

 Data-Oriented Declarative Language
for Optimizing Business Processes

 Luisa Parody , María Teresa Gómez-López , and Rafael M. Gasca

 Abstract There is a signifi cant number of declarative languages to describe business
processes. They tend to be used when business processes need to be fl exible and
adaptable, being not possible to use an imperative description. Declarative lan-
guages in business process have been traditionally used to describe the order of
activities, specifi cally the order allowed or prohibited. Unfortunately, none of them
is worried about a declarative description of exchanged data between the activities
and how they can infl uence the model. In this paper, we analyse the data description
capacity of a variety of declarative languages in business processes. Using this
analysis, we have detected the necessity to include data exchanged aspects in the
declarative descriptions. In order to solve the gap, we propose a Data-Oriented
Optimization Declarative LanguagE, called DOODLE, which includes the process
requirements referred to data description, and the possibility to include an optimi-
zation function about the process output data.

 Keywords Business Processes • Declarative Language • Data-Oriented Optimization

5.1 Introduction

 A business process, henceforth referred to as BP, consists of a set of activities that
are performed in coordination within an organizational and technical environment.
These activities jointly perform a business goal [1]. In management theory during
the last years, a process-oriented perspective has been considered the shell in orga-
nizational (re)structuring. Nowadays, organizations still experience diffi culties in

mailto:lparody@us.es
mailto:maytegomez@us.es
mailto:gasca@us.es

applying this process-oriented perspective to the design and maintenance of their
information systems. Currently, the deployment of more complex systems has put
forth new requirements for fl exible and dynamic specifi cation. Several languages
propose an imperative representation of business processes, whose specifi cation
allows business experts to describe relationships between activities, and to trans-
form the process into an executable model. Therefore, an imperative description
defi nes exactly how activities have to be performed, and how to handle the data-
fl ow. However, one of the disadvantages of imperative languages comes from the
use of unsuitable information for computer systems, since they do not provide
fl exible and adaptable business processes.

 A declarative representation takes into account the business concerns that govern
the BP. A BP may be exposed to different environments and subjected to many
conditions in which the order of activities, or the data exchanged, cannot always be
described at design time or in an easy way. This is the reason why several authors
have proposed languages to defi ne BP as declarative models, since sometimes the
process cannot be completely defi ned at design time. One of the reasons why it is
not possible to create an imperative model at design time, is related to the data that
fl ow through the process. Depending on the data instantiated, the creation of one
model or another could be better, since, for example, the model will infl uence the
selection of the best data input of the activities to satisfy the process requirements.
The role of data in declarative languages has not been very relevant, mostly limited
to describe the execution or not of an activity, depending on the value of a variable
of the data-fl ow. In this paper, we present a new point of view of declarative language
focused on data, where we highlight the signifi cance of the information that fl ows
through the process and between the activities to reach an optimal model according
to the user requirements.

 Sometimes, the user of an application supported by a business process has to
decide about the values to introduce at runtime, for example, the dates in the orga-
nization of a trip (booking fl ights, hotel room and renting a car). Frequently, if the
user can choose between different dates in order to minimize the price, (s)he needs
to search by hand the combinations of dates with the activities this mean searching
for fl ights, hotel rooms and car rental. For this example, the model is known, being
possible to execute the activities in a parallel manner. However, the process goal is
to book a trip, and the objective function is to minimize the price of the trip. Then,
in order to achieve the user requirements (to minimize the sum of the prices for the
services, for a given set of dates), the best combination of data input for the activi-
ties needs to be found. To the best of our knowledge, none of the declarative
languages permit the inclusion of data output optimization in this sense. For this
reason, we propose a data-oriented decision language, called DOODLE. Although
there is already a declarative language called DOODLE, presented by Cruz in [2],
it is a visual and declarative language for object-oriented databases and our proposal
is focused on a defi nition of a business process in a declarative way. Since DOODLE
is oriented to data perspective, when in this paper we use the term ‘optimize
the process’, it means that there is a function to be optimized and where the
data-fl ow involved in the process are related with the aim to optimize the data output.

