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Abstract— The equivalent circuit approach (ECA) is used in
this work to analyze and design a previously proposed one-
dimensional planar blazed grating of the resonant type. The
analysis covers both the classical Littrow configuration, when the
direction of the relevant diffracted order coincides with that of
the incident wave (Bragg blazing), and when these directions are
different (off-Bragg blazing). Once the scattering problem of the
grating structure is posed as a discontinuity problem inside an
equivalent generalized waveguide (corresponding to the unit cell
of the original structure) and studied in terms of its equivalent
circuit network, the possibility of transferring all the power of the
incident plane wave into one single-diffraction order is seen as
a simple impedance matching problem. An associated resonance
phenomenon is also found to be implicitly associated with this
matching condition. This simplifying and fruitful standpoint
makes it possible to set up a systematic design procedure to find
the specifications of the planar grating for either Bragg or non-
Bragg blazing operation. Dielectric and strong skin-effect ohmic
losses are easily implemented in the ECA and its effects in the
practical design of structures are discussed.

Index Terms— Bragg gratings, equivalent circuits,
metasurfaces, periodic structures.

I. INTRODUCTION

BLAZED gratings are a class of planar gratings that
can diffract the incident wave into a given diffraction

order with great efficiency. The so-called Littrow configuration
diffracts back the incident wave into the same direction as
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the incident wave [1]. Ideally, all the power carried by the
impinging plane wave is transferred to a single-diffracted high-
order harmonic (usually the n = −1 order), thus totally
suppressing the specular reflection (n = 0 reflected harmonic)
and giving rise to complete backscattering of an obliquely inci-
dent wave (when the Bragg condition is satisfied, the angles
corresponding to the n = 0 and n = −1 Floquet-harmonic are
identical). Classical implementations of blazed gratings oper-
ating in the optical or microwave ranges have usually made
use of corrugated metallic surfaces; in particular, sawtooth,
rectangular or even arbitrarily shaped periodic corrugations
are considered in the literature [2]–[5].

Nonetheless the classical nature of this problem, the study
of blazed gratings continues attracting the attention of the
microwave and optics communities [6]–[8]. Very recently,
a new research direction has been initiated by developing novel
planar or quasi-planar versions of the conventional 3-D thick
blazed gratings (note that decreasing the thickness of these
structures is especially important in the microwave region
of the spectrum to achieve low-profile compact structures).
Actually, this research on planar blazed gratings could be
seen as a particular manifestation of a general research trend
focused on the use of graded metasurfaces and metagratings
to achieve almost perfect control of the reflection of plane
waves (or beams) by flat surfaces; see, for instance [9]–[15]
among many other articles. Some of the authors of this article
have already contributed to this topic [16]–[19] reporting
metal-dielectric planar metasurfaces that can be considered
the equivalent planar versions of the sawtooth grating. The
metasurface proposed in [17], fabricated with a standard
printed technology process, is shown to reflect almost all the
power back into the incidence direction. Thanks to its planar
nature, it was used as a side wall of a rectangular waveguide to
create a high rejection stopband. An electrically thin structure
with a similar behavior can also be found as one of the
examples considered in [16]. More recently, an extremely
simple planar device leading to blazing operation above a
certain threshold angle of incidence has been proposed and
studied in [18] and [19]. This simple structure consists of a
1-D periodic array of long transversely resonant strips etched
on a conductor backed thin dielectric substrate. The proper
choice of the period of the structure makes the angle of the
n = −1 diffraction order be aimed exactly at the incidence
direction. The width of the strips can then be adjusted to ensure
perfect backscattering; i.e., zero specular reflection [18], [19].
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The accurate determination of the optimal metal strip width
typically requires the use of a full-wave solver. However,
it has been known for a long time [20]–[22] that this class of
structures can also be very efficiently analyzed and understood
by means of equivalent circuit models. In this research line,
some of the authors of this article have contributed to highly
accurate analytical circuit models to deal with the scattering of
plane waves by arrays of metal strips printed on multilayered
substrates [23]. The presence of a conductor ground plane,
such as the one existing in the grating analyzed in [18], can
easily be incorporated to these models.

The purpose of this article is then to apply the equivalent
circuit approach (ECA) reported in [23] to solve the problem
originally posed in [18]. Some preliminary results valid for
blazed grating in Littrow configuration, also called Bragg
blazing, were already reported in a conference paper [24].
In the frame of the ECA, the perfect blazing condition can
readily be expressed in terms of the standard perfect matching
condition for an appropriate transmission-line circuit. Since
all the parameters of the equivalent circuit are obtained in
closed form [23], the determination of the required strip width
turns into a trivial task. It is worth mentioning that, since the
substrate thickness is relatively small in this problem, the role
of the first and second high-order Floquet harmonics reflected
by the ground plane is essential. Fortunately, this aspect is
accurately taken into account by the ECA in [23], in contrast
with other circuit models reported in the literature which
only considers the reflection of the fundamental harmonic and
ignores the influence of the ground plane on the behavior of
high-order harmonics. In this way, the proposed circuit model
not only provides a satisfactory explanation of the autocollima-
tion process exhibited by the conductor-backed array of metal
strips but also provides a systematic, efficient, and extremely
fast method to design this kind of gratings. Remarkably, not
only on-Bragg blazing (already partially considered in [24])
but also the here-denoted off-Bragg blazing (the direction of
the relevant diffracted order does not coincide with the incident
one) is conveniently accounted for by the use of this analytical
ECA in this article. The possibility of having perfect blazing
also for TE-polarized impinging waves is studied in this article
as well as the impact of the dielectric and ohmic (metal) losses
on the expected response of the system.

This article is structured in nine sections. Section II intro-
duces the basics of the circuit model used in this article.
Section III studies the simplest solution that leads to Bragg
blazing operation and Section IV describes a systematic design
procedure for this class of blazed gratings. The generaliza-
tion of the resonance (blazing) condition is considered in
Section V. In Section VI, the possibility of achieving blazing
for TE polarization incidence is discussed. The modeling
of off-Bragg blazing is reported in Section VII. The effect
of material losses is studied in Section VIII and, finally,
a summary of concluding remarks is presented in Section IX.

