

Reusing UI elements with Model-Based User Interface
Development
Ashraf, 2007)
argued to par
More recently
pointing also t
MDE worlds, a
A. Delgado a, A. Estepa a, J.A. Troyano b, R. Estepa a

a Department of Telematics Engineering, University of Seville, Camino de los descubrimientos s/n., 41092 Seville, Spain

b Department of Computer Languages and Systems, University of Seville, Reina Mercedes s/n., 41012 Seville, Spain
Keywords:
MBUID

Reuse

inclusion or shared repositories.
Software engineering
User Interface
the poor reusability of UI mo
tially explain this lack of inte
, Meixner et al. (2011) hav
o the lack of harmonization b
s well as the absence of real-w
a b s t r a c t

This paper introduces the potential for reusing UI elements in the context of Model-Based UI Develop-
ment (MBUID) and provides guidance for future MBUID systems with enhanced reutilization capabilities.
Our study is based upon the development of six inter-related projects with a specific MBUID environ-
ment which supports standard techniques for reuse such as parametrization and sub-specification,

We analyze our experience and discuss the benefits and limitations of each technique supported by
our MBUID environment. The system architecture, the structure and composition of UI elements and the
models specification languages have a decisive impact on reusability. In our case, more than 40% of the
elements defined in the UI specifications were reused, resulting in a reduction of 55% of the specification
size. Inclusion, parametrization and sub-specification have facilitated modularity and internal reuse of UI
specifications at development time, whereas the reuse of UI elements between applications has greatly
benefited from sharing repositories of UI elements at run time.
1. Introduction

Model-Based User Interface Development describes the user
interface (UI) through a collection of models which guide the UI
development process. Such models can also drive the UI genera-
tion process in a (semi) automated fashion such as in model-
driven engineering (MDE), which should reduce the work needed
to develop UIs, resulting in a more productive software develop-
ment process (Viana and Andrade, 2008; Meixner et al., 2010).

MBUID environments (MBUIDEs) have proliferated over the last
decades, giving rise to a number of different toolsets and
specification languages (Pinheiro da Silva, 2001; Guerrero-García et
al., 2009; Meixner et al., 2011). However, in spite of the plethora of
available approaches, no MBUIDE has experienced wide adop-tion
by the software industry (Trætteberg, 2008; Molina, 2004). As
envisaged by some authors (Pinheiro da Silva, 2001; Ahmed and
del specifications can be
rest from the industry.
e supported this idea,
etween the MBUID and
orld usage and case
studies as important challenges to be faced by MBUID systems in
the future. This paper addresses some of these challenges, focusing
specifically on reusability.

In general, software reuse increases productivity and software
quality as reported in many industrial cases (Mohagheghi and
Conradi, 2007), such benefits should also be present in the context
of MBUID. Although some environments have been equipped with
techniques to support reuse, issues and methods associated with
the reuse of UI components and the benefit/cost associated have
been shortly addressed in the MBUID community. One possible
reason for this could be the complexity of the subject, which
involves several inter-related questions such as (a) which UI
fragments or models can be subjected to reuse; (b) what technical
approaches can be used; and (c) how to assess the benefits of
reusing. As stated in Meixner et al. (2011), the answer to these
questions becomes even more complicated since emerging stan-
dards such as W3C task (Paternò et al., 2014) or Abstract UI models
(Vanderdonckt et al., 2014) are not widely adopted yet, and there
are scarce real-world usage and case studies that quantify the
potential benefits of reusing UI assets.

This paper aims to be a first step in gaining insight into how
elements from UI models can be reused. We provide a real-world
usage case through the development of six applications with an
environment that supports some standard reuse techniques such
as parametrization and sub-specification, inclusion or shared
repositories. We describe our experience and quantify the benefits

www.sciencedirect.com/science/journal/10715819
www.elsevier.com/locate/ijhcs
http://dx.doi.org/10.1016/j.ijhcs.2015.09.003
http://dx.doi.org/10.1016/j.ijhcs.2015.09.003
http://dx.doi.org/10.1016/j.ijhcs.2015.09.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2015.09.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2015.09.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2015.09.003&domain=pdf
mailto:aldelgado@us.es
mailto:aestepa@us.es
mailto:troyano@us.es
mailto:rafaestepa@us.es
http://dx.doi.org/10.1016/j.ijhcs.2015.09.003

of intra- and inter-project reuse of UI specifications. Based on our
experience, we provide lessons learned that can be valid for other
contexts and provide some advice on the development of future
MBUIDEs with potentiated reuse features.

The remainder of this paper is as follows: Section 2 briefly
introduces the main concepts of MBUID. Section 3 summarizes
current reuse approaches already present in the context of MBUID.
Sections 4 and 5 describe the main characteristics of the MBUIDE
used in our case study and the techniques supported for reusing UI
elements respectively. Section 6 introduces our study case. Section 7
addresses the results based upon our experience, discussing the use
of each reuse technique and providing quantitative results of the
benefits obtained. Section 8 provides an analysis of the main points
of our results. Finally, Section 9 concludes the paper.
2. MBUID overview

MBUID offers an environment for developers to design and
implement UIs in a professional, consistent and systematic way
(Pinheiro da Silva, 2001; Meixner et al., 2011, 2010). MBUID is
based on the idea that the UI can be fully modeled by a set of
declarative models each addressing particular facets of the UI such
as tasks and presentation. The specification of each model consists
of an abstract description of the aspects pertaining to its domain
by means of a so-called UI Description Language (Guerrero-García
et al., 2009). Model specifications lead the UI development life-
cycle and provide the basics for automatic UI generation.

Consensus on the set of models and languages for UI descrip-
tion has remained elusive in the past. Most MBUIDEs have defined
their own languages and models (Guerrero-García et al., 2009;
Meixner et al., 2011). However, some models were recurrently
used by a number of environments in the early 00s (Pinheiro
da Silva, 2001; Vanderdonckt et al., 2003):

� The User model, which specifies a hierarchical break-down of
users in stereotypes that share a common role.

� The Domain model, used to define the objects accessible to users
via the UI.

� The Task model, which describes the set of tasks that users are
able to accomplish, its hierarchical decomposition and its tem-
poral relations and conditions.

� The Presentation model, devoted to presentation aspects of the
UI. It can, in turn, be decomposed into the Abstract Presentation
model, dealing with abstract level descriptions of the structure
and behavior of the UI objects, and the Concrete Presentation
model that describes in detail the parts of the UI using modality-
dependent (i.e. graphic and haptic) concrete interaction objects
(Vanderdonckt and Bodart, 1993).

� The Dialog model, which defines the set of actions the user can
carry out within various system states and the transition
between these states. It links tasks with interaction elements
forming a bridge between the Task and the Presentation
models.

According to Meixner et al. (2011), the Task, Presentation and
Dialog models can be considered the core models since they have
direct influence on the content and appearance of the UI.

Different MBUID approaches can be related using the Cameleon
Reference Framework (CRF) (Calvary et al., 2003). Since its defi-
nition in 2003, the CRF has become widely accepted in the HCI
community as a reference for classifying UIs supporting multiple
targets, or multiple contexts of use on the basis of a model-based
approach (Meixner et al., 2011). The framework describes different
layers of abstraction related to the model-based development of
user interfaces:
� Concepts-and-Tasks: Specifies the hierarchies of tasks that need
to be performed on/with domain objects (or domain concepts)
for a particular interactive system (Meixner et al., 2010). Tradi-
tional Domain and Task models belong to this abstraction layer.