To meet this challenge, we have analysed the existing declarative languages and
how they have addressed data management, and the features that have not yet
been analysed.

 The rest of the paper is organized as follows: Sect. 5.2 motivates and explains,
through an illustrative example, the necessity in some cases to fi nd the data input
values to optimize the process execution. Section 5.2 introduces a motivating exam-
ple where a declarative description oriented to data is necessary. Section 5.3 details
the proposed language based on the description of a declarative subprocess that can
be combined with an imperative description, such as BPMN. Section 5.4 studies
some of the most relevant proposals of declarative languages and their contributions
to data management. The motivating example described by means of this language
has been included and a comparison with the studied languages is presented. And
fi nally, conclusions are drawn and future work is proposed in Sect. 5.5 .

5.2 On-Line Book Store: A Motivating Example

 In this section, we introduce an example to motivate the necessity to include in
declarative languages some aspects related to data that have infl uence in the model.
The example is based on a sale and delivery process that has been used in many
papers before [3 – 5] and [6]. The example is the on-line Book Store (BS), that rep-
resents a company that collaborates with two services in order to sell and deliver
books (see Fig. 5.1). Both services inform the customer about the fi nal price of
buying and delivering a number of units of a book. However, it could be cheaper to
buy this quantity of books in different packages by obtaining a discount. For exam-
ple, if there is a discount depending on the number of units for a maximum, or the
price of shipping depends on both the weight and volume of the boxes to send. In
this case, it is cheaper to send two small boxes (e.g. 8€ each one) than a bigger one
(e.g. 25€). Another example is if the customer wants to buy 5 units of a book, the
cheapest option could be to buy them in two packages (3 + 2), since there is an offer
“buy 3 pay 2”, and although two deliveries are paid, the delivery cost is increased
considerably due to the weight and volume. The sale terminates when the books
are delivered to the customer and the payment is made.

Receive
Customer

Book Request

Order
Book

Get Payment
and Deliver

Books

Calculate
Books Price

Calculate
Delivery

Cost

 Fig. 5.1 On-line book store example

 In order to model the business process which support the BS example including
the requirement to minimize the fi nal price, neither imperative nor declarative lan-
guages can be used. For imperative languages, Fig. 5.2 depicts two possibilities of
implementation to satisfy the constraints, which are also included in the fi gure. On
the one hand, Fig. 5.2a presents a possible imperative model in BPMN to describe
the BS example. The model has several activities to execute the purchase and the
delivery for each package, but the problem is that the numBooki variables are
unknown, even at runtime, since they are determined to minimize the total cost in
each instance. Moreover, the number of activities to buy and deliver the books are
unknown at design time. The diffi culty in this case is that the specifi c values of the
variables and the number of activities executed to minimize the objective function
are unknown at design time. On the other hand, another solution could be that shown
in Fig. 5.2b : various executions of the activities can be made by means of a loop,
and the values of the numBooki variables will be determined programmatically in a
new activity included in the model. The problem with this solution is the signifi cant
diffi culty in implementing this activity, being necessary to delegate their program-
ming to a computer science expert, not to a business process expert.

 In relation to the existing declarative languages, as is analysed in Sect. 5.4 , to
the best of our knowledge, the current declarative languages are centred on the
declarative description of the order of activities. However, none of them includes
data input and output of the activities to optimize the object obtained from the busi-
ness process.

Calculate
books price

+
Calculate

Delivery Cost

+

Calculate
books price

+

Calculate
Delivery Cost

numBookN,
idBook

BooksPriceN

+

DeliveryCostN
numBookN,

idBook

...
Calculate books

price

Calculate Delivery
Cost

+ +

a b
numBook = numBook1 +…+ numBookN
TotalPrice = Bookprice1 +…+ BookPriceN +

DeliveryPrice1 +… + DeliveryPrice N
Minimize (Total Price)numBook

numBook1,
idBook

BooksPrice1

numBook1,
idBook

DeliveryCost1

 Fig. 5.2 Imperative models for the on-line book store example. (a) Deployed imperative model.
(b) Imperative model with implementation of tasks

