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Fermentation: bio-chemical
process by means of which
sugar in grape juice is
transformed into ethanol in
presence of nutrients.

Transformation: thanks to
yeast in the must which allows
to degrade sugar into ethanol.

Different wines: dry or sweet.

Bioreactor (batch): substrate
provided at the beginning and
no remove.
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Mathematical model

dx

dt
= µ(n)x ,

dn

dt
= −µ(n)x ,

de

dt
= β(s)γ(e)x ,

ds

dt
= −β(s)γ(e)x

x = x(t): yeast conc.

n= n(t): nitrogen conc.

e = e(t): ethanol conc.

s = s(t): sugar conc.

Growth rate of yeast

µ(n)=
µmaxn

kn+n

Rate of sugar utilization

β(s)=
βmaxs

ks + s

Inhibition of sugar consumption

γ(e)=
ke

ke +e
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dt
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ke +e

µmax, βmax: max. specific growths

kn: nitrogen limited growth

ks : sugar transport across cell membrane

ke : ethanol inhibition
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Mathematical model

dx

dt
= µ(n)x , (1)

dn

dt
= −µ(n)x , (2)

de

dt
= β(s)γ(e)x , (3)

ds

dt
= −β(s)γ(e)x (4)

Observe that

dx

dt
+
dn

dt
= 0

de

dt
+
ds

dt
= 0.

Then

x(t)+n(t)= x(0)+n(0) := γ> 0

e(t)+ s(t)= e(0)+ s(0) :=λ> 0.

Thus, we can rewrite system (1)-(4) as a two dimensional one

dx

dt
=

µmax(γ−x)

kn+γ−x
x , (5)

de

dt
=

βmax(λ−e)

ks +λ−e

ke

ke +e
x . (6)
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Dynamics of the model

Theorem 1

For any initial value (x0,e0) ∈ [0,γ]× [0,λ], system (5)-(6) possesses a

unique global solution which is, in addition, positive and bounded.

Moreover, as long as (x0,e0) ∈ (0,γ]× [0,λ], the solutions of system (5)-(6)
approach the fixed point P = (γ,λ) as t goes to infinity. As a consequence,

solutions of system (1)-(4) converge to (γ,0,λ,0).

Proof. By classical theory of ODE’s it is easy to obtain local existence and
uniqueness of the solutions of system (5)-(6).

Moreover, the positive cone X = {(x ,e), x ≥ 0,e ≥ 0} is positive invariant
since x = 0 is an invariant plane and on e = 0 we have

de

dt

∣

∣

∣

∣

e=0

=
βmaxλ

ks +λ
x ≥ 0.

Hence, we obtain the positiveness of solutions.
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Dynamics of the model

λ

γ

L1

L3

L4
L2

P

x

e

Side L1: e = 0, x ∈ (0,γ).

dx

dt
> 0 and

de

dt
> 0.

dx

dt
=

µmax(γ−x)

kn+γ−x
x ,

de

dt
=

βmax(λ−e)

ks +λ−e

ke

ke +e
x .

Side L2: x = γ, e ∈ [0,λ). Set x = γ

invariant and de

dt
> 0 for e ∈ [0,λ).

Side L3: e = λ, x ∈ (0,γ). Set e =λ

is invariant while dx

dt
> 0 for

x ∈ (0,γ).

Side L4: x = 0, e ∈ [0,λ). This side
consists of a segment of fixed
points which are unstable.
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Dynamics of the model
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Dynamics of the model

0 1

0

3

0 1

0

3

x

e

Figure: Vector field of system (5)-(6) with γ= 1 and λ= 3.
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Dynamics of the model

Then, B = [0,γ]× [0,λ] is positively invariant. Moreover, solutions starting
on B are positive, bounded and global in time.

Now, we study the asymptotic behavior of solutions starting on B .

Since dx

dt
> 0 for x ∈ (0,γ), no periodic orbits in B .

Then, invariant sets on B are the unstable fixed points on the side L4

and the fixed point P .

Stability of P : compute the eigenvalues of the Jacobian matrix

λ1 =−
γ

kn
, λ2 =−

βmax

ks(ke +λ)
,

λ1 and λ2 are both negative, then P is locally stable.

Finally, every solution of system (5)-(6) with initial value in (0,γ]× [0,λ]
converges to P . ■
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Dynamics of the model

Thanks to Theorem 1, since every solution of system (5)-(6) with initial
value in (0,γ]× [0,λ] converges to P = (γ,λ), every solution of system
(1)-(4) converge to (γ,0,λ,0).

Remark: Theorem 1 consistent with real fermentation process

In this case, dry wine is obtained.