� The Abstract UI: Expresses the UI in terms of interaction units
without making any reference to implementation in terms of
interaction modalities or technological space (e.g. computing
platform, programming or markup language) (Vanderdonckt
et al., 2014). Abstract presentation or dialog models belong to
this layer of abstraction.

� The Concrete UI: Describes concretely how the UI is perceived by
the users using concrete interaction objects (Vanderdonckt and
Bodart, 1993). These objects are modality-dependent but
implementation-language-independent. Concrete Presentation
models belong to this layer.

� The Final UI: Expresses the UI in terms of implementation-
dependent source code. It can be represented in any UI
programming or mark-up language (e.g. Java or HTML).

The CRF distinguishes between development and run time
phases. In the development phase, initial model specifications are
refined in successive steps. Ultimately, a Final UI expressed in
source code is generated in a manual or automatic fashion from
the concrete UI (Fonseca et al., 2010). Final UIs can then be inter-
preted or compiled as pre-computed UIs targeted for specific
contexts of use (i.e. user, platform and/or environment) and
plugged into an environment that supports dynamic adaptation to
multiple targets at run time (Calvary et al., 2003).
3. Related work

Improving the reusability of model specifications in the context
of MBUID has been addressed in the past. The main approaches
found in the literature can be classified as:

� Reuse based on the UI Description Language: Some languages
have foreseen the need to reuse fragments of specifications and
have defined specific technical methods to deal with it. For
instance, Hyatt et al. (2001) allows referencing specification
fragments defined in the same document or included from an
external document using the special processing instruction
o?xul�overlay?4 . In XICL (Sousa and Leite, 2005; de Sousa
and Leite, 2006) the UI is made up of components which are
somehow similar to classes. XICL allows the inclusion of
components which can be extended through certain language
tags and attributes (e.g. extends, child) in an analog way to
object-oriented programming. In UIML (Abrams and Helms,
2004), frequently used specification fragments can be defined
as templates using the otemplate4 tag, and reused in a
flexible way (e.g. cascade, replace or union the referenced
element). In addition, templates can receive parameters whose
value will be passed when referencing. All previous approaches
allow the developer to create a library of reusable assets,
enabling the scope of the reuse to be internal (i.e. intra-project)
or external (i.e. inter-projects).

� Reuse through multiple transformations: Third (TERESA Mori
et al., 2003, XMobile Viana and Andrade, 2008) and fourth
generation (e.g. MARIA Paternò et al., 2009, GUMMYMeskens et
al., 2008) MBUIDEs are capable of generating multi-target UIs
(Meixner et al., 2011). Therefore, a single UI model specification
can be transformed multiple times targeted to different context
of use which are defined for a set of users, hardware and
software platforms, and physical environment (Calvary et al.,
2003). This can be viewed as a kind of generative programming
(Mohagheghi and Conradi, 2007). The scope of reuse is normally

Table 1
Approaches for the reuse of UI specifications.

Group Approach Main Technical Method Scope (& granularity)

Language-based XUL Compositional
XICL Component-based, O.O. Internal or external (fine-grained)
UIML Compositional, templates

Multi-Target TERESA , XMobile, Generative programming Internal (coarse-grained)
MARIA, GUMMY

Pattern-based PD-MBUID, PIM Patterns Internal or external (coarse-grained)
PCB Patterns, component-based
internal as reuse is restricted to new transformations of a
specific UI lacking sufficient granularity to reuse just UI
components.

� Reutilization through pattern-based techniques. Patterns can be
viewed as abstract meta-models of frequent solutions which
can be used to build UI specifications. Pattern-driven and
model-based UI (PD-MBUI) (Ahmed and Ashraf, 2007) define
a unifying framework where pattern-driven development is
applied to building UI models. Tools such as PIM (patterns in
modelling) (Radeke et al., 2007) can help the developer in this
process. Patterns are also applied along with component-based
reuse in Sinnig et al. (2005), where the authors propose to
instantiate patterns related to models of the UI (e.g. task and
presentation) and then use these instances as components of
the UI. Patterns do not limit the scope of reuse, which can be
either internal or external.

Table 1 provides a summary of the previous approaches, the
main technical method for implementing reuse according to the
generic classification in Mohagheghi and Conradi (2007), as well
as the scope of the reuse and granularity of the assets.

Observe that although previous approaches have been imple-
mented in real-world systems, little is known about experiences
with the reuse process and obtained results. Thus, our work aims
to be a first step in this field.
4. Description of our MBUIDE: WAINE

This section describes the system used in our case study:
WAINE (Delgado et al., 2007), a basic MBUIDE that generates web
applications based on the form paradigm.1 WAINE was designed to
facilitate systematic UI development to engineering students that
were not acquainted with the plethora of current web-related
technologies. A design goal was to simplify and speed up the
development process by avoiding the need to define concrete
aspects of the UI and pro-actively supporting the reuse of
specifications.

4.1. UI models in WAINE

WAINE's Domain model describes the data that users handle via
the UI and is specified through an Entity-Relationship Diagram
(ERD). At a lower abstraction level, the following models (illu-
strated in Fig. 1) determine more directly the content and
appearance of the UI.

� The Presentation model: Defines elements from the Abstract
Presentation model. It has two major constructs: containers and
forms. A form aggregates Abstract Interaction Objects (AIOs)
1 WAINE is not multi-modal since it is targeted only for the graphical modality.
such as fields (i.e. input/output interactors which displays and
manipulate data), and action-launchers (i.e. controls) that allow
the user to perform actions. Containers define the structure,
content and basic behavior of an interaction unit (Vanderdonckt
et al., 2014) (see Fig. 5). Containers can be of type form (to define
an interaction unit composed of a single form), split (to create a
spatial division in various areas), or relation (to create a spatial
division in two areas that handle inter-related data). Containers
use parameters to specify the content of each zone through a
reference to a form or to another container (see Fig. 1). We will
expand on forms, containers and parameters later in Section
4.3.
A Concrete Presentation model is refined automatically from
this model in a pre-defined way. However, each container, form
or field can use its parameters or properties to override this
default mapping and re-define some of its concrete aspects such
as theme, style or concrete interactor. Thus, WAINE's Presenta-
tion model can also cover concrete-level definition to some
extent.

� The User model: Users are categorized into groups according to
their role. One group can have many users but each user only
belongs to one group. Groups have specific views of the dialog
model and security options.2

� The Dialog model: Includes a set of menu options accessible to
users according to their group. Each option references an
interaction unit to display identified by its top-level container
or an action to be executed.
There are events associated to the User and Presentation models
(UM-Event and PM-Event respectively in Fig. 1) upon which
occurrence an action can be triggered. For instance, onUserLo-
gin and onUserLogout events are defined in the User model,
form-related events such as onFormLoad and onFormUpdate
are defined in the Presentation model.
4.2. Architecture and final UI generation

The UI is automatically generated following a run-time archi-
tecture (shown in Fig. 2). At the reception of a user action over the
UI (1 – user request) the run-time engine generates the Final UI
(2b), which is formed by HTML, CSS and Javascript and is sent
(3) to the user browser. Three repositories are used by the run-
time in this process (2a):

� UI models: Stores the instances of the UI models from Fig. 1.
� UI data: Handles the data referenced by the UI.
� Customization: Composed of a collection of files that deal with

concrete aspects of the UI (e.g. fonts, borders, and colors),
2 A mechanism based on Access Control Lists is implemented to restrict the
access of a user or group to a specific form or container. However, this is not shown
in Fig. 1 for the sake of clarity since it does not contribute to the goal of the paper.