5.3 DOODLE: Data-Oriented Optimization
Declarative LanguagE

 In order to include the optimization function and the constraints into the business
process model, we have defi ned a declarative language called DOODLE (Data-
Oriented Optimization Declarative LanguagE). This language combines the imper-
ative description of BPMN with a declarative description of the parts of the process
that need more fl exibility (declarative subprocesses). The declarative description
includes the data subprocess, data activities, objective function and the numerical
constraints that let the designer describe the possible data values in a declarative
way. These numerical constrains are defi ned by the following grammar where
 Variable and Value can be defi ned as Integer, Natural or Float domain:

Constraint := Atomic−Constraint BOOL−OP Constraint
| Atomic−Constraint
| ’¬’Constraint
BOOL−OP:= ’∨’ | ’∧’
Atomic−Constraint:= function PREDICATE function
function:= Variable FUNCTION−SYMBOL function
| Variable

| ∑ Variable
 | Value

PREDICATE:= ’=’ | ’<’ | ’≤’ | ’>’ | ’≥’
FUNCTION−SYMBOL:= ’+’ | ’−’ | ’∗’

 These constraints make it easier and more precise when handling numeric data
(that can be represented as variables) that represent relations between variables.

 In order to introduce the language, we have divided the description into two
parts: (i) the internal description of the components associated with the activities of
the declarative subprocess (Table 5.1), and (ii) the external description of the declar-
ative subprocess, that implies the relation of the activities with subprocess data
input and output also with constraints (Table 5.2). The language proposes to describe
the order of the activities using imperative or declarative languages, depending
on the necessity of the process. For the BS example, a parallel execution is possible,
then it can be described imperatively.

 In order to understand the example better, the language has been used to model
the BS problem, as shown in Fig. 5.3 . In order to transform this declarative model
into an imperative model that supports any value of input variables of the process
(idBook and number Of Books for example), we propose the use of Constraint
Programming paradigm (explained in Sect. 5.4.1) [7] and domain local analysis of
the variables [8]. The created model will depend on the knowledge of the relation-
ship between input and output data of the activities, specifi cally, if this relationship

 Table 5.2 External components of the declarative subprocess

 Symbol Name Description Parameters

SDI1, …, SDIn

SDI
 Subprocess data

input (SDI)
 Data input of the subprocess that

describe the user requirement
in each process execution

 List of variables

SDO1, …, SDOm

SDO Subprocess data
input (SDI)

 Data input of the subprocess that
describe the user requirement
in each process execution

 List of variables

f: v

 Objective function An optimization function
in terms of a data

 Minimize or
maximize and the
objective variable

C1, …, Cn

ID
 ID input

constraints (IC)
 Set of constraints that relates

the SDI with the DI of each
activity of the subprocess

 Numerical constraints

C1, …, Cn

ID
 ID output

constraints (OC)
 Set of constraints that relates

the SDO with the DO of each
activity of the subprocess

 Numerical constraints

C1, …, Cn

 Internal
constraints

 Set of constraints that relates
the DI and DO of the
activities among them

 Numerical constraints

 Table 5.1 Internal components associated to the activities of the declarative subprocess

 Symbol Name Description Parameters

DI1, …, DIn

DI
 Data input (DI)

of the activity
 Set of data input of each activity List of

variables

DO1, …, DOm

DO Data output (DO)
of the activity

 Set of data output of each activity List of variables

C1, …, Cn

<<Pre>> Precondition Set of constraints that represents
the values of the DI that satisfy
the execution of the activity

 Numerical
constraints

C1, …, Cn

<<Post>> Postcondition Set of constraints that represents the
values of the DO that are satisfi ed
after the execution of the activity

 Numerical
constraints

A

N Repetition of
an activity A

 Representation of the number of times
that an activity can be executed.
The value can be numeric (e.g. 5),
or symbolic (e.g. N)

 Integer or
string

can be known with or without executing the activities. For the BS example, the
 totalPrice can only be known if the activities are executed, although if the pre and
post-conditions of the activities could relate input and outputs, the execution of the
activities would be not necessary.

