
Passive localization and detection of quadcopter
UAVs by using Dynamic Vision Sensor

S. Hoseini1, G. Orchard2, A. Yousefzadeh1, B. Deverakonda2, T. Serrano-Gotarredona1 and

B. Linares-Barranco1

1Instituto de Microelectrónica de Sevilla (CSIC and Univ. de Sevilla), Sevilla, Spain {sahar, bernabe}@imse-cnm.csic.es
2 Singapore Institute for Neurotechnology (SINAPSE) at National University of Singapore garrickorchard@nus.edu.sg

Abstract— We present a new passive and low power

localization method for quadcopter UAVs (Unmanned aerial
vehicles) by using dynamic vision sensors. This method works
by detecting the speed of rotation of propellers that is normally
higher than the speed of movement of other objects in the
background. Dynamic vision sensors are fast and power
efficient. We have presented the algorithm along with the results
of implementation.

Keywords— Dynamic Vision Sensors (DVS); Quadcopter
UAV; Localization

I. INTRODUCTION
Frame-less Dynamic Vision Sensors (DVSs) are

becoming more popular in vision processing systems due to
their low power consumption and fast response time [1]. In
conventional artificial vision systems, cameras capture
frames at a given frame rate. In these systems, independent
of the changes in the frames, the processing is repeated for
every single frame. Therefore, for detecting fast moving
objects, a high frame rate is required, resulting in a need for
power hungry processing. However, in biological vision
systems, the procedure is quite different. Our eyes contain
many neurons that are sensitive to light and each neuron will
generate a spike as soon as it detects a change in light.

There are different types of DVS with different
resolutions and special features (for example [2] [3] [4]) but
all of them share a common principle with biological retina.
Each pixel independently sends events (or spikes) out when
the change in light intensity exceeds a predefined threshold
and it only consumes power in these moments (except for a
low standby power in the absence of events). Output events
of DVS are encoded in Address Event Representation (AER)
format [5] that contains pixel address and a polarity bit.
Polarity bit indicates the direction of change in light intensity.
Fig.1 shows a propeller that rotates in front of DVS and the
corresponding reconstructed DVS output in jAER software
[6]. Black dots in reconstruction show decrease in light
intensity and white dots show increase in light intensity. No
event is be generated for fixed objects in background because
of no change in light intensity.

Even though DVS is very low power, its response time
is in order of microseconds and it can easily capture
movements which only very fast frame-based cameras
(>1000fps) can capture. In addition, DVS has very high

dynamic range (120dB for [4], 130dB for [2] and 143dB for
[3] in comparison to 50dB for typical frame-based cameras).

Fig.1. Rotating propeller in front of DVS [4] (left). USB-AERmini2 board

[5] puts time stamp on events from DVS and sends them to computer
through USB. Output is reconstructed with jAER software (right) [6]. It

contains 864 events within 624us (1.3M events per second).

Quadcopter applications are increasing and at the same
time engineers are developing autonomous controllers to
make them easier to use. Outputs of quadcopter localization
systems can be used in these controllers. Quadcopter
localization systems can also be used in security systems to
detect quadcopters. Quadcopters can be as small as a bird and
it is hard to detect them by RADAR systems. Quadcopters
can be detected by using an intelligent system to distinguish
them with birds based on motion estimation and other elusive
aspects but with a limited accuracy. Due to use of electrical
power (versus burning fuel) quadcopters do not produce a lot
of heat (to be detected by thermal methods). Quadcopters can
be completely autonomous and passive without producing
any radio signals. These features make it hard for
conventional systems to detect them. We propose to detect
the high rotation speed of the propellers to make a robust
system for detecting quadcopters. This method can be used
alone or along with other methods to increase accuracy in
security systems. We have introduced a fully event driven
algorithm that is suitable for implementation in an embedded
hardware.

Censi et al [7] introduced a low-latency localization
method by using active LED markers. This method needs
four flashing LEDs in a quadcopter. By detecting frequency
of LEDs, they localized and tracked the quadcopter. We tried
to remove the needs of using active LED markers and trying
to recognize quadcopters by detecting frequency of rotating
propellers. Because rotating propeller is harder to detect than

a flashing LED, we have designed the algorithm to be more
robust against noise and proper for our application. The fact
that our method is completely passive makes it adequate for
detecting quadcopters in security applications. In the next
sections we have explained the algorithm, experimental
results and finally a brief conclusion.

II. DETECTION ALGORITHM
In this section we have explained the algorithm to

detect frequency of a moving objects by using DVS. Because
propellers normally move faster than other objects and their
movement repeats periodically, our algorithm can distinguish
it from other kind of movements. In this work we assumed
that the DVS moves slowly over a fixed platform.