Form

Menu

Option

PM−Event

User

Action

Group

Container

Field

Parameter

ActionLauncher

Main

UM−Event

1..*

1

1..*

1

source
type

0..2

type
source

type
id

1

value
name

1..*uses

source
id

caption
id

caption

caption

type
0..1

1

1

1

0..1

0..1
1

1

0..1

triggers

ledoMnoitatneserPledoMgolaiDledoMresU

contains

name
uid

type

name
gid

1

1..*

1
has

0..1

1

1..*

1
0..1

re
fe
re
nc
es

1
1

0..*

1

1

1

trig
ger
s

trigg
ers

0..1

0..1

0..1

co
nt
ai
ns

ha
s

0..*

references

contains

triggers

contains

contains

Fig. 1. WAINE UI models.

UI models

UI Data

Customization

Final User Interface (running UI)

Web
browser

JS
CSS

HTML
WAINE
Engine

Final User Interface (source code)

user request

(source)
Final UI

1

3

2b

2a

UI server run-time UI client run-time

Fig. 2. Run-time implementation architecture.
database access configuration3 and other implementation-level
aspects related to widgets, authentication methods and actions.

When an application is initiated, the run-time engine auto-
matically generates a login form for authentication. Once the user
is authenticated, the engine fetches the objects from the Dialog
model that correspond to the user (or his group) and displays the
menu options. At the user selection of a menu option the run-time
engine will either execute an action or generate the code of an
interaction unit. In the latter case, the UI models and UI data
repositories are retrieved to get the AIOs involved (e.g. containers
3 A local configuration file indicates to the run-time the connection method for
each database used, enabling transparent location of UI objects by sequential
search of the object among the databases listed.
and forms) and the linked data. Then, the concrete presentation is
composed using the default abstract-to-concrete mapping speci-
fied in the customization repository.4 Ultimately, the run-time
generates the Final UI. This process is repeated until the user
logs out.

4.3. UI development life cycle

The activities of the development process finish with the
provision of the three repositories used by the run-time
engine. Fig. 3 illustrates the main steps involved in this pro-
cess as well as their relationship with the levels of abstraction
4 As mentioner earlier, concrete presentation aspects defined by AIOs proper-
ties will prevail over this default mapping.

Fig. 3. Main steps in WAINE development life cycle.

RemarkAppointment

Patient

Container

type: relation
csample

Container
csample_n

type: split

Form

layout: form

Patient

fpatient

source:

source:

Form

Appointment

fappointment
layout: table

source:

Form

Remark

fremark
layout: table

1:N1:N

table

form

fremark

fpatient

table

fappointment

Relation: csample

Split: csample_n

Fig. 4. Example of annotation of ERD diagram.
from the CRF (in dashed line). The process begins with a
requirement analysis document that includes functionalities,
user roles and a sketch of UIs and reports. The following steps
are as follows:

1. Concepts modeling: From the requirement analysis two docu-
ments are generated: (a) an ERD that captures the concepts
handled by the application (WAINE domain model) and (b) a
table that specifies needed actions and interaction units for each
possible role (i.e. role functionalities).

2. ERD-UI annotation: This reificatory process specifies each
interaction unit in the application by annotating the ERD from
step 1. To do so, it enriches the portion of the ERD affected by
the interaction unit annotating its structure and layout. To
illustrate and expand on this process we develop a simple
example application to manage patient appointments through a
single interaction unit.
The visual structure of the interaction unit in our example is
composed of two zones horizontally divided that hold a data
relationship one-to-many. Fig. 4(a) shows how this is anno-
tated in the ERD with a dashed line around the implied
entities and the container type (Relation) and id (csample).
The top area will allocate a form that handles data of the
entity Patient. This is annotated by writing the form identi-
fier (i.e. fpatient) and layout (e.g. form, table, grid, and list) in
the corners of the own Entity. In the bottom zone of csample
we divide the space vertically by using a new container:
csample_n of type Split. Forms to deal with appointments
(fappointment) and remarks (fremark) related to each patient
will be defined on the left and right sides respectively.
The behavior of the interaction unit is defined by the
container csample. If the data element in the one zone
changes (occurrence of Patient in our example) the data
elements in the many zone (occurrences of entities Appoint-
ment and Remark) are automatically recalculated. This
synchronization process is facilitated due to the hierarchical
relationship between the UI constructs illustrated in Fig. 4
(b).

Application menu

Interaction unit

Fig. 5. Example UI.
The output of this step is a collection of annotated ERD-UI
documents (one for each interaction unit).

3. ASL specification: In this activity, the developer takes the table
role/functionality and ERD-UI diagrams, and creates a document
written in an XML-based language termed ASL (Delgado et al.,
2007) where instances of the classes from Fig. 1 (UI models) are
specified. Appendix A provides a specification of the interaction
unit previously defined (see Fig. 4) including the definition of a
group with one user and the elements from the Dialog model
generated from the table role/functionality (tags group, user,
main, menu and option). Observe from the ASL specification in
Appendix A that:
� The majority of the specification lines are devoted to the

definition of the Presentation model.
� A form definition requires some attributes to be set such as

identifier, source and caption, and includes the definition of
the primary key (tag key) and optionally foreign key (tag
fkey), as well as its composing fields which in turn encom-
passes the definition of its source, abstract interactor (e.g.
string, date), etc.

� Each container uses a variable number of parameters. Para-
meters can be classified into three categories:
○

○

○

Structural: Used to define a spatial structure (e.g. the form_split
tag is used in the container csample to create a division in two
rows assigning 20% of the available space to the top one).
Content: Describing the content for each zone (e.g. tags con-
tainerid, formid reference a content for a zone indicated by the
attribute ord) and its basic properties (e.g. form_layout).
Customization: Oriented to overwrite values defined in a
form that is referenced. Section 5 includes an example of
these kind of parameters.
5 The fallback mechanism contains alternate content to be used if the
4. Generation of repositories and customization: The development
process finishes with the creation of the three repositories used
by the run-time engine. The UI models repository is automati-
cally generated by a tool which checks the syntax of the ASL
document and transforms it into a populated database. The UI
data repository is automatically generated from the ERD. Finally,
a default customization repository is also automatically gener-
ated for the new application. This repository includes informa-
tion to refine the concrete presentation of the UI such as Listings
1 (mapping abstract to concrete interactor) and 2 (colors and
styles), as well as other configuration information such as
databases and paths to use. Developers can overwrite or add
new objects to this repository to customize the application.
Fig. 5 shows the default aspect generated for the ASL document
in Appendix A.
Listing 1. Abstract-to-concrete interactors mapping.
Listing 2. Colors and styles configuration.
5. Reuse techniques supported by WAINE

One of the design goals for WAINE was to increase develop-
ment productivity, which lead us to proactively support reutili-
zation techniques. We have implemented compositional techni-
ques based on the UI description language (according to our
classification in Section 3) to reuse fragments of ASL specifications.
In addition, we also have implemented the capability to reuse the
repositories among various applications which is a novel way to
support the reuse of transformed specifications.