5.4 Related Work

 There are many languages that enable the description of business processes in a
declarative way. Generally, the common idea of declarative business process model-
ling is to model a process as a trajectory in a state space, and declarative constraints
are used to defi ne the valid movements in that state space [9]. Therefore, the differ-
ences between declarative process languages can, in part, be understood as a differ-
ent perception of the meaning of ‘state’. Analysing the different proposals, we have
found some characteristics that we consider interesting to be compared. The charac-
teristics are studied in Sect. 5.4.1 and compared in Sect. 5.4.2 .

5.4.1 Declarative Language Characteristics

 Analysing the different proposals related to declarative languages, the main charac-
teristics that we think should be analysed and compared are:

• Formalism for reasoning: The proposals use different formalism for reasoning.
Sometimes, although we show the most relevant in each case, they can combine
more than one and be improved with made-to-measure algorithms. Only the
most relevant have been included in the paper due to space limitations.

– Linear Temporal Logic (LTL). As demonstrated by Chomicki [10], Bacchus
and Kabanza [11] and Pesic and van der Aalst [12], LTL expressions can be
used to represent desirable or undesirable patterns within a history of events.
LTL is a modal temporal logic that allows the expression of temporal constraints

+

idBook,
nBooksBuy

DI

bookPrice

DO

+

numberOfBooks = nBooksBuy

ID

totalPrice = bookPrice + deliveryCost

ID

totalPrice

SDO

minimize:
totalPriceidBook,

nBooksDeliv

DI

deliveryCost

DO

nBook>0

<<Pre>>

bookPrice>=0

<<Post>>

nBook>0

<<Pre>>

deliveryCost>=0

<<Post>>

N

M

nBooksBuy=nBooksDeliv
n=m

Calculate
Books Price

Calculate
Delivery Cost

idBook,
numberOfBooks

SDI

 Fig. 5.3 Example of buy books described using DOODLE

on infi nite paths within a state space. LTL formula can be evaluated by obtaining
the Büchi automaton that is equivalent to the formula and checks whether a
path corresponds to the automaton. Unfortunately most LTL checking algo-
rithms assume infi nite paths and construct non-deterministic automata [12].
Another disadvantage is that LTL does not allow the expression of the effect
that results from a particular transition in a state space. For these reasons, it is
not evident to express a goal state in LTL nor to construct automata for plan-
ning an execution scenario to obtain a goal state [11] as is needed in an opti-
mization function.

– The Event Calculus. In fi rst-order logic there is a formalism that elegantly
captures the time-varying nature of facts, the events that have taken place at
given time points and the effect of these events refl ecting on the state of the
system. This formalism is called the Event Calculus. The Event Calculus,
introduced by Kowalski and Sergot [13], is a logic programming formalism to
represent and reason about the effect of events on the state of a system. The
Event Calculus is appealing for several reasons, as it builds on a fi rst-order
predicate logic framework, for which effi cient reasoning algorithms exist. In
addition the Event Calculus not only has the ability to deductively reason
about the effects of the occurrence of events (leading to the coming into exis-
tence of fl uency or the ceasing to hold), most importantly, it also has the abil-
ity to reason abductively. Abductive reasoning over the event calculus has
been shown to be equivalent to planning. In particular, abductive reasoning
produces a sequence of transitions (denoted by events) that must happen for a
particular instance to hold in the future [14 – 16].