(a)

(b)

(c)

Fig.2. Output events of DVS when looking at a quadcopter for 100ms (a),
‘ON’ and ‘OFF’ events versus time for two pixels, one is looking to

propeller (Pixel A) (b) and another one is looking to the frame of
quadcopter (Pixel B) (c)

Fig.2 (a) shows the output events from all the pixels of
DVS. We have selected two pixels to show the sequence of
the events generated in time. One pixel is looking at the

propeller (Pixel A) and another one is looking at the frame of
quadcopter (Pixel B). As it can be seen in Fig.2 (b) and (c),
Pixel A generates a good periodical series of ‘ON’ events
(events with polarity==1) and ‘OFF’ events (events with
polarity==0) while events from Pixel B do not have this
feature. Detection of this feature is the principle of our
frequency detection algorithm.

Events from DVS contain pixel address and polarity
(p). Each event is processed based on its event address. Fig.3
is a simplified flowchart of the proposed algorithm to detect
frequency of rotating object for only one selected pixel of
DVS. Each pixel reports frequency of the object independent
from others.

Fig.3. Flowchart of the proposed algorithm to calculate frequency of

rotating object in front of a pixel of DVS

The algorithm is designed to calculate the time
intervals between consecutive ‘OFF’ to ‘ON’ transitions as
illustrated in Fig.4. At initialization, the system waits to
receive an event with polarity equal to ‘1’ (p==1). Then if the
previous event from this pixel had polarity equal to ‘0’ (last
polarity==0) it will be considered as a change. Based on the
number of change for each pixel, the algorithm will make
different decisions to guarantee accuracy of results. If this is
the first change for the pixel, 𝑡"#$% will be updated with 𝑡&'(

and the number of change will be incremented by 1.
Otherwise, the system calculates a time difference using (1).

𝛥𝑡	 = 	 𝑡&'(–	 𝑡"#$%	

𝑡"#$% ← 𝑡&'((1)

𝑛 ← 𝑛 + 1, 𝑛 < 10
10, 𝑛 ≥ 10

Where Δ𝑡 is the time difference calculated using the current
time, 𝑡&'(, and the time of the previous event from this pixel,
𝑡"#$%. 𝑛 is the number of changes detected at this pixel, or 10,
whichever is smaller.

After updating 𝑡"#$%	 to 𝑡&'(, it needs to check if the
calculated time difference is reasonable. This condition acts
like a frequency filter to remove noise. The reasonable range
depends on the application and router frequency. In our
experimental results, we adjust the system to accept
frequencies in range of 5Hz to 200Hz (time difference in
range of 5ms to 200ms). If time difference is less than 5ms,
we assume it as a very fast change that can be from another
source or internal noise of DVS. In this case, the system will
ignore this change and does not consider it in the calculations.
On the other hand, if the change is very slow, it means there
is no rotating propeller in front of the selected pixel and in
this case, the system will reset some internal states for this
pixel to be ready for new stimuli.

Fig.4. Definition of time difference between ‘OFF’ to ‘ON’ transition.

To suppress noise and jitter, the algorithm is designed

in a way that it does not report frequency before receiving an
adequate number of changes from the current stimuli. In this
manner frequency will be reported only for pixels that sense
reasonable repetitive movements. Here we adjusted it to
receive at least 10 changes before reporting a frequency.
Increasing this number will lead to more robust predictions
but at the cost of increased latency.

Frequency will be reported by calculating average time
of the past 10 changes. If the number of changes is less than
10, the average of the time differences (Δ𝑡) will be calculated
based on incremental averaging formula in (2). Incremental
averaging allows us to calculate average in an event driven
manner without storing previous events.

𝛥𝑡 ←	 (&89):%	 +	 Δt
	 n

 (2)
If the number of changes is more than 10, the system

can start reporting frequency for the current stimuli. In this

case 𝛥𝑡 should be calculated from (2) with constant value of
n (n=10). It means to calculate 𝛥𝑡 we just consider 10 last
changes rather than all of the previous events. Frequency is
not constant and can change from one value to another. The
ideal case to remove noise and not accumulating errors is
using moving average and consider only recent events.
Calculating exact moving average without knowing the
previous events is not possible. We proposed an
approximation to calculate moving average in an incremental
manner by using (2) and set window size of moving average
to a fixed value by setting n=10.

Results show good accuracy in real tests that will be
discussed in the next section. After updating the Δ𝑡,
frequency will be calculated in (3).

f	 = 1
𝛥𝑡 (3)

In addition to frequency, the system will also report

frequency confidence. This value presents confidence of the
system about reported frequency and can be calculated with
(4). If the current time difference is very different from the
average of recent ones, frequency will be reported with less
confidence.

Frequency Confidence = 1-‐‑| Δt-‐‑:%
:%

|	 (4)

Proposed algorithm is pure event driven. When there is
no input event, no processing is needed. To save memory we
eliminated the need to store previous events and it is only
needed to store four values for each pixel in the hardware:

1- Polarity of previous event (𝑝"#$%)
2- Time of previous polarity change (𝑡"#$%)
3- Total number of polarity change (𝑛)
4- Average of time between changes (𝛥𝑡)

These are the state of each pixels and their initial value

is zero. In the next section we explain the implementation
results.