5.1. Reuse based on the language

The techniques supported by ASL are as follows:

� Inclusion (I): ASL uses the W3C standard XInclude (Marsh et al.,
2006) instead of a language-specific method (e.g. XUL or UIML),
which requires the implementation of the include and fallback5

tags (see Fig. 6). XInclude can be used to insert fragments of
specifications stored in an external file into the ASL document.
Additionally, it can also be used to modularize large
specifications.
requested resource cannot be found.

PROP?
USER* PROP?

PARAM*

EVENTS?

FIELD*

MENU* OPTION* ACTION?

ACTION LAUNCHER?

MAIN*

FORM*

INCLUDE*
HEAD?

FALLBACK*
META*

A
S

L

GROUP*

CONTAINER*

optional *: cardinality 0..N

?: cardinality 0..1

USER
MODEL

DIALOG
MODEL

PRESENTATION

MODEL

references to elements in customization or data repositories

Fig. 6. References and parameters in ASL structure.

6 Data from the academic year 2013.
� Sub-specification and Parametrization (S,P): ASL allows one to
reference UI elements and adapt such elements through para-
metrization. To gain insight into how (S,P) are implemented
Fig. 6 shows the structured hierarchy of the main ASL tags and
its inter-relation. Dashed arrows indicate sub-specification. For
example, a container can be referenced from menu options, a
form can be referenced from the parameters of different
containers, and so on. Observe from the syntax and structure
of ASL that only top-level tags (i.e. main, container or forms)
and objects in the customization and data repositories are
reusable through sub-specification.
As mentioned earlier, containers can use parameters to override
any property of their composing forms. This supports the
adaptation of the reused asset. For instance, Fig. 7 shows how
the form fpatient previously defined in our example (see
Appendix A and Fig. 5) can be reused changing its layout from
default (form) to table, removing its fourth field, forbidding
edition in the first and third fields, and suppressing the action
launcher for the insertion of new tuples (add button in Fig. 5).

Note that (I) can be combined with (S,P) to use a library with
useful fragments of specifications to be included in various
projects.

5.2. Reuse based on run-time repositories

In our MBUIDE the run-time does not directly access the UI
specifications but repositories that contain transformed versions
of such specifications. If these repositories were accessed by var-
ious run-time engines various applications could share any ele-
ments from any of their UI repositories.

We have implemented in the run-time the capability to per-
form a sequential search of a referenced element among a list of
repositories which can or cannot belong to the application. This
can be viewed as a comfortable way of inclusion where the
developer does not formally include or know the source of the
asset but just references it by its name. The main constraints are
(a) the element identifier must not be duplicated in different
repositories (the first hit will be selected in such case) and
(b) access to shared repositories must be fast enough to avoid
impairing the UI response time.

Sharing repositories of UI objects between run-times (i.e.
applications) can employ one of the following strategies illustrated
in Fig. 8:

� Central repository ðCÞ: A central shared repository can store UI
objects common to various applications. In addition, each
application could have its local repositories storing its specific
elements as illustrated in Fig. 8(a).
� Federated repository ðFÞ: Federation allows objects residing in
different locations to be linked and accessed in a transparent
way for users, as if those objects where residing in the same
location. A new UI can be composed by federating UI fragments
from other applications. The resultant federated UI will obtain
assets from various repositories which belong to independent
and autonomous applications as illustrated in Fig. 8(b).

Fig. 9 illustrates the methods supported and their context of use
within the development process.
6. Case study

This section aims to provide a real-world experience where
reutilization is studied after developing six projects with WAINE.
We believe that our experience provides interesting insights into
the technical approaches applied, as well as the factors that can
impact the reusability of the assets.

Our University demanded a common development environ-
ment for a set of inter-related projects in a large School of Engi-
neering where 500 lecturers and 5400 students from 12 different
degrees6 share common resources such as 112 rooms, 856 sub-
jects, 16 screen panels and a number of activities like exams,
seminaries, lectures, and scholarships. A total of six different
applications were defined to manage different aspects of the
aforementioned resources. Table 2 shows a list of the projects
sorted by development date. Applications were developed
sequentially. For each application columns 2–5 provide data rela-
ted to the first step of our development process: number of roles
(i.e. user groups such as professor and student), total functional-
ities, number of Interaction Units (IUs) and number of database
tables and views. Columns 6 and 7 show the duration of the
project in weeks (a week is equivalent to 40 h of work), and the
size of the ASL specification in lines of code (LOC) (step 4 in the
development process). We consider A1 as a large project and A2–
A6 as small projects. The last column describes the purpose of
each application. Fig. 10 shows a screenshot of the application A6.

The applications listed in Table 2 exhibit common character-
istics such as roles, look & feel, common forms and data. Our initial
motivation was not to perform an exhaustive experiment on reuse,
but to exploit the potential commonality to reduce the develop-
ment effort by reusing ad hoc UI components previously devel-
oped. Note that we did not start with project Ai requirements until
project Ai�1 was finished, which implies that we did not know a
priori what assets would be needed in future projects.

On each project, new UI assets were generally developed as
needed without a specific design for reuse. Consequently, the
repertoire of assets available for reuse was mostly built along with
the first application (note that A1 is substantially greater than A2–
A6) and grew slightly with each application developed.

The first application (A1) was developed by a high experienced team
composed of the first two authors (average experience over five years).
The following applications (A2–A6) were developed by teams com-
posed of a single graduate-level student (low experience) closely
tutored by the main author. Each student developed one application. All
students exhibited comparable skills and received a three day training
aboutWAINE to become acquainted with the development process and
ASL coding through the development of a sample application. All
techniques for reuse supported by WAINE were practiced in the train-
ing sessions. The tutor lead the development steps up to 2 (i.e.
requirements, ERD, role/functionalities). Students participated passively
in these steps, but were responsible for writing ASL specifications (step

Fig. 9. Context of use of the techniques supported.

Table 2
List of applications developed.

App. Roles Functionalities IUs Tables Views Duration (weeks) ASL size (LOC) Purpose

(A1) reservas 11 204 188 98 15 5696 Room reservation management
(A2) inveq 2 24 23 40 4 578 Inventory management
(A3) board 5 26 22 10 5 768 Departmental advertisement
(A4) pracemp 1 20 18 20 4 521 Scholarships management
(A5) relext 1 11 10 16 4 239 Foreign affairs management
(A6) scrplan 2 13 11 24 6 904 Screen panels advertisement

<container id="cparam_sample" type="form">

<param name="fields_readonly" value="1:3"/>

<param name="formid" value="fpatient"/>
<param name="form_layout" value="table"/>
<param name="fields_remove" value="4"/>
<param name="button_insert" value="NO"/>

</container>

Fig. 7. Reusing the form fpatient with (S,P).

