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The steady state of a vibrated granular gas confined by a movable piston on top is discussed. Particular
attention is given to the hydrodynamic boundary conditions to be used when solving the inelastic Navier-
Stokes equations. The relevance of an exact general condition relating the grain fluxes approaching and moving
away from each of the walls is emphasized. It is shown how it can be used to get a consistent hydrodynamic
description of the boundaries. The obtained expressions for the fields do not contain any undetermined param-
eter. Comparison of the theoretical predictions with molecular-dynamics simulation results is carried out, and
a good agreement is observed for low density and not too large inelasticity. A practical way of introducing
small finite density corrections to the dilute limit theory is proposed to improve the accuracy of the theory.
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I. INTRODUCTION

The behavior of fluidized granular systems resembles in
many cases that of ordinary molecular fluids. Actually, it is
by now well established that generalized Navier-Stokes
equations describe quite accurately many of the experimental
and numerical features of granular flows, especially at low
density and small inelasticity �1–3�. The justification for this
fluidlike description, and derivation of theoretical predictions
for the transport coefficients appearing in the equations, has
been intensively studied for some time. Quite often, ideal-
ized systems of inelastic hard spheres or disks have been
considered. For monodisperse models of this kind, the stud-
ies carried out include the derivation of the hydrodynamic
equations to Navier-Stokes order by using kinetic theory
methods �4–9�, direct Monte Carlo simulation of �inelastic�
kinetic equations �10,11�, molecular-dynamics �MD� simula-
tions �12�, and, very recently, linear-response theory �13,14�.

Interactions between grains are inherently inelastic. As a
consequence, the kinetic energy of isolated granular systems
decreases monotonically in time, and in order to keep them
fluidized, it is necessary to continuously supply energy to
them. A prototypical way of doing it is by vibrating one of
the walls of the container, usually the one at the bottom. Also
often, the interest focuses on the bulk properties of the sys-
tem, i.e., on the behavior of the system far enough from the
walls, where the governing laws are expected to be indepen-
dent of the details of the boundaries. Then, the most appro-
priate possible way of vibration for this purpose is chosen. In
many situations of interest, the criterion for this choice is
twofold: simplicity and avoiding undesired effects such as
the induction of propagating waves into the system. These
goals are formally achieved in the limits of very high fre-
quency and very small amplitude; the former as compared
with the typical relaxation frequency of the granular fluid
next to the wall and the latter with its mean free path. Addi-
tional simplifications occur if collisions of the grains with the
wall are taken as elastic and if the wall is assumed to move
with a sawtooth profile �15,16�.

A kind of idealized walls often used in kinetic theory and
particle simulations are the so-called thermal walls. By defi-
nition, the flux of after-collision particles leaving it corre-

sponds to a Maxwellian flux with the temperature parameter
characterizing the wall �17�. Therefore, the shape of the ve-
locity distribution of the particles moving away from the
thermal wall is independent of the distribution of the ingoing
particles. It is evident that thermal walls also provide a
mechanism to compensate the energy dissipated in inelastic
collisions once the granular gas in the vicinity of the wall
tends to have a temperature smaller than the one of the wall.
It is then not surprising that thermal walls have also been
extensively used in the literature of fluidized granular gases
since a decade ago �18,19�. Nevertheless, it must be stressed
that it is not at all evident that thermal walls correspond to
any limit of a rapidly vibrating plate. Actually, it has been
shown that in some cases the stability of systems driven by a
thermal wall and by a wall vibrating in a sawtooth way can
differ �20�.

