wavelength range from 5.19 to 5.26 Å for
electron-beam energies from 3.16 to 4.55 keV. In the spectra for
these electron-beam energies, the ground-state transitions from
3p53d104s4d states of W45+ and 3p53d104d ones of W46+
ions appeared (see Fig. 2). For all considered electron-beam
energies, the Ni1 (4d5/2 → 3p3/2) transition dominates over
the others (Cu1, Cu2, Cu3 and Ni2). The relative contribution
from the radiation emitted by Cu-like W45+ ions decreases with
the increase of the electron-beam energy because of the lower
ionization potential of Cu-like tungsten W45+ (2.43 keV) in
comparison with Ni-like tungsten (4.06 keV) [5].

After the line identification it was possible to perform
the wavelength calibration. Because the investigated spectral
range was very narrow (5.19–5.26 Å), a linear relationship
between detector channel (pixel) numbers and wavelengths
was adopted. In the first step, the reference NIST wavelengths
for Cu- and Ni-like transitions [15,21] were assigned to the
fitted peak centroids obtained from the Gaussian fits for each
measured spectrum. It was found that the linear relations
between pixel numbers (1–2048) and wavelengths produce a
large coefficient of determination (R2 > 0.9988) that measures
how close the fitted curve is to the measured data points.
It is worth mentioning that an introduction of a quadratic
factor to the pixel-number–wavelength relationship does not
improve the R2 value. By comparing the reference NIST
values for Ni1 and Ni2 lines (that serve as our spectral range
limits) and corresponding wavelengths obtained from the linear
fit [f (xi) = axi + b where xi is a pixel number], we have
estimated the spectral range accuracy (a relative spectrometer
calibration error) to be 0.3 mÅ. After this step of the calibration
procedure we have obtained a wavelength “measuring line”
with precisely known regular intervals (�x = �λ).

Having a relative linear calibration of the spectrometer, the
absolute calibration requires only measurements of a single
reference line in the spectral range of interest. In our case,
we have measured the Ly-β1,2 (3p3/2-1s and 3p1/2-1s) lines
of H-like Si ions. The wavelengths of hydrogen-like lines
are used as high-precision, absolute, and calculable atomic
x-ray standards, because their spectral purity and satellite-free
structure (see, e.g., Ref. [59]). The calibration measurement
was performed at the electron-beam energy of 4.6 keV and a
current of 70 mÅ. By assigning the theoretical values of Ly-β1

(5.217960 Å) and Ly-β2 (5.216819 Å) calculated by means
of the MCDFGME code [60] to the pixel numbers (Gaussian
peak centroids determined with the accuracy that corresponds
to 0.023 mÅ and 0.044 mÅ wavelength accuracy) we have
obtained the absolute calibration. To estimate the uncertainty

TABLE V. Wavelengths (λexpt) of the Ni-like lines measured at
various electron-beam energies (Ee) and average values (λavg).

λexpt (Å) at Ee (keV)

Line 3.16 3.76 4.34 4.55 λavg (Å)

Ni1 5.20077 5.20077 5.20076 5.20071 5.2008(3)
Ni2 5.25403 5.25404 5.25404 5.25396 5.2540(3)
Uncertainty contributions:

Statistics <0.03 mÅ
Spectrometer calib. 0.30 mÅ
Reference 0.022 mÅ
Ref. statistics 0.045 mÅ

of the theoretical reference wavelengths we have compared
our Ly-β1,2 wavelength calculations with the current NIST
ASD data that are reported with the uncertainty of 0.022 mÅ
[61]. An agreement between both calculations within the
reported uncertainty (0.022 mÅ) was found. Therefore, this
value was taken as the uncertainty of our theoretical reference
values.

The measured wavelengths of the Ni1, Ni2, Cu1, Cu2,
and Cu3 lines are listed in Tables V and VI together with
uncertainty contributions for all spectra (3.16, 3.76, 4.34, and
4.55 keV). The wavelengths of Cu- and Ni-like tungsten lines
were determined by means of multipeak Gaussian function fits
with a linear background. The determined line wavelengths
from all beam energies were averaged and are presented in
the last column of Tables V and VI and in Table VII with the
total uncertainties of 0.3–0.4 mÅ. In comparison with NIST
experimental values [15,21] the experimental uncertainties
were reduced by at least factor of three (see Table VII). To the
best of our knowledge, it is the most accurate measurement in
this wavelength range presented so far for Cu- and Ni-like
tungsten ions. Moreover, the wavelength of the Cu1 line
[3p53d104s4d (3/2,2)3/2 → 3d104s 2S1/2] was measured for
the first time. One can see in Tables V and VI that the dominant
contribution to the measured uncertainties originates from
the relative spectrometer calibration. The crystal dispersion
errors, determined by using the XOP code [62], are negligible

TABLE VI. Wavelengths (λexpt) of the Cu-like lines measured at
various electron-beam energies Ee and average values (λavg).