Fig. 8. Centralized (a) and Federated (b) architectures for sharing UI objects between various UI run-times.
3) for the assigned project. Assets developed in previous projects were
known to the tutor, who did ad hoc search, selection and evaluation of
the assets to be reused. Students implemented reuse as indicated by the
tutor and occasionally implemented opportunistic internal reuse over
assets that they had previously developed. Each student was supervised
by the tutor twice a week.

Fig. 10. Screenshot of scrplan (A6).
7. Results based upon our experience reusing UI assets

Software reuse is a complex subject that encompasses all
phases of the software development life cycle (Basili et al., 1995;
Gill, 2003; Kontio, 1996) and requires the careful use of metrics
(Mascena
et al., 2005; Baldassarre et al., 2005). An excellent review of
industrial cases can be found in Mohagheghi and Conradi (2007).
This section does not intend to offer an exhaustive analysis of
software reuse but to serve as an illustrative example of our par-
ticular experience reusing UI assets with the techniques imple-
mented by WAINE and quantify some of its benefits after the
development of the projects listed in Table 2.

7.1. About the application of each technique
7 The only exceptions to this were the containers and forms related to user
management and about dialogs.
� XInclude ðIÞ: We have mostly used this standard inclusion
mechanism to modularize large ASL documents for better
maintenance and, to a lesser extent, to include UI elements
common to various applications. In particular during the
development of A1, only two interaction units a priori identified
as common to all applications (referenced from the menu
options user management and about) were defined in their own
files and included in all projects. This scarce use of inclusion can
be traced back to the fact that we did not count on a specific
library of reusable objects (except for the aforementioned) but
the ad hoc reuse of existing assets from previous projects.

� Sub-specification and Parametrization (S,P): The use of sub-
specification has allowed elements from the same document
or from other applications (when used along with run-time
repository sharing) to be reused verbatim (without modifica-
tion). However, we found ourselves limited in reusing elements
from the Dialog model since its asset were non-adaptable,
coarse-grained elements that included the full set of menu
options associated to a specific role, and it is unlikely that
different roles have the same set of functionalities. Conversely,
assets with a less hierarchical structure have been frequently
reused within the Presentation model (e.g. a form or container
definition referenced by other containers).
Parametrization has made reuse more attractive since original
assets can be adapted. This has notably increased the reusability
of forms. For example, in A1 a single form definition (form id
form_subjects with ten fields to handle personal information)
was internally referenced up to twelve times from different
containers using parameters to obtain different variants.

� Sharing run-time repositories (C,F): We have always7 applied this
technique in combination with (S,P) for inter-project reuse. This
is attributable to various reasons: (a) all applications shared a
common infrastructure (school data center) which eases man-
agement and provides good response time; (b) it saved us the
need to use a formal inclusion mechanism during ASL coding;
and (c) as mentioned earlier, we had not created specific
libraries of assets except for the two aforementioned.
The run-times were configured to access not only their own
three repositories, but also the repositories of those applications
where referenced elements had been defined (mostly A1
repositories). This gave us the possibility of reusing fully
functional components of the UI between applications in a
flexible way (i.e. abstract and/or concrete presentation and/or
data interfaced). It was particularly useful in frequently used
forms defined in A1 and used by the rest such as subject
selection, room location, etc. In these cases, A1 repositories
acted as central repositories for the other applications. Fig. 11
shows an example where a container for subject selection
(composed of three inter-related selectors for degree, academic
year and subject) defined by A1 is also used by A3. Centraliza-
tion has also improved maintenance since changes in adaptable
assets can be immediately noticed by all connected applications
or ignored through parameters in those applications that do not
need them.
Less frequently than centralization, we have also reused UI

Fig. 11. Example of centralized form shared by two applications.

Table 3
Use of techniques.

Technique Reuse scope Function Frequency

(I) – Modularize specification –

(S,P) Internal Reuse verbatim and adapt para-
metrized assets

Always

(I)þ(S,P) External Reuse assets defined in external ASL
document

Seldom used

(S,P)þ(C,F) External Reuse assets from repositories of any
application

Always
elements by federating repositories when some of the interac-
tion units of an application were maintained by other applica-
tions. For instance, A4 interaction units show information about
destinations (e.g. countries and regions) directly managed by A5
as well as information about professors, departments or degrees
directly managed by A1. Therefore, A4 was not accountable for
changes in the data or presentation of such information which
depended on their respective management domains.

Table 3 summarizes the final application of each available
technique.
7.2. Quantitative results of the overall reuse

It is worthwhile recalling that WAINE reusable components (UI
assets) can be:

� ASL top-level tags from the User ðogroup4 Þ, Dialog ðomain
4menuÞ or Presentation models (ocontainer4oro form4 ,
see Fig. 6).

� Database tables or views interfaced by the UI.
� Individual files from the customization repository related to

concrete presentation such as style definitions and configura-
tion files.

The metric amount of reuse (Frakes and Terry, 1996) counts the
portion of assets defined in a project used more than once (either
within the same project or reused in other projects). Table 4 shows
the number of assets defined (row D), the number of reused assets
(row R) and the amount of reuse (column %) for each application
and WAINE repository. The last row and column provide total
numbers for each application and row respectively.

Table 4 shows a comprehensive description of our experience
in which we highlight the following ideas:

� The application A1 defines 65% of the total assets developed;
61% of its UI assets have been reused either internally or by
other applications. Almost all concrete presentation assets in its
customization repository have been reused by the rest (A2–A6),
getting a homogeneous look in all corporate applications.

� Elements from the Dialog and User models have been seldom
reused. This can be traced back to the own structure of those
assets in their respective models: single coarse-grained and not
adaptable. Additionally, in the case of the User model, groups
cannot be referenced from other models, leaving inclusion as
unique reuse method. At any rate, dialogs and users account a
minimal portion of the overall assets defined in ASL (7%).

� The Presentation model accounts for a major part of the assets
defined in ASL (93%). In the case of A1, almost 57% of its Pre-
sentation model assets have been reused. Data interfaced by the
UI have also been reused, but always along with the reuse of the
linked abstract interaction objects.

The previous reasons justify why we focus our interest on the
Presentation model for the remainder of this section. We believe
that a deeper study of the reuse of elements in the customization
or UI data repositories is not interesting in our particular case due
to (a) A1 customization repository acts as a central repository
almost fully reused by the rest, and therefore, the benefit is easily
predictable; and (b) data reuse has already been thoroughly stu-
died in literature (Frakes and Kang, 2005), and in our context it
always takes place through the Presentation model.

7.3. Reuse of the presentation model

The rest of this section provides a quantitative analysis of the
scope of the reuse, the overhead introduced when assets are
adapted, and how the reuse of this central model in WAINE has
improved software development productivity.

7.3.1. Reuse scope
To observe whether reuse is predominantly internal or external

in each project, we use the Reuse Level (RL) metric (Frakes and
Terry, 1996), defined as the ratio between the number of objects
reused in a system versus the number of different objects that a
system utilizes. Table 5 presents for each application: the number
of different Presentation model assets used (L), the number of
Table 4
Assets defined and reused per application and UI model.