III. IMPLEMENTATION RESULTS
To test the algorithm, we used a 304×240 pixel DVS

(ATIS) [3] and recorded its output events when it was looking
at a flying middle size quadcopter as shown in Fig.5.

Fig.6 (a) shows a captured moment (200ms) of input
events, Fig.6 (b) and (c) show one moment of output of the
system (frequency of all the pixels vs. pixel position) in 2 and
3 dimensions respectively. As it can be seen, only the position
of propellers in the quadcopter are highlighted and other
positions do not have reported frequency. This results shows
how robust is the system in a noisy environment.

Latency of recognition is low and reasonable. For the
parameters that we chose in this work, minimum 10 changes
are required for recognition. If the propeller’s frequency is
more than 50Hz, latency of recognition will be smaller than
200ms. To see the functionality of the system when the
quadcopter is moving a real-time demo was prepared [8].

Fig.5. Quadcopter UAV that is used in this work to test the algorithm

(a)

(b)

(c)

Fig.6. Input events from a flying quadcopter (a), two-dimension

output result (color bar shows the approximate value of frequency) (b),
three-dimension output result(c)

Additional tests on the system have been done to verify

the dynamics of the algorithm for moving from one frequency

to another and testing frequency confidence. For this test, we
used recorded events from a flashing LED with a PWM
controller to change its frequency. We used this recording
because controlling propeller rotation speed is not easy in a
flying quadcopter.

Fig.7 shows results of the algorithm for only one pixel
in front of a flashing LED. As expected sometimes frequency
confidence is less at higher frequencies. This is because the
DVS needs a small amount of time for integration and event
generation. In high frequency change in light intensity, a
DVS starts losing events as it can be seen in Fig.8. By fine
tuning the DVS parameters (for example threshold voltage)
it can be adjusted for work in at higher frequency but it may
generate more noisy events. Also when frequency changes
from one value to another, the frequency confidence will
decrease for a short time.

Fig.7. Result of frequency detection of one pixel of blinking LED

Fig.8. Average number of events per second from flashing LED which is

captured by DVS.

Current implementation of the algorithm in MatLab

can process around 64Keps (thousands of events per second)
in an ordinary laptop while real-time event rate for our flying
quadcopter test is around 124Keps. Because in this algorithm

events from different pixels can be processed in parallel, we
are planning to implement this algorithm in an embedded
multi-core ARM processor to achieve real-time processing.

IV. CONCLUSION
In this work, we introduced a passive method to

localize and detect quadcopter UAVs by using a Dynamic
Vision Sensor. This algorithm can be efficiently implemented
in an embedded hardware to detect UAVs with rotation wings
and distinguish them than other flying animals like birds.
Also it can be used in noisy outdoor environment to control
UAVs.

V. ACKNOWLEDGEMENTS
This work has been supported by Singapore Institute

for Neurotechnology (SINAPSE).

VI. REFRENCES

[1] S. Soman, Jayadeva, M. Suri, "Recent trends in neuromorphic
engineering," Big Data Analytics, Dec 2016.

[2] R. Berner, M. Yang, S. Chii-Liu, T. Delbruck, C. Brandli, "A 240 ×
180 130 dB 3 µs Latency Global Shutter Spatiotemporal Vision
Sensor,," IEEE Journal of Solid-State Circuits, vol. 49, no. 10, pp.
2333-2341, Oct 2014.

[3] D. Maolin, R. Wohlgenannt, C. Posch, "A QVGA 143dB dynamic
range asynchronous address-event PWM dynamic image sensor
with lossless pixel-level video compression," in IEEE International
Solid-State Circuits Conference (ISSCC), San Francisco, 2010.

[4] T. Serrano-Gotarredona and B. Linares-Barranco, "A 128x128 1.5%
Contrast Sensitivity 0.9% FPN 3us Latency 4mW Asynchronous
Frame-Free Dynamic Vision Sensor Using Transimpedance
Amplifiers," IEEE J. Solid-State Circuits, vol. 48, no. 3, March
2013.

[5] T. Serranno-Gotarredona, M.Oster, P.Lichtsteiner, R.Paz-Vicente,
F.Gomez-Rodriquez, B. Linares-Barranco, et al "CAVIAR: A 45k
Neuron, 5M Synapse, 12G Connects/s AER Hardware Sensory–
Processing– Learning–Actuating System for High-Speed Visual
Object Recognition and Tracking," IEEE Transactions on Neural
Networks, Sept. 2009.

[6] F.Corradi, S.Bamford, L.Longinotti , T.Delbruck"jAER," [Online].
Available: https://sourceforge.net/projects/jaer/.

[7] A. Censi, J. Strubel, C. Brandli, T. Delbruck, D.Scaramuzza, "Low-
latency localization by Active LED Markers tracking using a
Dynamic Vision Sensor," in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Tokyo, 2013.

[8] S. Hoseini, Sep 2016. [Online]. Available:
https://youtu.be/RFcjUBN3pw0.

View publication statsView publication stats

https://www.researchgate.net/publication/316491035