– Constraint Programming (CP). Constraint Programming [17] is a paradigm
that permits the description of the model by means of the variables and the
constraints that relate the variables. The model is called a Constraint
Satisfaction Problem (CSP), that represents a reasoning framework consisting
of variables, domains and constraints. Formally, it is defi ned as a tuple (X , D ,
 C), where X = { x 1 , x 2 , …, x n } is a fi nite set of variables, D = { d (x 1), d (x 2), …,
 d (x n)} is a set of domains of the values of the variables, and C = { C 1 , C 2 , …,
 C m } is a set of constraints. Each constraint C i is defi ned as a relation R on a
subset of variables V = { x i , x j , …, x l }, called the constraint scope . The relation
 R may be represented as a subset of the Cartesian Product d (x i) x d (x j) x … x
 d (xl). A constraint Ci = (V i , R i) simultaneously specifi es the possible values of
the variables in V in order to satisfy R . Let V k = { x k 1 , x k 2 , …, x kl } be a subset of
 X , and an l-tuple (x k 1 , x k 2, …, x kl) from d (x k 1), d (x k 2), …, d (x kl) can therefore be
called an instantiation of the variables in V k . An instantiation is a solution if
and only if it satisfi es the constraints C .

• Imperative and Declarative : This is the capacity of a language to describe
imperative and declarative aspects in the same model, since sometimes a part of
the process is completely unknown, and other parts are totally known.

• Use of the language: The existing proposals that we have analysed are focused
on different objectives: Validation of the model for a trace of events, Construction
of automatons to generate a possible sequence of activities, or Assistance to the
user to decide which is the best activity to execute at runtime.

• Data perspective: The possibility to include the values of the data-fl ow vari-
ables in the rules that describe the declarative model.

• Pre and Post-condition: The inclusion of a description of the system before and
after it is instantiated by means of pre and post-conditions. This is a relevant
aspect since it allows the modeller to describe the data before and after the pro-
cess execution, without the inclusion of details about the internal description of
the process.

• Optimization Function: The possibility to include an optimization function in
the declarative description that is taken into account in the model.

5.4.2 Analysis of Declarative Languages

 Some of the most important declarative languages have been included and com-
pared in this section.

• Pocket of fl exibility . This solution is based on constraint specifi cation of the
business process workfl ow. The constraint specifi cation framework [18] repre-
sents the workfl ow as a directed graph where there are two types of nodes: activ-
ity nodes and coordinator nodes. In the framework, it is possible to combine
activities whose relation is known with activities whose relation is unknown
(called pocket of fl exibility) that include a set of constraints for concretizing the
pocket with a valid composition of work-fl ow fragments. It includes different
types of constraints (Serial, Order, Fork, Inclusion, Exclusion, Number of execu-
tions for activity or in parallel). The constraints relate the number of times that
each activity can be executed and the order and/or mandatory execution of each
activity. The proposal defi nes a set of algorithms to fi nd possible discrepancies
between the constrains that describe the process and an instance. The implemen-
tation is based on a made-to-measure algorithm that uses the graph to represent
the constraints. The implementation has been included in the prototype called
 Chameleon . The data aspect has not been included in this proposal.

• DeCo. Irina Rychkova et al. in [19], [4] and [20] presented a declarative BP
specifi cation language that enables designers to describe the actions that a busi-
ness process needs to contain, but not where their specifi c sequence can be post-
poned to the instance time. They improve the alignment of the BP with the
business strategy of an organization by giving a synthesis of a set of business
processes (abstracting the control fl ow), while maintaining a rigorous relation-
ship with the detailed process. These specifi cations complement the traditional

(imperative) business process model by specifying the process independently
from a particular environment, (e.g. a process can be executed). This technique
includes checking the conformance of the imperative and the declarative specifi -
cations, using the case handling paradigm [21]. For every action of the working
object they defi ne a precondition and a postcondition. A precondition specifi es a
set of states where the action can be executed, and postcondition specifi es the
possible set of states after the action was executed. The pre and postcondition
represent how the different actions can modify the state of the objects trans-
formed during the process execution, they do not defi ne the order of the actions,
as different imperative description for the same declarative descriptions are pos-
sible. Thereby this proposal focuses on the problem from the working object
point of view, and data values is one of the analysis.

• Compliance Rule Graphs . The Compliance Rule Graphs (CRGs) [5 , 22 , 23]
focus their challenge on fi nding an appropriate balance between expressiveness,
formal foundation, and effi cient analysis. For these reasons, the authors propose
a language based on a graph representation where the order of the activities and
the occurrence or absence of activities can be included as well. The proposal
verifi es the correctness of the process analysing the compliance rules and the
events monitored. The description of the order of activities can be enriched
including conditions to the rules that will be satisfi ed or not depending on the
data value for each instance. The analysis is done using pattern matching mecha-
nisms, and is included in a prototype called SeaFlow.