Repository A1 A2 A3 A4 A5 A6 TOTAL

UI data D 98 40 10 20 16 24 208
R 17 2 5 2 3 1 30
% 17.3 5.0 50.0 10.0 18.8 4.2 14.4

UI models (ASL)
(User model) D 11 2 5 1 1 2 22

R 0 0 0 0 0 0 0
% 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(Dialog model) D 11 1 4 1 1 2 20
R 0 0 1 0 0 0 1
% 0.0 0.0 25.0 0.0 0.0 0.0 5.0

(Presentation
model)

D 346 52 50 25 19 54 546
R 197 12 9 6 4 14 242
% 56.9 23.1 18.0 24.0 21.1 25.9 44.3

Customization D 190 3 4 3 3 4 207
R 188 0 1 0 0 1 190
% 98.9 0.0 25.0 0.0 0.0 25.0 91.8

TOTAL D 656 98 73 50 40 86 1003
R 402 14 16 8 7 16 463
% 61.3 14.3 21.9 16.0 17.5 18.6 46.2
elements internally reused (i.e. defined and reused in the same
project) (M), the number of elements not defined by the applica-
tion but leased from other applications (E), the internal reuse level
(internal RL), the external reuse level (external RL) and the total
reuse level (total RL).

As expected, Table 5 shows that intra-project reuse is clearly
dominant in the first development A1; the other projects do not
show a general tendency. For instance, A4 or A5 benefit from inter-
project reuse (mostly from A1) while internal reuse is dominant in
those applications that are less integrated with the rest. This is
consistent with the findings described in Mohagheghi and Conradi
(2007) for general software reuse in industrial projects: “in small-
scale studies, reused assets are internal or external, while in the
medium to large-scale studies, reused assets are all internal”. Our
results also suggest that a high total reuse level can be achieved by
external reuse when UIs of small applications (e.g. A4, A5) have
high commonality with a large application, or by internal reuse in
a large application such as A1.

7.3.2. Adaptation of the assets
Whenever a form was reused adaptation was carried out.

Identifying the right form and adaptation takes some effort that
unfortunately we have not measured, but it is worthy to compare
the forms size in terms of ASL lines of code (LOC) versus the size of
the adaptation overhead (i.e. counting one line of code for each
parameter used to adapt the original asset) each time that a form
has been reused. Fig. 12 shows the average size of the reused forms
(categorized by size) versus the average overhead used to adapt
them. We can conclude that the adaptation overhead is always less
than the size of the adapted item, and that it grows at a lower rate
than the asset size. In other words, the bigger the asset, the more
productive its reuse is in terms of saving lines of code.

Table 6 shows the adaptation overhead by project. Columns
two to four show the aggregated size of the forms, the overall
adaptation overhead in LOCs and in percentage respectively.
Relating these results to those from Table 5 we can observe that
projects where reuse is predominantly internal (A1, A2, A6) have a
lower adaptation overhead than projects where reuse is pre-
dominantly external (A4, A5). This supports the idea that adapting
own assets has a lower overhead than adapting assets defined by
other projects.

7.3.3. Benefits of the reuse
Cost-benefit analysis states that benefit derived from reuse can

be expressed by the equation (Gill, 2003):

Rsave ¼ ½Cno_reuse�Creuse�=Cno_reuse: ð1Þ
where Cno_reuse is the cost of developing an application without
reusing assets and Creuse is the cost of developing an application
reusing assets (which includes the cost of reusing).

Taking ASL code lines (LOC) as a rough metric to estimate the
development cost in WAINE, we can do reverse engineering and
estimate Cno_reuse by recalculating the number of code lines that
would have been written if reuse had not taken place. This can be
readily done by processing the ASL specification documents and
Table 5
Reuse level of the presentation model of each application.

Project L M E Internal RL External RL Total RL

A1 350 197 4 56.3 1.1 57.4
A2 54 12 2 22.2 3.7 25.9
A3 64 9 14 14.1 21.9 35.9
A4 44 6 19 13.6 43.2 56.8
A5 29 4 10 13.8 34.5 48.3
A6 58 14 4 24.1 6.9 31.0

Table 6
Overhead of adapting assets on each application.

Project Total size of
forms (LOC)

Parametrization over-
head (LOC)

Parametrization over-
head (%)

A1 2.021 359 17.8
A2 230 30 13.0
A3 212 70 33.0
A4 228 60 26.3
A5 91 24 26.4
A6 437 73 16.7

Average 536 103 22.2

Table 7
Benefits of reuse per application in the presentation model.

Project Presentation
model size
(LOC)

Estimated
size without
reuse (LOC)

Rsave ASL coding
duration
(w)

Estimated
duration
without reuse
(w)

A1 5.335 22.225 0.76 10.5 42.1
A2 532 812 0.34 2.5 3.8
A3 689 1.636 0.58 2.8 6.6
A4 483 1250 0.61 2.1 5.4
A5 219 525 0.58 2.7 6.5
A6 865 1.463 0.41 4.3 7.3

Total 8.123 27.911 0.71 24.4 71.8
Average 1.354 4.652 0.55 4.1 11.9

0,00

5,00

10,00

15,00

20,00

25,00

30,00

small(4-9) medium(10-15) large(16-21) huge(>21)

LOC

average form size average adaptation overheads

Fig. 12. Parametrization overhead by asset size.
updating a code lines counter every time a container or form is
reused by simply adding its size and subtracting the LOCs written
for its reuse (including the parametrization overhead), which we
assume to be the cost of the reuse method. Table 7 shows for each
application the LOC actually written (Creuse), the LOC that would
had been necessary to write without reusing forms and containers
Cno_reuse, and the cost benefit of such reuse Rsave as defined in
Eq. (1). The last two columns show the duration of the ASL coding
activity and an estimated duration of such activity without reuse
respectively according to each project's productivity (i.e. the ASL
size divided by the duration of the ASL encoding phase).

From Table 7 we can observe that reusing UI assets has reduced
the size of the Presentation model specifications an average of
55%, peaking at 76% for our largest application A1. If we add the
specifications of all applications (total row) we have attained a
total benefit of 71% in terms of LOC savings and an estimated
reduction of 66% in the duration of ASL coding.

7.3.4. Other considerations
The benefits of software reuse include improvements in pro-

ductivity, quality and maintenance (Mohagheghi and Conradi,
2007). Unfortunately, we have not been able to collect data about
quality. The only facts known after two years of operation and
maintenance are five modifications of existing forms or containers
have been made; 80% of these modifications affected assets in A1
which were being internally reused; twelve new assets were also
created from which one-third were done by reusing existing
assets. This suggests that the share of reuse obtained during
development could also have some impact during maintenance.
8. Lessons learned and open issues

Our results are influenced by our context (i.e. projects, reuse
process and MBUIDE). However, we believe that some general
ideas can be used by the MBUID community in order to design
new systems or models with enhanced reusability.
8.1. On the reusability of UI models through sub-specification

UI models define elements (associated to top-level tags in XML-
based languages) potentially reusable via sub-specification. These
elements can be referenced from other elements that belong to the
same model (intra-model reference) or from other related models
(inter-model reference). According to our experience, intra-model
sub-specification improves significantly the reusability of a model,
especially if assets can also be adapted. To expand on this, we can
analyze our Dialog model and figure out the consequences of
changing the structure of its reusable asset.