II. EQUIVALENT CIRCUIT APPROACH

The scattering problem under consideration is schematically
shown in Fig. 1. A time-harmonic transverse magnetic (TM)

Fig. 1. Sketch of the 1-D diffraction grating analyzed in this article.
A periodic distribution (period p) of metal strips (width w) is printed on
a grounded dielectric slab with relative permittivity ε

(1)
r and thickness d. The

angle of incidence (ζ ) and polarization (TM in this case) are also shown.

plane wave impinges obliquely with an angle ζ on a 1-D
periodic metal strip array printed on a grounded dielectric
slab. As shown in Fig. 1, the structure is periodic along the
y-direction (with period p) and invariant along the x-direction.
The thickness of the metal strips, which will be considered
perfect electric conductors in principle, is neglected. As is
well known, if the wavelength (λ) of the impinging plane
wave fulfills the condition λ > p(1 + sin ζ), the incident
wave experiences full specular reflection due to the presence
of the ground plane and absence of grating lobes. However,
for frequencies beyond the onset of the grating lobes regime,
the reflected power is split among the specularly reflected
(SR), harmonic (order n = 0) and the diffracted ones.
In this article we are interested in the control of the blazing
phenomenon; namely, the efficient power transfer from the
incident wave to a particular diffraction order at a certain
frequency (henceforth called blazed frequency). In our study
cases in this article, such a particular diffraction order will
correspond to the harmonic of order n = −1.

A simple equivalent circuit model for this type of gratings
was introduced in [23]. Thanks to this model, the conditions
that lead to perfect blazing can be posed in terms of an easy
impedance-matching problem, which will greatly simplify the
elaboration of guidelines for the design of perfect Bragg and
off-Bragg blazing structures. For the sake of completeness,
the topology of the circuit model and the expressions of its
different parameters are here briefly outlined; more details
on the derivation of the model can be found in [23]. Thus,
Fig. 2(a) and (b) represents, respectively, the unit cell of the
structure under analysis and the circuit model that accounts
for its electromagnetic response. In this circuit model:

1) The impedances Z (0)
n and Z (1)

n are the characteris-
tic impedances of the transmission lines modeling the
propagation of the nth order harmonic in medium (0)
(free space) and (1) (dielectric substrate), with |n| ≤
N . The contribution of the nth harmonic inside the
dielectric slab is modeled by the input impedance Z (1)

n,in
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Fig. 2. (a) Lateral view of the unit cell. The upper and lower walls of
the cell are periodic boundary conditions (PBCs). PEC stands for perfect
electric conductor. (b) Equivalent circuit associated with the unit cell. (c) Input
impedance seen from the discontinuity through a nth-order short-terminated
transmission line.

in Fig. 2(c). Their values are then given by

Z (i)
n = η0β

(i)
n

ε
(i)
r k0

(i = 0, 1) (1)

Z (1)
n,in = jZ (1)

n tan(β(1)
n d) (2)

with η0 and k0 being the intrinsic impedance and
wavenumber in vacuum, ε

(i)
r the relative permittivity in

medium (i) [in our case, ε
(0)
r = 1], and β

(i)
n the longi-

tudinal (z) component of the wavevector in medium (i)

β(i)
n =

�
ε
(i)
r k2

0 − (kt + kn)2 ; kn = 2πn

p
(3)

where

kt = k0 sin ζ (4)

is the transverse component of the wavevector, with ζ
being the incidence angle.

2) The set of N harmonics explicitly considered in the
model comprises the few propagating diffraction orders
as well as the lowest-order evanescent harmonic. This
latter term is included to explicitly take into account the

non trivial contribution to the frequency dependence of
its associated impedance.

3) The transformers account for the coupling between
the incident wave and high-order harmonics (analytical
expressions for the turn ratios Nn(w) can be found
in [23]). Interestingly, the information about the strip
width, w, only appears in these transformer ratios.

4) The capacitor Cho stands for the contribution of the
remaining set of infinite high-order (ho) harmonics
(i.e., harmonics with |n| > N). These harmonics are of
TM nature and their cutoff frequencies are well above
the operation frequency. An analytic expression for Cho
can be found in [23].

The validity range of the proposed equivalent circuit is
determined by the ratios w/p and w/λ (with λ being the
wavelength in the dielectric medium). In our experience, the
accuracy of the circuit model is guaranteed when those ratios
are below 0.5. Fortunately, these conditions are frequently
found in many practical situations, even for operation frequen-
cies beyond the onset of the grating lobes regime. This makes
the proposed circuit model be a very efficient tool for the study
of blazing, as it will be discussed in the following sections.

III. SIMPLIFIED CIRCUIT FOR BRAGG BLAZING

Perfect Bragg blazing occurs when the reflected wave in
medium (0) scatters back along the direction of incidence with
equal power as the incident wave (no other diffraction orders
appear). Complete power transfer from the incident wave to
the n = −1 harmonic occurs when this harmonic diffracts
exactly along the n = 0 impinging direction. As already
reported in [24], this phenomenon can accurately be accounted
for by the circuit shown in Fig. 2(b). Even though the circuit
topology may appear to be somewhat complex, a significant
simplification can be obtained for Bragg blazing. The Bragg
condition for constructive interference to be satisfied in this
case is easily stated in terms of the transverse components of
the wavevectors associated with the two involved harmonics
(n = 0,−1)

k−1 + kt = −kt ⇒ k−1 = −2kt . (5)

From (1)–(3), it is clear that (5) implies

β
(i)
0 = β

(i)
−1 ; Z (i)

0 = Z (i)
−1 ; Z (1)

0,in = Z (1)
−1,in. (6)