λexpt (Å) at Ee (keV)

Line 3.16 3.76 4.34 4.55 λavg (Å)

Cu1 5.22595 5.22592 5.22590 5.22602 5.2259(4)
Cu2 5.22913 5.22913 5.22919 5.22926 5.2292(3)
Cu3 5.23697 5.23696 5.23689 5.23696 5.2369(3)
Uncertainty contributions:

Statistics Cu1 <0.20 mÅ
Statistics Cu2,3 <0.10 mÅ
Spectrometer calib. 0.30 mÅ
Reference 0.022 mÅ
Ref. statistics 0.045 mÅ
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TABLE VII. Ground-state transitions in W45+,46+ in the 5.19–5.26 Å wavelength range.

Theory Expt.

Line MCDF MCDF-CI FAC RELACc COWANa Present EBIT Other NISTa,b

Ni1 5.1947d 5.1994d 5.1959d 5.1944 5.218 5.2008(3)d 5.2002(9)e 5.2004(9)
5.1942f 5.1963g 5.203(3)h

5.203(3)i

5.199(9)j

5.2005(9)d,k

Cu1 5.2179d 5.2251d 5.2191d 5.2259(4)d 5.2263(9)d,k

5.2197g

Cu2 5.2207d 5.2280d 5.2218d 5.2192 5.230 5.2292(3)d 5.2295(9)d,k 5.2289(11)
5.2230g

Cu3 5.2308d 5.2370d 5.2316d 5.2298 5.241 5.2369(3)d 5.238(9)j 5.2379(17)
5.2313g

Ni2 5.2486d 5.2517d 5.2500d 5.272 5.2540(3)d 5.2520(16)e 5.2533(9)
5.2472f 5.2495g 5.255(3)i

aNeill et al. [15]; bKramida [21]; cFournier [26]; dThis work; eClementson et al. [56]; fDong et al. [25]; gClementson et al. [28]; hRalchenko
et al. [3]; iTragin et al. [57]; jOsborne et al. [58]; kJET.

(0.012 mÅ) in comparison with the reference and statistics
errors. The crystal dispersion errors were determined for a 0.5-
cm-thick Si (111) crystal within a flat perfect crystal model in a
Bragg diffraction geometry as a difference of the rocking curve
centroids (average values for s- and p-polarization planes)
calculated for two extreme wavelengths of our spectral range
(Ni1 and Ni2).

In Table VII we present the experimental wavelengths of
the Ni1, Cu1, and Cu2 tungsten lines determined from JET
measurements performed with the upgraded high-resolution
x-ray diagnostic λ/�λ > 1.2 × 104 [31–33]. The wavelengths
were determined as average values from spectra taken from
plasma JET shot #85909 at 1 s time intervals at times between
10 and 17 s from the beginning of the discharge. The JET
spectra were also fit by multipeak Gaussian functions with
a linear background. The JET spectra can be affected by
the Doppler shift due to the tokamak toroidal rotation. For
the ICRF-heated JET plasmas toroidal rotation should not
exceed ∼20 krad/s [63]. For the plasma JET shot #85909 the
average ICRF heating power was below 4 MW. It was found
that for such a heating the toroidal angular frequency for the
JET central plasma does not exceed 10 krad/s [64,65], which
corresponds to maximum Doppler shifts of 0.7 and 0.8 mÅ
values for Mo32+ and W45+,46+ lines, respectively.

To calibrate the JET spectra we assumed the same toroidal
rotation for tungsten and molybdenum ions and performed
the wavelength calibration by means of the E1 and M2
lines of Mo32+ (5.2076 and 5.2162 Å) originating from the
molybdenum impurity in JET plasmas [7,32]. To verify this
assumption, we estimated the possible difference between
the toroidal angular frequencies (and corresponding Doppler
shifts) for Mo32+ and W45+,46+ ions. If we assume that toroidal
rotations would be different for Mo32+ and W45+,46+ ions
by about 5 krad/s (that seems to be the upper limit) the
corresponding Doppler shifts of Mo32+ and W45+,46+ lines
would differ by no more than 0.5 mÅ. We took this value as
a maximum uncertainty of our calibration procedure related
to the Doppler shifts. The calibration wavelengths of Mo32+

lines were calculated by using the MCDF-CI method. The
uncertainties of the reference wavelengths were estimated by
comparing our calculations with those obtained from relativis-
tic many-body perturbation theory [66] and the experimental
value (for the E1 transition) recommended by NIST [67].
As the uncertainty of the reference wavelength, we conser-
vatively took the maximum difference between experimental
and theoretical results, which is 0.7 mÅ. One should also
point out that, in our analysis, we disregarded the experimental
wavelengths obtained at the Alcator C and Alcator C-Mod
tokamaks [68] because these values appear to be systematically
shifted towards lower wavelengths by 1–2 mÅ, possibly due
to the Doppler shift. The wavelengths of the Ni1 and Cu1, Cu2
tungsten lines determined from the JET spectra are presented
in Table VII with total uncertainties of 0.9 mÅ. The main
contribution to the total uncertainty estimate comes from the
Doppler shift correction (with a 0.5 mÅ uncertainty) and the
E1 and M2 Mo32+ reference wavelengths (0.7 mÅ). One can
clearly see that the wavelengths measured at JET are in an
excellent agreement (∼0.3–0.5 mÅ) with values measured in
the EBIT.