Fig. 13(a) illustrates the present situation of the Dialog model in
WAINE. Single monolithic elements (i.e. a single top-level tag o
main4 which includes a nested definition of its components – see
Appendix A) can only be referenced from the User model. A dif-
ference in just one attribute of the omain4 element such as its
caption forces the developer to specify two complete assets.
However, if assets within that model were composed of referable
parts as in Fig. 13(b), intra-model reuse could take place eventually
letting higher-level components reuse lower-level components
through intra-model sub-specification. This increases the number
of reusable assets in the model. Naturally, it requires changes in
the language syntax. For example, in order to make (b) possible,
the structure and syntax of ASL should define omain4ando
menu4 as top-level elements and let the latter be referenced
from the former in an analog way to containers and forms. Intra-
model reuse, along with adaptation, has been key in the high
reusability of our Presentation model.

Of course, it can be argued that high fragmentation (for
example three levels of referenced parts in the previous example
main - menu - option) also complicates the process of reuse
and adds more overhead. The cost of reusing is also influenced by
factors such as time spent searching, screening and evaluating the
items to be reused (Kontio, 1996) not assessed in our particular
case. However, in industrial environments with large projects
these factors should be taken into account. Therefore, a balance
needs to be found between model fragmentation and the com-
plication and cost of the reuse process.

8.2. On the size and adaptability of the assets

As a general principle, the bigger an asset is, the more profit-
able its reuse is. However, big coarse-grained assets can be less
reusable if they are not adaptable. Adaptability notably increases
the reusability of any asset according to our experience. But it
requires assets to be parametrized and their structure to be
known. On the contrary, the smaller an asset is, the less profitable
its reuse. For instance, although 60% of the forms reused in our
case had a small size (4–9) they only produced a share of 30% of

main1caption2

caption2

main2

caption1

UserGroup1 UserGroup2 UserGroup3UserGroup1 UserGroup2 UserGroup3

main1

menu

option

UI asset A

caption1

Sub−components
(parts) menu

option

UI asset C

main2

menu

option

UI asset B

UI asset BUI asset A

(parts)
Sub−components

Fig. 13. UI Model fragmentation.
the benefit in terms of saving lines of code attributable to
reusing forms.

In general a less fragmented model tends to use bigger assets
and viceversa. Consequently, we can conclude that there is a trade-
off between the level of composition of a UI Model, the size of its
assets, and the benefit of reusing them.

8.3. On the techniques utilized

Different techniques apply to assets of different nature: XIn-
clude is able to reuse XML fragments of any kind (even a single
XML line); sub-specification requires the reuse of a complete well-
formed UI asset; repositories allow elements of a nature different
from XML (e.g. style file, a row in a database) to be reused. This
provides flexibility about what can be considered a reusable
UI asset.

XInclude is a good mechanism for modularizing large specifi-
cations. It is also advisable if the reuse process is based upon a
library of model specifications. However, if a reused asset changed
those specifications that merged it will have to be updated too
(fusion problem).

MBUIDE architectures that are based on a run-time facilitate
external reuse. In particular, sharing run-time repositories and
getting the run-time involved in the transparent location of the
objects have brought us the following benefits: (a) overcoming the
fusion problem, (b) flexibility about when and what to reuse
(specifications can be reused at development time but UI objects
can be also reused at execution time), and (c) the asset location is
more comfortable since the developer does not need to know the
full path of the object which facilitates the reuse implementation.
We believe that a good context for using this technique would be
the UI development in software products lines.

Regarding the management of reuse between applications, a
centralized approach is advisable when multiple applications
exhibit high commonality in the elements of some UI model and
there is a single management domain. A federated approach is
advisable when an application comprises elements distributed
along various management domains (e.g. per model or other
criteria).

8.4. Open issues

This work aimed to be a first step in the field of reuse analysis
in MBUID. Consequently, a number of open issues can be high-
lighted for future research, such as the following:

� Increase the body of knowledge in the MBUID context by
(a) exploring reusability in models that are also central in
MBUID such as Task or Dialog and (b) analyzing other reuse
techniques such as those in Table 1 (O.O., component-based,
patterns, etc.).

� Perform and analyze comprehensive industrial use cases with
systematic reuse processes and more detailed cost estimation,
assessing not only productivity but also improvement in soft-
ware quality and maintenance.

� Analyze reusability in the W3C standards for the AUI (Vander-
donckt et al., 2014) and Task models (Paternò et al., 2014). These
standards are expected to have substantial impact in the MBUID
community since more assets common to different environ-
ments will be generated due to (a) wider adoption of standard
models by future system and (b) the possibility to use the
proposed meta-models and its interchange syntax to transform
UI assets between different user interface development envir-
onments (e.g. UsiXML and Maria).
9. Conclusions

In this paper we have presented WAINE, a MBUIDE that sup-
ports the reuse of UI assets defined in its models and have
explained how its reuse techniques can be used along the UI
development process. Using this particular system we have
developed various applications within a common context. Results
show that reusing UI assets with flexible techniques can provide a
significant benefit in a cost-consuming task. We achieved a large
reduction of specifications in the Presentation model between 34%
and 75% depending on the project. Based upon our experience, we
conclude that:

� The structure of UI models and its components has a significant
impact on reusability. UI description languages should consider
assets composition and granularity to create useful reusable
assets at any level of abstraction in future MBUIDEs.

� MBUIDEs with run-time architecture can benefit from sharing
repositories between various projects. Central repositories
enable sharing UI assets that are common to various applica-
tions facilitating its maintenance. A federated system also
allows that UIs are distributed into domains of management.
Acknowledgments

This research is partially funded by the Ministry of Science and
Innovation of Spain (Grant DPI2010-19154) and the Andalusian
Regional Government (Grant TIC-6339). We also would like to
thank the anonymous reviewers for their constructive and quality
reviews.

Appendix A. ASL code of sample application
Listing 3. Extract of an ASL document.
References

Abrams, M., Helms, User interface markup language (uiml) specification version 3.1.
Technical report, Oasis UIML TC, 2004.

Ahmed, S., Ashraf, G., 2007. Model-based user interface engineering with design
patterns. J. Syst. Softw. 80 (8), 1408–1422.

Baldassarre, M.T., Bianchi, A., Caivano, D., Visaggio, G., 2005. An industrial case
study on reuse oriented development. In: Proceedings of the 21st IEEE Inter-
national Conference on Software Maintenance, 2005, ICSM'05. IEEE, Budapest,
pp. 283–292.

Basili, V.R., Caldiera, G. Improve software quality by reusing knowledge and
experience. Sloan Manag. Rev. 37, 1995, 55.

http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref2
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref2
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref2

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.,
2003. A unifying reference framework for multi-target user interfaces. Interact.
Comput. 15 (3), 289–308.

Delgado, A., Estepa, A., Estepa, R., 2007. Waine: automatic generator of web based
applications. In: Third International Conference on Web Information Systems
and Technologies, pp. 226–233.

de Sousa, L.G., Leite, J.C., 2006. Using imml and xicl components to develop multi-
device web-based user interfaces. In: Proceedings of VII Brazilian Symposium
on Human Factors in Computing Systems, IHC '06. ACM, New York, NY, USA,
pp. 138–147.

Fonseca, J.M.C., Calleros, J.M.G., Meixner, G., Paternò, F., Pullmann, J., Raggett, D.,
Schwabe, D., Vanderdonckt, J., 2010. Model-Based UI XG Final Report. Technical
Report, W3C (5).