In addition, it can be shown that under this condition
|N−1(w)| = 1 and therefore the transformers can be removed
for the n = −1 harmonic. Since the n = −1 harmonic
plays a special role in blazing, it will be hereafter considered
separately from the rest of harmonics. The equivalent circuit
of the strip-like discontinuity involved in our problem is then
separated into a block for the n = −1 harmonic [boxed in
dotted (red) line in Fig. 3(a)] plus another block that comprises
the contribution of the next harmonic (n = −2 in Fig. 3(a);
although the harmonic n = 1 would play the same role as
n = −2 at Bragg condition) as well as the capacitor accounting
for the remaining high-order harmonics [boxed in dashed
(blue) line]. The outer line in the dotted/red box, with real-
valued characteristic impedance Z (0)

0 , acts as a simple loading
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Fig. 3. (a) Equivalent circuit when the Bragg condition is fulfilled.
(b) Simplified version of the circuit at blazing.

resistor. The inner line (grounded dielectric), on the contrary,
yields a reactance for both the n = 0 and n = −1 harmonics,
given by

jX = Z (1)
0,in = Z (1)

−1,in = jZ (1)
0 tan

�
β

(1)
0 d

�
. (7)

The above considerations allow us to simplify the circuit topol-
ogy in Fig. 3(a) to that in Fig. 3(b). The capacitive or inductive
nature of X will depend on the sign of the tangent function
in (7), which in turn comes determined by the dielectric
slab thickness, d . For electrically thin slabs (the case we are
interested in), the tangent function can be approximated by its
argument, in such a way that

jX ≈ j
η0

�
β

(1)
0

�2

ε
(1)
r k0

d (8)

namely, a purely inductive impedance.
The circuit in Fig. 3(b) involves an additional impedance,

jB , which accounts for the blue-boxed contributions of the
remaining harmonics and that can be written as

jB = [N−2(w)]2

Y (0)
−2 + Y (1)

−2,in

+ 1

jωCho
. (9)

The capacitive or inductive nature of this impedance only
depends on the behavior of the shunt connection associated
with the n = −2 harmonic (remind that the contribution of
higher order harmonics is always capacitive and is already
packed into Cho). Since the n = −2 harmonic is evanescent
in the air region (otherwise more than one diffraction lobe
would be present), the blazed frequency should be set below

the onset frequency of the n = −2 harmonic in air. Thus,
the characteristic impedance Z (0)

−2 behaves as the following
capacitive reactance:

Z (0)
−2 = −j

η0
��β(0)

−2

��
k0

. (10)

This assumption does not apply to the same harmonic inside
the dielectric slab, where the corresponding fields can be either
evanescent or propagative. In any case, the input impedance
is given by

Z (1)
−2,in =

⎧⎨
⎩−j

η0

��β(1)
−2

��
εrk0

tanh(
��β(1)

−2

��d) (a): below cutoff

j
η0β

(1)
−2

εrk0
tan(β

(1)
−2d) (b): above cutoff

(11)

in such a way that its capacitive/inductive nature depends on
whether the harmonic is either evanescent or propagative at
the operation frequency. In the first case [see (11a)], Z (1)

−2,in
is a capacitive load, so that the overall contribution of n =
−2 will always be capacitive. This contribution is series
connected to Cho, thus giving place to a global capacitive
impedance [jB in Fig. 3(b)]. However, if Z (1)

−2,in is given
by (11b), the global behavior of jB might become inductive
[note that the inductive nature of this impedance can turn into
capacitive when the tangent function changes sign in (11b)].
This strong dependence caused by the tangent function is a
problem when trying to establish simple design recipes for the
blazing grating. However, if an electrically thin dielectric slab
is assumed (d � λ), Z (1)

−2,in will be a very small impedance,
thus making that the impedance of the blue/dashed-boxed
block can be well approximated by

jB ≈ 1

jωCho
. (12)

For thick dielectric slabs, the circuit model as well as its
frequency behavior becomes more complicated. Fortunately,
we are interested in gratings as electrically thin as possible,
in such a way that the described approximation is fairly
accurate.

In the simplified equivalent circuit sketched in Fig. 3(b),
the equivalent admittance seen from the discontinuity toward
the right-hand side (YRG) can be written as

YRG = Y (0)
0

�
1 + B

X

� − j 1
X

�
2 + B

X

�
1 + B

X + jBY (0)
0

. (13)

From a circuit point of view, perfect Bragg blazing essentially
means perfect matching in such equivalent circuit, that is

Y (0)
0 = YRG. (14)

This condition requires the imaginary part of YRG to vanish
and its real part to be identical to the characteristic admittance
of the input line. Simple inspection of (13) leads to the
following straightforward particular solution of (14):

B = −X and X = Z (0)
0 . (15)

The above equalities indicate that perfect Bragg blazing

occurs at resonance (B = −X) provided that Z (0)
0 = |Z (1)

0,in|.
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Resonance itself does not ensure perfect blazing since some
specular reflection of the n = 0 harmonic would be observed if
the real part of YRG at resonance does not match Y (0)

0 . It should
be noticed here that the condition to cancel the imaginary part
of the equivalent impedance is not unique. The possibility of
having more solutions will be discussed in Section V.

IV. DESIGN PROCEDURE FOR BRAGG BLAZING

In this section, a simple recipe will be outlined to design a
strip-like grating exhibiting high Bragg blazing efficiency. The
aim of the proposed procedure is to find the optimum values
of the geometrical parameters of the structure that satisfy the
perfect blazing conditions given in (15). The proposed steps
are the following.

1) Once the operation frequency ( fb) and incidence
angle (ζ ) for blazing are specified, the period is deter-
mined from the Bragg condition (5) as

k−1 = −2kt ⇒ p = c

2 fb sin ζ
. (16)

It is important to ensure that no propagating harmonics
other than n = 0,−1 exist in the air region for the
chosen values of fb, ζ , and p. The condition for the nth
harmonic being evanescent is

|kn + kt | > k0. (17)

Using the Bragg condition (5) in (17) leads to

sin ζ >
1

|2n + 1| . (18)

Therefore, in order to achieve perfect Bragg blazing, it
is clear that the incidence angle must satisfy

ζ > arcsin(1/3) = 19.47o. (19)

2) Taking into account that Z (0)
0 = η0 cos ζ and combining

(2), (7), and (15), it is obtained

k0 cos ζ = β
(1)
0 tan

�
β

(1)
0 d

�
ε
(1)
r

. (20)

The above condition can be fulfilled by many different
combinations of ε

(1)
r and d (d being electrically small).