Sum of sugar and ethanol concentrations s(t)+e(t)= s(0)=λ

remains constant.

Total quantity of sugar transformed into ethanol since e(t)→ s(0)
while s(t)→ 0.

Sum of microbial biomass and nitrogen concentrations x +n remains
constant with n(t)→ 0 and x(t)→ x(0)+n(0).
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Numerical simulations

time
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Sugar

x0 = 4,n0 = 4,e0 = 0,s0 = 10,µmax = 1.5,kn = 2,βmax = 0.4,ks = 1.2,ke = 2.
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Mathematical model

dx
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Mathematical model

dx

dt
= x(µ(n)−ke),

dn

dt
= −µ(n)x ,

de

dt
= β(s)γ(e)x ,

ds

dt
= −β(s)γ(e)x

x = x(t): yeast conc.

n= n(t): nitrogen conc.

e = e(t): ethanol conc.

s = s(t): sugar conc.

Growth rate

µ(n)=
µmaxn

kn+n

Rate of sugar utilization

β(s)=
βmaxs

ks + s

Inhibition of sugar consumption

γ(e)=
ke

ke +e

µmax, βmax: max. specific growths

kn: nitrogen limited growth

ks : sugar transport across cell membrane

ke : ethanol inhibition

k : sensitivity of yeast to ethanol
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Mathematical model

Similarly to the dry wine case we can rewrite the previous system

dx

dt
= x

[

µmaxn

kn+n
−ke

]

, (7)

dn

dt
= −

µmaxn

kn+n
x , (8)

de

dt
=

βmax(λ−e)

ks +λ−e

ke

ke +e
x . (9)

where e(t)+ s(t)= s(0) :=λ> 0.

From now on we will denote

X = {(x ,n,e) ∈R3 : x ≥ 0,n≥ 0,e ≥ 0}

the positive cone.
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Dynamics of the model

Theorem 2

All solutions of system (7)-(9) with initial data in

C := [0,+∞)× [0,+∞)× [0,λ),

are defined for all t ∈ [0,+∞). Moreover, they are positive and bounded.

Proof. By classical theory of ODE’s we obtain local existence and
uniqueness of solutions.

Observe that x = 0, n= 0 and e =λ are invariant plane while on e = 0 the
vector field points inside C . Then, we also have that e(t) is globally
defined and bounded.
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Dynamics of the model

From
dn

dt
=−

µmaxn

kn+n
x

we have that n(t) is decreasing, then n(t) is bounded for any n0 ∈C and
defined for all t ≥ 0.

Moreover, we have

dx

dt
= x

[

µmaxn

kn+n
−ke

]

≤
µmaxn

kn+n
x ≤

µmaxn(0)

kn+n(0)
x =:ρx , (10)

where we used that µ(n(t)) is decreasing with respect to t.

Then,
x(t)≤ x(0)eρt , fort ≥ 0,

whence x(t) is defined for all t ∈ [0,+∞).
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Dynamics of the model

It remains to prove the boundedness of x(t). Suppose by contradiction

lim
t→+∞

x(t)=+∞, and lim
t→+∞

n(t)= n
∗
> 0,

then
dn

dt
=−

µmaxn

kn+n
x =⇒ lim

t→+∞

dn

dt
=−∞L

Now suppose that

lim
t→+∞

x(t)=+∞, and lim
t→+∞

n(t)= 0. (11)

We recall that

the nitrogen concentration n is decreasing from n(0)> 0 to zero.

µ is monotonic, then µ(n) goes to zero.

the ethanol concentration e is increasing from zero.
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Dynamics of the model

There exists T > 0 such that

µ(n(T ))−ke(T ) = 0.

Then

dx

dt
= x

[

µmaxn

kn+n
−ke

]

≤ 0,

for all t >T .

This contradicts (11) and then the biomass concentration x is bounded and
defined for all t ≥ 0.

■
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Dynamics of the model

Corollary 3

For any x0 > 0, there exists T > 0 such that the biomass concentration x(t)
is increasing for every t ∈ [0,T ]. Then, it attains its maximum at t =T and

decreases for every t >T .

There exists T > 0 such that

µ(n(T ))−ke(T ) = 0.

Then

dx

dt
= x

[

µmaxn

kn+n
−ke

]







> 0, t <T

= 0, t =T

< 0, t >T

Crucial effect of inhibition
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Dynamics of the model

Theorem 4

The set

A= {(x ,n,e) ∈C :λ1(n,e) :=µ(n)−ke < 0}.

is positively invariant.

e(n)

(n(T),e(T))

n(0)
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Dynamics of the model

Theorem 5

Every solution of system (7)-(9) with initial value in C \ {x = 0} converges

to a fixed point in the plane x = 0.