Frakes, W., Kang, K., 2005. Software reuse research: status and future. IEEE Trans.
Softw. Eng. 31 (7), 529–536.

Frakes, W., Terry, C., 1996. Software reuse: metrics and models. ACM Comput. Surv.
28 (2), 415–435.

Gill, N.S., 2003. Reusability issues in component-based development. SIGSOFT
Softw. Eng. Notes 28 (4) 4–4.

Guerrero-García, J., González-Calleros, J., Vanderdonckt, J., Muñoz Arteaga, J., 2009.
A theoretical survey of user interface description languages: preliminary
results. In: Latin American Web Congress, 2009, LA-WEB '09, pp. 36–43.

Hyatt, David and Goodger, Ben and Hickson, Ian and Waterson, Chris. XML user
interface language (XUL) 1.0, Mozilla. org, 2001.

Kontio, J., 1996. A case study in applying a systematic method for cots selection. In:
Proceedings of the 18th International Conference on Software Engineering, ICSE
'96. IEEE Computer Society, Washington, DC, USA, pp. 201–209.

Marsh, Jonathan and Orchard, David and Veillard, Daniel, XML Inclusions (XIn-
clude) Version 1.0, W3C Working Draft, 10, 2006.

Meixner, G., Calvary, G., Vanderdonckt, J., 2010. Introduction to Model-based User
Interfaces. Technical Report. MBUI Working group (5).

Meixner, G., Paternò, F., Vanderdonckt, J., 2011. Past, present, and future of model-
based user interface development. i-Com 10 (3), 2–11.

Meskens, J., Vermeulen, J., Luyten, K., Coninx, K., 2008. Gummy for multi-platform
user interface designs: shape me, multiply me, fix me, use me. In: Proceedings
of the Working Conference on Advanced Visual Interfaces, AVI '08. ACM, New
York, NY, USA, pp. 233–240.

Mohagheghi, P., Conradi, R., 2007. Quality, productivity and economic benefits of
software reuse: a review of industrial studies. Empir. Softw. Eng. 12 (5),
471–516.

Molina, P.J., 2004. A review to model-based user interface development technology.
In: MBUI: Proceedings of the First International Workshop on Making Model-
based User Interface Design Practical: Usable and Open Methods and Tools,
Funchal, Madeira, Portugal, January 13, 2004.
Mascena, J.C.C.P., de Almeida, E.S., de Lemos Meira, S.R., 2005. A comparative study
on software reuse metrics and economic models from a traceability perspec-
tive. In: IRI-2005 IEEE International Conference on Information Reuse and
Integration, 2005. IEEE, pp. 72–77.

Mori, G., Paternò, F., Santoro, C., 2003. Tool support for designing nomadic appli-
cations. In: Proceedings of the 8th International Conference on Intelligent User
Interfaces, IUI '03. ACM, New York, NY, USA, pp. 141–148.

Paternò, F., Santoro, C., Spano, L.D., 2009. Maria: A universal, declarative, multiple
abstraction-level language for service-oriented applications in ubiquitous
environments. ACM Trans. Comput. Hum. Interact. 16 (4), 19:1–19:30.

Paternò, F., Santoro, C., Davide Spano, L., Raggett, D., 2014. Mbui—task models.
Technical Report. World Wide Web Consortium (W3C). 〈http://www.w3.org/
TR/task-models/〉.

Pinheiro da Silva, P., 2001. User interface declarative models and development
environments: a survey. In: Interactive Systems Design, Specification, and
Verification, Lecture Notes in Computer Science, vol. 1946. Springer, Berlin,
Heidelberg, 2001, pp. 207–226.

Radeke, F., Forbrig, P., Seffah, A., Sinnig, D., 2007. Pim tool: Support for pattern-
driven and model-based ui development. In: Coninx, K., Luyten, K., Schneider,
K. (Eds.), Task Models and Diagrams for Users Interface Design. Lecture Notes in
Computer Science, vol. 4385. Springer, Berlin, Heidelberg, pp. 82–96.

Sinnig, D., Javahery, H., Forbrig, P., Seffah, A. Patterns and components for enhan-
cing reusability and systematic ui development. In: Proceedings of HCI Inter-
national, Las Vegas, USA, Citeseer, p. 9, 2005.

Sousa, L., Leite, J., 2005. Jacob, R., Limbourg, Q., Vanderdonckt, J. (Eds.), Computer-
Aided Design of User Interfaces IV. Springer, Netherlands, pp. 247–258.

Trætteberg, H., 2008. Integrating dialog modeling and domain modeling—the case
of diamodl and the eclipse modeling framework. J. UCS 14 (19), 3265–3278.

Vanderdonckt, J., Furtado, E., Furtado, V., Limbourg, Q., Silva, W., Rodrigues, D.,
Taddeo, L., 2003. Multi-model and multi-level development of user interfaces.
In: Multiple User Interfaces, Cross-Platform Applications and Context-Aware
Interfaces, pp. 193–216.

Vanderdonckt, J.M., Bodart, F., 1993. Encapsulating knowledge for intelligent
automatic interaction objects selection. In: Proceedings of the INTERACT'93 and
CHI'93 Conference on Human Factors in Computing Systems. ACM, Amsterdam,
pp. 424–429.

Vanderdonckt, J., Tesoriero, R., Mezhoudi, N., Motti, V., Beuvens, F., Melchior, J.,
2014. Mbui—Abstract User Interface Models. Technical Report. World Wide
Web Consortium (W3C). 〈http://www.w3.org/TR/abstract-ui/〉.

Viana, W., Andrade, R.M., 2008. Xmobile: a mb-uid environment for semi-
automatic generation of adaptive applications for mobile devices. J. Syst.
Softw. 81 (3), 382–394.

http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref5
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref5
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref5
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref5
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref9
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref9
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref9
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref10
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref10
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref10
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref11
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref11
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref15
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref15
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref15
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref17
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref17
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref17
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref17
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref21
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref21
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref21
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref21
http://www.w3.org/TR/task-models/
http://www.w3.org/TR/task-models/
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref24
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref24
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref24
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref24
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref24
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref26
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref26
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref26
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref27
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref27
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref27
http://www.w3.org/TR/abstract-ui/
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref31
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref31
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref31
http://refhub.elsevier.com/S1071-5819(15)00147-0/sbref31

	Reusing UI elements with Model-Based User Interface Development
	Introduction
	MBUID overview
	Related work
	Description of our MBUIDE: WAINE
	UI models in WAINE
	Architecture and final UI generation
	UI development life cycle

	Reuse techniques supported by WAINE
	Reuse based on the language
	Reuse based on run-time repositories

	Case study
	Results based upon our experience reusing UI assets
	About the application of each technique
	Quantitative results of the overall reuse
	Reuse of the presentation model
	Reuse scope
	Adaptation of the assets
	Benefits of the reuse
	Other considerations

	Lessons learned and open issues
	On the reusability of UI models through sub-specification
	On the size and adaptability of the assets
	On the techniques utilized
	Open issues

	Conclusions
	Acknowledgments
	ASL code of sample application
	References