For a given value of ε
(1)
r , the appropriate dielectric

thickness can easily be determined from (20), and vice
versa.

3) Finally, for a given combination of ε
(1)
r and d , a suitable

value of w should be calculated in order to satisfy
B = −X , which according to (7) and (9) leads to

[N−2(w)]2

Y (0)
−2 + Y (1)

−2,in

+ 1

jωCho(w)
= −Z (1)

0 tan
�
β

(1)
0 d

�
.

(21)

This is a transcendental equation that can be numerically
solved using any appropriate root-finding method.

Next, the above steps will be applied to design a prototype
of grating. The goal is to achieve perfect blazing at fb =
8 GHz with ζ = 35o and ε

(1)
r = 6.15. From (16), the required

period is p = 32.7 mm and, from (20), the dielectric thickness

should be d = 2.78 mm. Finally, using (21), the required value
of the strip width is w = 5.10 mm. The computed scattering
response of the prototype is plotted in Fig. 4(a), where the
normalized values of the SR power and the power carried by
the n = −1 harmonic are represented. At the target frequency,
the reflected power is lower than −40 dB, so that practically
all the power has been transferred to the n = −1 harmonic.
Excellent agreement between analytical and numerical MoM
results can be appreciated. As an additional check of condi-
tion (15), Fig. 4(b) shows the real and imaginary parts of the
complex impedance loading the transmission line associated
with the impinging n = 0 harmonic (i.e., ZRG = Y −1

RG). Note
that, as expected at the blazing frequency, the real part matches
the value of the characteristic impedance of the input line and
the imaginary part vanishes. This condition ensures perfect
transfer of the impinging n = 0 order to the diffracted n = −1
order. Fig. 4(c) shows the frequency behavior of the individual
impedances associated with the n = 0,−1 harmonics around
8 GHz. All these values intersect at 8 GHz, as required by
the model to achieve perfect Bragg blazing operation [see (6)
and (15)]. The value of the impedances at the intersection
point is approximately 310 	. This value is reached by the
impedance B at 8 GHz, as shown in Fig. 4(d). As required,
B is a negative reactance.

V. GENERAL RESONANCE MECHANISM

FOR BRAGG BLAZING

In (15), the condition for Bragg blazing was posed as
B = −X at the blazing frequency. Nevertheless, this condition
is sufficient to ensure resonance but not necessary. Actually,
since the matching condition for perfect Bragg blazing is given
by (14), the following more general version of the resonance
requirement can be obtained combining (13) and (14):

B = (2/X)�
Y (0)

0

�2 + (1/X)2
. (22)

The value of Y (0)
0 is defined once the incidence angle is

imposed. Note that the resonance condition (22) can be
satisfied by a variety of pairs of B and X values. These
combinations correspond to specific choices of parameters w
and d . According to the definition of X and B in (7) and (9),
condition (22) can be rewritten as

Im

�
[N−2]2

Y (0)
−2 + Y (1)

−2,in

+ 1

jωCho

�

= −2
Y (1)

0 cot
�
β

(1)
0 d

�
�
Y (0)

0

�2 + �
Y (1)

0 cot(β(1)
0 d)

�2 . (23)

A design procedure incorporating (23) would be identical to
the one reported in Section IV, but substituting the transcen-
dental equation (21) by (23) in the third step. It is worth noting
that (22) indicates that, for a set of values of fb, ζ , and ε

(1)
r ,

perfect blazing along the incidence direction can be achieved
for many different combinations of w and d . Examples of
the frequency response for several of those combinations are
depicted in Fig. 5(a). In this figure, the power carried by the
n = −1 harmonic is plotted as a function of frequency for six
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Fig. 4. (a) Power associated with specular reflection (black solid line) and
transferred to the harmonic of order n = −1 (red dotted line) computed
with method of moments (MoM) and circuit model (black crosses and red
dots). (b) Real (black solid line) and imaginary (red dashed line) parts
of the impedance loading the transmission line representing the n = 0
harmonic. (c) Frequency dependence of the impedances associated with the
harmonics n = 0, −1 in the media (0) and (1). (d) Frequency dependence
of the impedance B . Structure parameters: p = 32.7 mm, w = 5.10 mm,
d = 2.78 mm, ε

(1)
r = 6.15, and ζ = 35◦.

Fig. 5. (a) Power transferred to the harmonic of order n = −1. (b) Specular-
reflection power for several designs sharing the value of fb (8 GHz) and the
following dimensional and electrical parameters: p = 32.7 mm, ζ = 35o,
ε
(1)
r = 6.15. Note that for each value of d, an appropriate value of w has

been chosen.

different geometrical designs. The design specifications are
the ones considered in Fig. 4, but several different pairs of
w and d satisfying (23) have been compared. As required,
the maximum blazing power is always attained at 8 GHz.
Note that it means that, for a given commercial substrate with
specific values of d and ε

(1)
r , it is always possible to find a

value of w leading to perfect blazing. However, it should be
noted that the bandwidth associated with each configuration is
different. Similar conclusions can be inferred from Fig. 5(b),
where the specular-reflection power has been plotted for the
same frequency range.