• Em-Bra 2 Ce. The Enterprise Modeling using Business Rules, Agents, Activities,
Concepts and Events (Em-Bra 2 Ce) Framework [24 , 25] presents a declarative
language based on SBVR (Semantics Of Business Vocabulary And Business
Rules) to describe the vocabulary of the process, and an execution model to rep-
resent the control fl ow perspective based on Colored Petri Nets. The use of
SVBR allows the description of data aspects in the business process that can be
included in the ECA (Event Condition Action) rules, used as a pattern to write
the rules.

• Penelope. The language Penelope (Process ENtailment from the ELicitation of
Obligations and PErmissions) [6] expresses temporal rules about the obligations
and permissions in a business interaction using Deontic logic. This language is
supported by an algorithm to generate compliant sequence-fl ow-based process
models that can be used in business process design. This language uses the Event
Calculus to model the effects of performing activities with respect to the coming
into existence of temporal deontic assignments. The only type of data that is
included in the defi nition is related to the execution time of the activities, but the
data managed during each instance is not an object of the proposal.

• ConDec. The ConDec [12] language was designed for modelling and enacting
dynamic business processes. The language defi nes the involved activities in the
process and the order relations between them. This order relation is expressed
using LTL to represent desirable or undesirable patterns within a history of

events. However, LTL formulas are diffi cult to read due to the complexity of
expressions. Therefore, the authors have defi ned a graphical syntax for some
typical constraints that can be encountered in workfl ows. ConDec initially
defi ned three groups of templates to make the defi nition of activity relations
easier: (1) existence, (2) relation and (3) negation templates. An automaton can
be built in accordance with the ConDec model, where the automaton can be used
to validate a sequence of events. Declare tool [26] is a prototype of a workfl ow
management, that supports the ConDec language. This tool has been used for
frameworks such as Mobucon [27 , 28] for runtime validation. This framework
allows for the continuous verifi cation of compliance with respect to a predefi ned
constraint model. ConDec has been enlarged to include the resource perspective
(ConDec-R) and the data-aware constraints in Declare, both analysed in the fol-
lowing items.

• ConDec-R. This is an extension of the ConDec language to include a description
of the resources necessary during process execution. The implementation
 extension, called ConDec-R [29], assists the user by means of recommendations
to achieve an optimized plan for one or multiple objectives [30]. In order to
obtain the plan, a CP paradigm is used, combined with a set of algorithms to
minimize evaluation time. Although this proposal incorporates the resource per-
spective which is a type of data, this type of information is not oriented to activity
input and output data.

• Data-aware Constraints in Declare. This is an extension of the Declare
framework [31] that permits the representation of the input, internal and output
data of the activities in a declarative representation of the order of the activity.
Event calculus has been used to formalize the language and to validate if the
traces of events are in accordance with the declarative model. Although the
data aspect is included, only input and output data relations between activities
can be described.

 Although all these declarative languages include some information about data,
none of them include the data input and output of the activities with the aim to opti-
mize the object obtained from the business process.

5.4.3 Declarative Languages Comparative

 Compared with declarative languages, our proposal DOODLE includes data-
oriented aspects in a declarative manner. It is done by means of a set of constraints
that describe the data exchanged among the activities, when their relations cannot
be defi ned explicitly at design time. The model and the reasoning framework use
Constraint Programming, in order to infer the possible values of the data and achieve
the optimization function at run-time (Table 5.3).

5.5 Conclusions

 In this paper, we have analysed some of the most relevant declarative languages in
business processes. From this analysis we have detected that none of them permit
the data declarative description in the business processes, and how it can infl uence
in the obtained model. In this paper, a declarative language called DOODLE is
described, which permits the description of the data exchanged among the activities
of the process in a declarative way by means of constraints, and obtains an optimiza-
tion of the business process objects.