In Table VII the experimental wavelengths are compared
with the MR MCDF (marked simply as MCDF for clarity),
MCDF-CI, FAC, RELAC [69], and COWAN [70] theoretical
predictions. The MCDF, FAC, and RELAC calculations based
on the fully relativistic approach agree much better with
experiment than those obtained by the COWAN code. This
observation is consistent with that presented in other studies
(see, e.g., Ref. [15]).

The differences between the theoretical and experimental
wavelengths of Ni- and Cu-like lines are in the range of (4–10)
mÅ when just the participating configurations are considered
in the calculation. To reproduce the experimental wavelengths
more accurately, we applied the high-accuracy MCDF-CI
calculations taking into account the correlations effects by
implementing SD virtual excitations from the core and valence
shells (see Sec. IV for details). Figures 6 and 7 show the
convergence behavior of theoretical predictions for the Ni1,
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FIG. 6. The MCDF-CI wavelength calculations for the Ni1 (up-
per) and Ni2 (bottom) tungsten lines as a function of the active set
(ASn) compared with the experimental values. The dotted lines with
diamond symbols represent the MCDF-CI calculations, while solid
and dashed lines show the experimental values and their uncertainties.

FIG. 7. Same as Fig. 6 but for Cu1, Cu2, and Cu3 tungsten lines.

FIG. 8. Comparison of (a) previous and (b) present theoretical
and experimental wavelengths of Ni1, Ni2 and Cu1, Cu2, Cu3 lines.
The previous experimental wavelengths are taken from Refs. [15,21],
while the theoretical ones were taken from Refs. [25,28]. The
experimental uncertainties are represented by shaded area.

Ni2 and Cu1, Cu2, Cu3 line wavelengths as a function of
the active set (ASn) together with the experimental values.
It is worth mentioning that, for the AS1 active set containing
virtual excitations to subshells with n = 4 and l = 0–3, one
can observe a significant drop of the calculated wavelengths to
∼5.17 and ∼5.22 Å for Ni1 and Ni2 wavelengths, respectively
(see Fig. 6). The calculations for the active sets with a higher
n quantum number in the active set (and higher number of
CSFs) show a significant increase of the wavelengths toward
experimental values of the Cu1, Cu2, Cu3 and Ni1, Ni2 lines.
An increase of the wavelength values within the AS3 and AS4
active sets is about 3–7 mÅ in comparison with the MR values.
A convergence is reached for the AS3 and AS4 active sets
(n � 6) for both the Cu- and Ni-like tungsten calculations.

An improvement of the experimental precision and theo-
retical predictions taking into account correlation effects is
illustrated in Fig. 8. A significant underestimation of pre-
vious experimental Cu2, Cu3 and Ni1, Ni2 wavelengths by
MCDF and FAC theoretical predictions is shown in Fig. 8(a).
Figure 8(b) clearly shows not only an improvement of the
experimental wavelength precision (to 0.3–0.4 mÅ uncertainty
values), but also presents a much better agreement between
our theoretical predictions and new experimental results. The
most accurate MCDF-CI calculations (with SD substitutions
up to n = 7) reduce the discrepancies between theory and
experiment below 1.5 mÅ for Ni1 and Cu1, Cu2, Cu3 and
below 2.5 mÅ for Ni2, respectively.

VI. SUMMARY

High-resolution measurements of Cu- and Ni-like tungsten
wavelengths were performed in the 5.19–5.26 Å range at
the upgraded Shanghai EBIT. Spectra were produced by an
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electron beam with energies from 3.16 to 4.55 keV. The Cu- and
Ni-like tungsten lines were measured with a significantly better
precision (0.3–0.4 mÅ) in comparison with previous measure-
ments (0.9–1.7 mÅ). Moreover, the wavelength of the ground-
state transition in Cu-like tungsten from the 3p53d104s4d

[(3/2,(1/2,5/2)2]3/2 level (Cu1 line) was measured.
The measurements were performed in the spectral range

that is relevant to tokamak plasma diagnostics, in particular to
the high-resolution x-ray diagnostic operated at JET. The Ni-
and Cu-like wavelengths determined from JET spectra are in
excellent agreement (0.3–0.5 mÅ) with values measured at the
Shanghai EBIT.

It was also shown that previous calculations significantly
underestimate the experimental values of Cu- and Ni-like
tungsten wavelengths in the considered spectral range. Our ex-
tended MCDF calculations taking into account the correlation
effects within an active set with quantum number up to n � 7
reduce the underestimation to less than 2.5 mÅ. Results of this

study provide an important benchmark for x-ray measurements
in tokamaks, in particular for JET and ITER.
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