Provided an incidence angle and frequency are chosen for
perfect blazing, an interesting question arises on the optimum
choice of the pair (w, d) that leads to the broadest bandwidth.
In Fig. 6(a), the evolution of the fractional bandwidth for
a given value of permittivity and several different dielectric
thicknesses is shown (the fractional bandwidth is defined as the
percentage ratio of the frequency band for which the specular-
reflection level is less than −10 dB and the corresponding
central frequency). Of course, for each dielectric thickness,
there is a particular value of w that gives rise to perfect
Bragg blazing [this value is plotted in Fig. 6(b)]. Note that
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Fig. 6. (a) Fractional bandwidth for the specular-reflection power
(under −10 dB). The central frequency is 8 GHz. The figure shows the
evolution of the bandwidth in terms of the dielectric thickness. (b) Corre-
sponding strip width value (w) for each of the dielectric thicknesses used
in (a). Common parameters: p = 32.7 mm, ζ = 35o, ε

(1)
r = 6.15.

the bandwidth is small for both very thin and relatively thick
substrates, reaching an optimum value (maximum bandwidth)
at about d = 3.3 mm. This means that, for a given substrate
dielectric constant, we can select the dielectric thickness
closest to the optimum one if a reasonably wide bandwidth
is required. The proposed circuit model also helps to make
such choice.

VI. MODEL FOR TE INCIDENCE

In Sections II–V, only TM polarization of the impinging
wave has been considered and now it will explore the possibil-
ity of achieving perfect blazing for TE polarization. Actually,
circuit models similar to those reported for TM polarization
are also available for the TE case [23]. According to the
study presented in [23], the topology of the circuit models
for TE polarization is identical to the one shown in Fig. 2 (or
Fig. 3). However, since only TE harmonics are scattered by
the strip grating, TM modal impedances should be replaced
by TE ones (i.e., Z (i)

n = η0 k0/β
(i)
n ) in the whole formulation.

The values of Nn(w) should also be changed due to the
drastically different current profile induced on the metal strips
when TE excitation is considered [23]. The most relevant
difference with the TM case, in the context of this discussion,
is that the capacitance Cho accounting for high-order harmonic
contributions has to be replaced with an inductance Lho whose
explicit value can be found in [23]. It means that the nature
of the reactive impedance, jB , in the simplified circuit shown
in Fig. 3(b) is inductive (B > 0) for the TE case, in such a way

Fig. 7. SR power (blue solid line) and power transmitted to the n = −1
harmonic (red dotted line) for TE incidence (blue crosses and red dots have
been obtained with the analytical equivalent circuit). Parameters: ζ = 35o,
εr = 6.15, w = 5.1 mm, and d = 8.85 mm.

that resonance is not possible for X > 0. In other words, for
TE polarization, there is no possibility of perfectly matching
the n = −1 harmonic (blazing) if the thickness of the substrate
is small, since in such case X is always positive. However,
if this restriction is relaxed and the substrate is allowed to
be electrically thick, negative values of X can be obtained
for π/2 < β

(1)
0 d < 3π/2 [see (7)]. The resonance condition

is, once again, expressed by (22). Let us consider a simple
example to illustrate this possibility. For an incidence angle of
ζ = 35o and blazed frequency fb = 8 GHz, the period of the
structure should be p = 32.7 mm, according to the previously
explained procedure. The next step is to fulfill the resonance
condition given by (22). For a given permittivity we can find,
as explained previously for TM polarization, a variety of pairs
(w, d) satisfying (22). For fixed values of w and εr we can
numerically solve (22) for d . Let us take the particular values
εr = 6.15 and w = 5.1 mm. The smallest value of d fulfilling
condition (22) turns to be d = 8.85 mm. For this set of values,
in Fig. 7 we have plotted the SR power along with the power
transmitted to the n = −1 harmonic. Note that the circuit
model and MoM results show a reasonably good agreement
over the whole explored frequency band. Thus, in principle,
perfect blazing is possible for TE polarization. However,
due to the requirement of thick substrates, the bandwidth of
perfect blazing is much smaller than the one achievable for
TM incidence. This could be a serious drawback for practical
applications of this particular structure when used for TE
polarization. The circuit model provides a clear explanation
of the reasons for reducing the bandwidth and can guide the
designer to find new structures overcoming this drawback.

VII. PERFECT OFF-BRAGG BLAZING

Up to this point, only perfect back reflection along the
incidence direction (Littrow case) has been considered. How-
ever, one might be interested in achieving perfect blazing
along a particular direction ζ � different from the incidence
direction ζ (off-Bragg blazing). Note that the blazed angle ζ �
is actually determined by the ratio between the transverse and
longitudinal components of the wavevector associated with the
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Fig. 8. (a) Circuit model to account for off-Bragg blazing. (b) Equivalent
circuit considering jB .

n = −1 diffracted harmonic; namely

tan ζ � = k0 sin ζ − 2π/p

β
(0)
−1

. (24)

By using the formal expressions of these parameters and after
some manipulations, (24) can be rewritten as follows:

tan ζ � = f p sin ζ − c[ f p cos ζ ]2 − c2 + 2cp f sin ζ
. (25)

This equation shows how the blazed angle depends on the
incidence angle, the operation frequency, and the period of the
grating. It would allow us, for instance, to fix the values of ζ ,
ζ �, and fb and use (25) to determine the proper value of the
period p. It is worth mentioning that there is no information
about the geometry of the structure in (25) (except the period).
The period together with the incidence angle controls the onset
of a certain diffraction order, while the propagation direction of
such diffraction order is controlled by the operation frequency.
However, no conditions about the coupling level between the
incident harmonic and the n = −1 harmonic can be enforced
by (25). The power transfer from the incident harmonic to
the n = −1 harmonic is dictated by the geometry of the cell
(dielectric thickness, d , and strip width, w) and the relative

permittivity of the substrate, ε
(1)
r . These parameters can be

adjusted to suppress the specular reflection of the impinging
harmonic and transfer all the power to the n = −1 harmonic,
which will propagate along the ζ � direction. This perfect
blazing condition is discussed next.