 For future work, we plan to enlarge the language to support more complex
semantics and data relations. We also consider interesting the development of a
framework for the transformation from the declarative model to an imperative
model implemented in a Business Process Management Systems, and supporting
different types of technologies in a transparent way for the business modeller.

 References

 1. Weske M (2007) Business process management: concepts, languages, architectures. Springer,
Secaucus, NJ

 2. Cruz IF (1992) Doodle: a visual language for object-oriented databases. SIGMOD Rec
21(2):71–80

 3. Sadiq S, Governatori G, Namiri K (2007) Modeling control objectives for business process
compliance. In: Proceedings of the 5th international conference on business process manage-
ment, BPM’07. Springer, Berlin, pp 149–164

 4. Rychkova I, Regev G, Wegmann A (2008) High-level design and analysis of business pro-
cesses the advantages of declarative specifi cations. In: IEEE international conference on
research challenges in information science, RCIS’08, Marrakech, Morocco. pp 99–110. ISBN:
978-1-4244-1677-6

 Table 5.3 Declarative languages comparative

 Formalism
 Imper.
and Decl.

 Use
of model

 Data
perspective

 Pre and
post

 Opt.
function

 Sadiq Graph theory Validation
 DeCo First Order Logic Validation
 CRGs Pattern matching Validation
 Em-Bra 2 Ce Color Petri Net Validation
 Penelope Event calculus Construction
 ConDec LTL Validation
 ConDec-R Const.

programming
 Assistance

 Data-aware Event calculus Validation
 Doodle Const.

programming
 Constr. and

Assist.

 5. Knuplesch D, Ly LT, Rinderle-Ma S, Pfeifer H, Dadam P (2010) On enabling data-aware
compliance checking of business process models. In: 29th International conference on concep-
tual modeling, ER 2010, Vancouver, BC, Canada, vol 6412. Springer, Berlin, pp 332–346.
ISBN: 978-3-642-16372-2

 6. Goedertier S, Vanthienen J (2006) Designing compliant business processes with obligations
and permissions. In: Business process management workshops, vol 4103. Springer, Berlin, pp
5–14. ISBN: 978-3-540-38444-1

 7. Parody L, Gomez-Lopez MT, Gasca M (2013) Decision-making sub-process to obtain the
optimal combination of input data in business processes. In: Proceedings of the IX Jormadas
de Ciencia e Ingeniería de Servicios, JCIS ’13, pp 17–31. ISBN: 978-84-695-8351-7

 8. Parody L, Gomez-Lopez MT, Martinez Gasca R, Varela-Vaca AJ (2012) Improvement of opti-
mization agreements in business processes involving web services. Communications of the
IBIMA 2012, vol 2012, Article ID 959796, 15 pp. doi: 10.5171/2012.959796

 9. Bider I, Khomyakov M, Pushchinsky E (2000) Logic of change: semantics of object systems
with active relations. Autom Softw Eng 7:9–37

 10. Chomicki J (1995) Depth-bounded bottom-up evaluation of logic program. J Log Program
25(1):1–31

 11. Bacchus F, Kabanza F (2000) Using temporal logics to express search control knowledge for
planning. Artif Intell 116(1–2):123–191

 12. Pesic M, van der Aalst WMP (2006) A declarative approach for fl exible business processes
management. In: Proceedings of the 2006 international conference on business process man-
agement workshops, BPM’06. Springer, Berlin, pp 169–180

 13. Kowalski RA, Sergot MJ (1986) A logic-based calculus of events. New Generat Comput
4(1):67–95

 14. Eshghi K (1988) Abductive planning with event calculus. In: Proceedings of the fi fth interna-
tional conference and symposium on logic programming, Seattle, Washington. MIT Press. pp
562–579. ISBN: 0-262-61056-6

 15. Shanahan M (1997) Event calculus planning revisited. In: Steel S, Alami R (eds) ECP. Lecture
notes in computer science, vol 1348. Springer, Heidelberg, pp 390–402