Proof. Suppose that there exists a strictly positive constant L> 0 such that

lim
t→+∞

x(t)= L> 0,

then we have

lim
t→∞

dx

dt
= lim

t→∞
x

[

µmaxn

kn+n
−ke

]

= L(µ(n∗)−ke
∗), (12)

where n
∗ and e

∗ denote the limit values of the nitrogen and ethanol
concentrations. Such limits satisfy

0≤ n
∗
≤ n(0), and 0< e

∗
≤λ.
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Dynamics of the model

From Theorem 4, we have that the limit points are in

A= {(x ,n,e) ∈C :λ1(n,e) :=µ(n)−ke < 0}.

and as a consequence

lim
t→∞

dx

dt
= L(µ(n∗)−ke

∗)< 0, (13)

Thus, we conclude that
lim

t→+∞
x(t)= 0. (14)

As a result, every solution of system (7)-(9) with initial value in C \ {x = 0}

converges to a fixed point in the plane x = 0.
■
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Dynamics of the model

Theorem 6

The nitrogen concentration is not completely consumed at the end of the

process, i.e.,

lim
t→+∞

n(t)> 0.

Proof. Assume by contradiction that

lim
t→+∞

n(t) := n∞ = 0.

Since the nitrogen concentration n remains positive and decreasing for
t ≥ 0, it is possible to define a diffeomorphism from [0,+∞) to (n∞,n0],
where n0 = n(0). Then, the microbial biomass concentration x can be
expressed as a function of n:

dx

dn
=
x(µ(n)−ke)

−µ(n)x
=−1+

ke

µ(n)
.
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Dynamics of the model

Hence, for n< n(T ) with T > 0, we have

dx

dn
>−1+

ke(T )

µ(n)
. (15)

We observe that µ(n)≤
µmax

kn
n.

Hence, we have
dx

dn
>−1+ke(T )

kn

µmax

1

n
:=−1+

σ

n
,

where σ> 0.

Finally, by integrating the last inequality between n∞ and n we obtain

x(n)> x(n∞)−n+n∞+σ(logn− logn∞).

Then, if n∞ = 0 we have that x >∞.
■
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Dynamics of the model

Theorem 7

Let F :C →R be the function defined as

F (e ,n) :=−ks(ke +λ) log

(

λ−e

λ

)

+ (ke −ks)e+
1

2
e
2
+νkn log

(

n

n0

)

+ν(n−n0),

where

ν :=βmax

ke

µmax

.

Then, the ethanol and nitrogen concentrations satisfy F (e ,n)= 0.

Theorem 8

The ethanol concentration e(t) does not tend to the initial sugar concentration λ.

Proof. Suppose e(t)→λ. Then n→ 0.
■
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Dynamics of the model

Theorem 9

Suppose that ρ =
µmaxn(0)
kn+n(0)

< kλ. Then the unique positive solution of the

following equation provide an upper bound for the limit value of the

ethanol concentration

−δx(0)=α3e
3
+α2e

2
+α1e+α log

(

λ−e

λ

)

, (16)

where

δ =
βmaxke

k
, α3 =−

1

3
, α2 =

1

2

(ρ

k
−ke +ks

)

,

α1 = ks

(

λ−
ρ

k

)

+ke

(

ks +
ρ

k

)

, α= ks

(

λ−
ρ

k

)

(ke +λ).

Remark: upper bound for limit value of ethanol!
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Numerical simulations. k = 0.05 e
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x0 = 4,n0 = 4,e0 = 0,s0 = 10,µmax = 0.1,kn = 1,βmax = 0.4,ks = 2,ke = 4.
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Numerical simulations. k = 0.25 e
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Numerical simulations. k = 2.5 e
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x0 = 8,n0 = 2,e0 = 0,s0 = 10,µmax = 0.1,kn = 1,βmax = 0.4,ks = 2,ke = 4.
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Conclusion

Studied two models for wine production.

Dry wine: total quantity of sugar transformed into ethanol.
Sweet wine: parameter to interrupt.

Proved existence, uniqueness, boundedness and positiveness of
solution of both models.

Studied in details the asymptotic behavior of state variables:
yeast, nitrogen, sugar, ethanol.

However... results in this work not only clarify the dynamics of
the model.

We provide useful tools to control the fermentation process and
produce wine with the desired sugar.

Here you can see practical guide for producers ;)

Javier López de la Cruz Fermentation models
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