A. Condition to Achieve Perfect Off-Bragg Blazing

Once the period of the structure has been fixed, and the
blazed frequency and incidence/blazed angles have been cho-
sen, the next step in the design procedure consists of tuning

w, d, ε
(1)
r to reach a perfect power transfer between the har-

monics under consideration. Fortunately, from the equivalent
circuit point of view, this is again just an impedance matching
problem involving the input line, Z (0)

0 , and the impedance
loading such transmission line, ZRG; that is, (14). The cor-
responding equivalent circuit is represented in Fig. 8(a) and
its simplified version in Fig. 8(b). According to this simplified
circuit, the matching condition can now be written as

Y (0)
0

�
= YRG = 1/ZRG

�
= 1

jB + [N−1(w)]2

Y (0)
−1 +Y (1)

−1,in

+ Y (1)
0,in (26)

with

jB = −j
1

ωCho
+ [N−2(w)]2

Y (0)
−2 + Y (1)

−2,in

. (27)

Note that, once again, the dynamical frequency contribution
of the lowest-order evanescent harmonic (n = −2) has been
explicitly taken into account since this harmonic might operate
close to its onset frequency. The contribution of the remaining
evanescent harmonics is included in the frequency-independent
high-order capacitance Cho.

Once the parameters involved in (25) have been fixed,
the variables to be considered in (26) are just w, d , and ε

(1)
r .

For instance, fixing the permittivity value of the dielectric
slab, an appropriate pair of values w, d satisfying (26) can
readily be found by means of a numerical root-searching
algorithm. A physical interpretation of the solution to (26)
can be inferred by noting that, since the left-hand member
of (26) is real valued, the right-hand side has to be real too;
namely, the imaginary part of the right-hand side of (26) has to
vanish at the matching frequency. It means that the structure
has to operate at resonance, as it was also found for Bragg
blazing. Perfect blazing is, again, promoted by a resonance
phenomenon. It is worth mentioning here that, even though
only TM cases are treated in this section, TE polarization
can be handled in a similar manner. However, in this latter
case, thick substrates are required and narrow band operation
is achieved, as discussed in Section VI.

B. Numerical Examples

In order to validate the above remarks, two different designs
are carried out according to the following specifications:

Case 1: ζ = 45o, ζ � = 30o, p = 30 mm, and ε
(1)
r = 10.2.

With these specifications, the blazed frequency ( fb) can
be computed by using (25) and the dielectric thickness and
strip width by using (26). The resulting values are fb =
8.28 GHz, w = 3.76 mm, and d = 1.96 mm. The result-
ing specular-reflection power and the power carried by the
n = −1 harmonic are both plotted in Fig. 9(a). A specular-
reflection minimum (∼ −80 dB) appears at the calculated
blazed frequency, which corresponds to a maximum of power
associated with the n = −1 harmonic. The frequency behavior
of the impedance ZRG is plotted in Fig. 9(b). As expected,
this figure shows the zero-crossing of the imaginary part of
ZRG at the same frequency at which the real part of ZRG
coincides with the characteristic impedance of the input line.
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Fig. 9. (a) Power carried by the SR wave (blue solid line) and the harmonic of
order n = −1 (red dotted line). Blue crosses and red dots have been computed
using the analytical circuit model. Structure parameters: p = 30 mm,
w = 3.761 mm, d = 1.96 mm, ε

(1)
r = 10.2, ζ = 45o, ζ � = 30o. (b) Frequency

behavior of the real (dotted red line) and imaginary (solid blue line) parts of
ZRG. The horizontal line represents the characteristic impedance of the input
line and the vertical black dashed line indicates the blazed frequency.

This frequency is precisely the blazed frequency, as it
can be seen in Fig. 9(a). Likewise the previous cases,
the results provided by the equivalent circuit are compared
with those obtained by an in-house MoM showing an excellent
agreement.

Case 2: ζ = 20o, ζ � = 40o, ε
(1)
r = 7, and fb = 7.5 GHz.

The geometrical parameters that satisfy these specifications
can be determined using the same procedure as before. Since
the blazed frequency has been initially fixed in this case,
the combined use of (25) and (26) gives the following values:
p = 40.59 mm, w = 5.21 mm, and d = 2.21 mm. The
corresponding response is plotted in Fig. 10(a), where it is
found that the specular reflection reaches a deep minimum at
the desired frequency. In Fig. 10(b), the frequency behavior of
the real and imaginary parts of ZRG is also shown, with the
expected behavior of the real and imaginary parts of ZRG.

C. Off-Bragg Blazing Points

The resonance mechanism to achieve perfect blazing has
been linked to the following two conditions: 1) the imaginary
part of YRG in (26) must vanish (resonance) and 2) the real

Fig. 10. (a) Power carried by the SR wave (black solid line) and the
harmonic of order n = −1 (red dotted line). Crosses and dots correspond
to the equivalent circuit model. Structure parameters: p = 40.589 mm,
w = 5.21 mm, d = 2.2102 mm, ε

(1)
r = 7.0, ζ = 20o, ζ � = 40o. (b) Frequency

behavior of the real (red dotted line) and imaginary (blue solid line) parts of
ZRG. The horizontal dotted line represents the characteristic impedance of
the input line, and the vertical dashed line indicates the blazed frequency.

part of YRG must be equal to 1/Z (0)
0 . The application of such

conditions provides a systematic design procedure that can
be very conveniently carried out with the already proposed
equivalent circuit. In order to further corroborate this fact,
the numerical results reported in [19, Fig. 4(a)] are now
reproduced in Fig. 11 using the analytical circuit model. In this
figure, the behavior of the specular-reflection coefficient is
shown in terms of the operation frequency and incidence angle
for the same grating configurations but with three different
strip width, w = 2.7 , 3.4, and 4.1 mm. It can be checked that
the agreement of the ECA results with the numerical results
in [19, Fig. 4(a)] is excellent, with the low-reflection regions
being well captured by the circuit model. In Fig.11, minima of
specular reflection are observed at the points where the Bragg
condition is fulfilled. Clearly, the blazed frequency (or blazed
frequency band) shifts as w varies following the Bragg line in
the frequency–angle plane. [The Bragg line was defined in [19]
and here corresponds to (16); namely, fb = c/(2 p sin ζ).]
However, as stated in [19], two unexpected high-blazing peaks
appear out of the Bragg line in the plot corresponding to w =
4.1 mm; these off-Bragg blazing points are also well captured
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Fig. 11. Equivalent-circuit results for the reflection coefficient (expressed
in dB as a map of color) as a function of frequency and incidence angle
for the same configurations considered in [19, Fig. 4(a)]. Blue solid curve
marks the boundary between the nondiffractive and the diffractive regimes.
The black dotted curve corresponds to the Bragg line.