 16. Nuffelen BV, Kakas AC (2001) A-system: declarative programming with abduction. In: Eiter
T, Faber W, Truszczynski M (eds) LPNMR. Lecture notes in computer science, vol 2173.
Springer, Heidelberg, pp 393–396

 17. Rossi F, Beek PV, Walsh T (2006) Handbook of constraint programming (foundations of arti-
fi cial intelligence). Elsevier, New York, NY

 18. Sadiq SW, Orlowska ME, Sadiq W (2005) Specifi cation and validation of process constraints
for fl exible workfl ows. Inform Syst 30(5):349–378

 19. Rychkova I, Regev G, Wegmann A (2008) Using declarative specifi cations in business process
design. IJCSA 5(3b):45–68

 20. Rychkova I, Nurcan S (2011) Towards adaptability and control for knowledge-intensive busi-
ness processes: declarative confi gurable process specifi cations. In: 44th Hawaii international
conference on system sciences (HICSS). pp 1–10. ISSN: 1530-1605

 21. van der Aalst WM, Weske M, Grnbauer D (2005) Case handling: a new paradigm for business
process support. Data Knowl Eng 53:129–162

 22. Ly LT, Rinderle S, Dadam P (2008) Integration and verifi cation of semantic constraints in
adaptive process management systems. Data Knowl Eng 64(1):3–23

 23. Ly LT, Rinderle-Ma S, Knuplesch D, Dadam P (2011) Monitoring business process compli-
ance using compliance rule graphs. In: 19th International conference on cooperative informa-
tion systems (CoopIS 2011). LNCS, vol 7044. Springer, Heidelberg, pp 82–99

 24. Goedertier S, Haesen R, Vanthienen J (2007) Em-bra 2 ce v0. 1: a vocabulary and execution model
for declarative business process modeling. FETEW Research Report KBI 0728, K.U. Leuven

 25. Roover WD, Caron F, Vanthienen J (2011) A prototype tool for the event-driven enforcement
of sbvr business rules. In: Daniel F, Barkaoui K, Dustdar S (eds) Business process manage-
ment workshops (1). Lecture notes in business information processing, vol 99. Springer,
Heidelberg, pp 446–457

http://dx.doi.org/10.5171/2012.959796

 26. Maggi FM, Westergaard M, van der Aalst W, Staff F, Pesic M, Schonenberg H. Declare tool.
 http://www.win.tue.nl/declare/

 27. Maggi FM, Montali M, Westergaard M, van der Aalst W (2011) Monitoring business con-
straints with linear temporal logic: an approach based on colored automata. In: Proceedings of
BPM. LNCS. Springer, Heidelberg

 28. Maggi F, Westergaard M, Montali M, van der Aalst W (2011) Runtime verifi cation of LTL
based declarative process models. In: Proceedings of RV. LNCS. Springer, Heidelberg

 29. Barba I, Weber B, Valle CD, Ramrez AJ (2013) User recommendations for the optimized
execution of business processes. Data Knowl Eng 86:61–84

 30. Ramrez AJ, Barba I, Valle CD, Weber B (2013) Generating multi-objective optimized business
process enactment plans. In: 25th International conference on advanced information systems
engineering. CAISE’13. Lecture notes in computer science, vol 7908. pp 99–115. ISBN:
978-3-642-38708-1

 31. Montali M, Chesani F, Mello P, Maggi FM (2013) Towards data-aware constraints in declare.
In: Proceedings of the 28th annual ACM symposium on applied computing, SAC ’13. ACM,
Coimbra, Portugal, pp 1391–1396

http://www.win.tue.nl/declare/

	Chapter 5: Data-Oriented Declarative Language for Optimizing Business Processes
	5.1 Introduction
	5.2 On-Line Book Store: A Motivating Example
	5.3 DOODLE: Data-Oriented Optimization Declarative LanguagE
	5.4 Related Work
	5.4.1 Declarative Language Characteristics
	5.4.2 Analysis of Declarative Languages
	5.4.3 Declarative Languages Comparative

	5.5 Conclusions
	References