Fig. 12. Specular-reflection power for six different incidence angles for the
structure considered in Fig. 11(c).

by the circuit model. A further study of this fact is shown
in Fig. 12 where the reflection coefficient is plotted for several

Fig. 13. Frequency behavior of the real (dotted red line) and imaginary
(solid blue line) parts of ZRG for the structure considered in Fig. 12. The
dotted black horizontal line represents the value of Z (0)

0 and the dashed black
vertical line indicates the resonance frequency. (a) ζ = 19°. (b) ζ = 25°.
(c) ζ = 40°. (d) ζ = 60°. (e) ζ = 71°. (f) ζ = 80°.

incidence angles around f = 8 GHz for the structure consid-
ered in Fig. 11(c) (w = 4.1 mm). Note that the specular-
reflection dip in Fig. 12 overcomes the −30 dB threshold
at angles 19o and 71o (besides the 40o case, corresponding
to the Bragg condition). For other angles comprised between
19o and 71o, this reflection dip also exists, although its depth
is smaller. This means that, in this case, specular reflection is
significantly suppressed over a wide range of incidence angles
at frequencies around 8 GHz. In order to explain the existence
of these two off-Bragg blazing points from the perspective of
the equivalent circuit, the frequency behavior of the real and
imaginary parts of the impedance ZRG is depicted in Fig. 13
for several incidence angles. The straight horizontal lines in
the plots indicate the value of the input-line impedance cor-

responding to the considered incidence angle (Z (0)
0 ). Vertical

straight lines mark the resonance frequency (zero-crossing of
the imaginary part). For some of the represented angles, it
can be observed that the real part of ZRG is very close to
Z (0)

0 at resonance (perfect matching), whereas such condition
is not fulfilled for other angles. The values of the angles for
which perfect matching is achieved (ζ = 40o, ζ = 19o, and
ζ = 71o) are the three blazing points observed in Fig. 11(c),
one corresponding to Bragg blazing and two to off-Bragg
blazing.
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Fig. 14. Specular-reflection power (black lines) and power carried by the
n = −1 harmonic (gray lines) for a structure with three different values
(0, 0.005, and 0.05) of the loss tangent (in brackets in the inset). The
dimensional parameters and the real part of the permittivity are the ones
corresponding to the example in Fig. 4.

VIII. EFFECT OF LOSSES

Up to this point, the presence of material losses introduced
by real dielectrics and metals has been ignored, in such a
way that the proposed model would only be valid for very
low-loss structures. However, as the effect of losses could
be relevant in practical structures, this section is devoted to
supplement the circuit model to account for losses and study
their consequences. This study is particularly necessary for
structures based on resonances, as it is the case in this paper,
since they are very sensitive to the effect of losses [25], [26],
which might completely suppress the phenomenon occurring
in the absence of such losses (blazing, in our case).

A. Dielectric Losses

The inclusion of dielectric losses in the equivalent circuit
is quite straightforward by simply considering, as usual,
a complex permittivity describing the dielectric properties,
that is

ε̂(1)
r = ε(1)

r (1 − j tan δ) (28)

where tan δ is the loss tangent of the dielectric material. When
this complex permittivity is used in the expressions defining
the propagation constants and impedances of the transmission
lines modeling the Floquet harmonics inside the dielectric slab
region, these quantities all become complex at any frequency
(lossy transmission lines). To have an idea of the impact of
this fact on the achievable mirror-like reflection suppression,
the normalized specular-reflection power for the first design
reported in this article is shown in Fig. 14 for four different
values of tan δ. Of course, perfect blazing is obtained in
the lossless case (tan δ = 0). The reflected power curve is
hardly perturbed if a typical low-loss microwave substrate
(tan δ = 0.005, for instance) is considered, although perfect
suppression of the specular reflection cannot be achieved at
the blazing frequency (the lowest achieved reflection coeffi-
cient is about −33 dB). Nevertheless, most of the power is
transferred to n = −1 harmonic while a minimum fraction
of the power is absorbed by the substrate. For very lossy

Fig. 15. Prototype of a narrow-band absorber. Structure parameters: p = 30,
w = 2.5 mm, d = 6 mm, ε

(1)
r = 10.2, δ = 0.4, ζ = 20o. Comparison with

CST Microwave Studio [27] is included (circles, squares, and crosses).

substrates (tan δ ≈ 0.05 or higher), specular reflection cannot
be efficiently suppressed, which would prevent the use of this
kind of substrates (for instance, FR4) for this application.
From the equivalent circuit perspective, this is due to the
fact that the global resistance associated with losses precludes
the perfect (or quasi-perfect) matching achieved when losses
are low or absent. It is worth mentioning that the agreement
between the analytical (equivalent circuit) and MoM results
shown in Fig. 14 is excellent, even for the highly lossy cases.

Calculations carried out with the circuit model and verified
through an MoM code show that the use of a lossy substrate
not only precludes good matching of the impinging wave
(i.e., specular-reflection suppression) but also deviates a large
portion of the impinging power to the loss mechanism rather
than to the n = −1 harmonic. Thus, for tan δ = 0.05 and
f = 8.0 GHz, the relative level of power transferred to the
n = −1 harmonic is about −2.14 dB and the SR power level is
−15.51 dB, in such a way that 36% of the impinging power
is dissipated in the lossy dielectric, 2.8% is SR, and 61.2%
is backscattered (n = −1 harmonic). Incidentally, one might
wonder if the structure can be designed in such a way that
the percentage of absorbed power is close to 100% (perfect
absorber). The problem of designing such kind of absorber can
be posed in terms of a perfect matching problem, provided the
frequency operation is below the onset of any grating lobe of
the periodic structure. In such case, perfect matching means
total absorption. A methodology similar to the one reported
in this article for designing perfect blazing structures can
also be applied to the design of a perfect absorber if very
lossy substrates are used. The main difference is that all the
transmission lines involved in the model are lossy. Although
this is not the central subject of this article, a grating prototype
aimed to yield a perfect absorber has been designed. The
dimensional and electrical parameters as well as the computed
electrical response are given in Fig. 15 for a TM-polarized
plane wave impinging with angle ζ = 20o. The frequency at
which perfect absorption is enforced is 4 GHz, well below the
onset of the first grating lobe (≈ 7.4 GHz). More than 90%
of the impinging power is absorbed in the frequency band
from 3.4 to 4.6 GHz (30% fractional bandwidth). Note that
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part of the impinging power (a very small amount indeed) is
transferred to the n = −1 harmonic at frequencies beyond
7.4 GHz. Below that cutoff frequency, the residual power
transferred to this harmonic is only related to dielectric losses,
of course. Comparison with full-wave results obtained using
CST Microwave Studio [27] reveals very good agreement.

B. Ohmic Losses

In principle, the inclusion of ohmic losses associated with
metal strips in the circuit model is not as straightforward
as the inclusion of dielectric losses. However, if just an
approximation to the expected level of losses is required,
the concept of surface impedance of the metal regions can
be used. In the formulation of the ECA, conductor strips with
losses can be characterized by means of a surface impedance,
Zs , so that the resultant electric-field integral equation [2,
eq. 30] is now

1

2

� w/2

−w/2
[Js]∗E dx = Zs

2

� w/2

−w/2
[Js]∗[H(1) − H(2)] dx . (29)

In the strong skin effect regime (the expected regime for
microwave frequencies and typical thicknesses of the copper
traces employed in printed circuit technology), the surface
impedance is given by

Zs = 1

σδs
(1 + j) = Rs(1 + j) (30)

where δs if the skin depth. Conductor ohmic losses are then
mainly controlled by the surface resistance, Rs, of the metal
at the operation frequency. The inclusion of the losses of
the metal strips in the integral equation (29) gives rise to a
slight modification of the so-called equivalent impedance (Zeq)
defined in [23, eq. 31], which should be rewritten as (TM case)

Zeq = (1 + j)Rs

N�
n=−N

n �=0

[Nn(ω)]2 +
N�

n=−N
n �=0

[Nn(ω)]2

Y (0)
n + Y (1)

n,in

+ 1

ωCho
.

(31)

This expression coincides with the losless case in [23, eq. (31)]
except for the appearance of a new resistance R accounting
for conductor losses:

R = Rs

N�
n=−N

n �=0

[Nn(ω)]2 (32)

plus a small incremental inductance whose value (strong skin
effect) is �L = R/ω. This complex impedance is series
connected with the two boxed blocks represented in the circuit
model depicted in Fig. 8. In order to check the validity
of the proposed model, three lossy scenarios are analyzed
in Fig. 16. The curves correspond to gratings whose strips
are made of a metallic material (copper) and two different
hypothetical conducting materials with relatively low values
of conductivity (σ = 106 S/m and σ = 105 S/m) when com-
pared with copper. The results obtained with the approximate

Fig. 16. SR power (n = 0) and power transferred to the n = −1
harmonic (circles) for conducting strips having three different values of surface
resistance (copper, σ = 106 S/m and σ = 105 S/m). Black curves have been
computed using the equivalent circuit model and red (gray) curves have been
obtained with CST Microwave Studio [27]. A single curve has been drawn for
the power transferred to the n = −1 harmonic because the three conductivity
cases visually overlap. Dimensional and electrical parameters are the ones
corresponding to the example in Fig. 4.

circuit model are compared with simulation results computed
using CST Microwave Studio [27], assuming a strip thickness
of 35 μm. It can be appreciated that the approximate lossy
circuit model gives rise to results close to those obtained
with the computationally intensive full-wave simulations. The
observed frequency shift between the two set of results (less
than 0.5% difference for the resonance frequency) is partially
due to the fact that the strip thickness is not accounted for
in the ECA. A smaller discrepancy (less than 0.25%) has also
been observed when zero-thickness lossy strips are considered
in CST simulations. In any case, the influence of ohmic losses
is reasonably well captured by the model, including a tiny
and subtle resonance frequency shift appearing in the high-
loss case (σ = 105 S/m). It is apparent that only very low
values of the conductivity (much smaller than those typically
associated with metals) would lead to significant deterioration
of the blazing effect. Thus, the effect of metal losses can safely
be neglected in the frame of this article.

IX. CONCLUSION

An accurate analytical circuit model has been derived for
the modeling of planar resonant blazed gratings made of
periodic distributions of metal strips printed on a conductor
backed substrate. Apart from accurate numerical results, the
circuit model also provides a simple physical insight to explain
the mechanism leading to both Bragg and off-Bragg blazing
phenomena. The underlying mechanism is posed in terms of
an impedance-matching condition for the transmission lines
representing the impinging plane wave (zeroth order Floquet
harmonic). Although perfect blazing can only be achieved at
the resonance frequencies of the structure, resonance is found
to be only a necessary condition. The appropriate strip width
that yields perfect matching (and thus perfect cancellation
of specular reflection) can be analytically obtained using the
proposed circuit model. This provides a systematic method
for the design of this kind of structures which does not rely
on an optimization process assisted by full-wave solvers. The
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effect of material losses has also been incorporated to the
circuit model. It allows us to conclude that commercially
available low-loss substrates coated with copper are suitable
to build satisfactory blazed gratings of this class operating at
microwave frequencies.
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