The granular system considered in this paper is confined
between two parallel plates in the presence of a gravity force.
The mission of the one at the bottom of the system is to
fluidize the granular medium, as in the previous studies men-
tioned above. On the other hand, the wall on the top is float-
ing, in the sense that it can move in the vertical direction,
being supported by the granular fluid below it. As a conse-
quence, the position and motion of the upper wall is interre-
lated with the state of the granular media below it, and the
boundary conditions to be imposed to the hydrodynamic
equations, following from the interaction between the gas
and the piston, must be determined in a self-consistent way.
Here, the steady state eventually reached by the granular gas
between the two plates will be investigated using the hydro-
dynamic description provided by the Navier-Stokes equa-
tions for inelastic hard spheres. Collisions of the grains with
the piston will be modeled as hard inelastic collisions. This
defines in a deterministic way the mechanical interaction be-
tween the particles and the movable wall. The question ad-
dressed afterward is how to translate it into an appropriate
boundary condition to be used in the context of hydrodynam-
ics. Here this will be done by means of an intermediate stage
in which an exact boundary condition for the kinetic theory
description of the system is formulated. This condition re-
lates the distribution functions of particles leaving the wall
and approaching it by expressing the conservation of the
particles flux at the piston.
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An additional boundary condition is required to determine
the hydrodynamic fields. It can be obtained, in equivalent
ways, from the energy flux at the vibrating bottom wall or
from the global balance of energy in the system. In this way,
the theoretical prediction is completed, and explicit expres-
sions for the fields with no adjustable parameters are derived.
In order to verify the accuracy of this description, the pre-
dictions are compared with molecular-dynamics simulation
results. As in other steady states of granular gases, the range
of applicability of the theory is restricted to values of the
restitution coefficient for gas particle collisions close to unity
because of the coupling between inelasticity and gradients.
Under these conditions, reasonable agreement between
theory and simulations is observed in the bulk of the system,
i.e., outside the kinetic boundary layers next to the walls.
This confirms the validity of the hydrodynamic description,
including the needed boundary conditions, to describe vi-
brated granular gases in quite realistic situations.

The plan of the paper is as follows. In Sec. II, a previ-
ously derived �21� stationary solution of the inelastic Navier-
Stokes equations for a vibrated dilute granular system in
presence of gravity is reviewed. The main results are explicit
expressions for the hydrodynamic fields of the system having
two arbitrary parameters. Additionally, they involve the
height of the system. The results are particularized in Sec. III
for the granular gas between two plates described above.
Also, the boundary effects following from the interaction
between the gas and the piston on the top are formulated as
a condition for the gas-piston distribution function at contact.
In the same section and in Appendix B, it is discussed why
this is the appropriate starting point to derive the hydrody-
namic boundary condition and to introduce self-consistent
approximations, such as those used in Sec. IV. An analysis
along the same lines of the hydrodynamic boundary effects
due to the vibrating wall at the bottom is presented in Ap-
pendix C. Also in Sec. IV, the derived boundary conditions
are used to identify the arbitrary constants in the hydrody-
namic profiles derived in Sec. II. There are no adjustable
parameters in these expressions.

The comparison of the obtained theoretical predictions
with molecular-dynamics simulation results is carried out in
Sec. V for two-dimensional systems. It includes both the
detailed description provided by the hydrodynamic profiles
and also some global properties, such as the average position
of the piston and the balance of the total energy of the sys-
tem. A fairly good agreement is observed, especially if some
�small� finite density effects are partially incorporated into
the hydrodynamic description, through the equation of state
of the gas. The paper ends with a short summary and some
general comments.

II. GENERAL ONE-DIMENSIONAL SOLUTION

In this section, some of the results already discussed in
Ref. �21� will be shortly reviewed and summarized for the
sake of completeness. The system considered is a dilute
granular gas composed of N equal smooth inelastic hard
spheres �d=3� or disks �d=2� of mass m and diameter �. The
position and velocity of grain i will be denoted by ri and vi,
respectively. The inelasticity of collisions between grains is

modeled by means of a constant velocity-independent coef-
ficient of normal restitution �, defined in the interval 0��
�1. There is an external gravitational field acting on the
system so that each particle is submitted to a force −mg0êz,
where g0 is a positive constant and êz is the unit vector in the
positive direction of the z axis.

For steady states with vanishing macroscopic flow and
gradients only in the direction of the external field, i.e., the z
axis, the inelastic hydrodynamic Navier-Stokes equations of
this system reduce to �21�

�p

�z
= − nmg0, �1�

2

nd

�

�z
��

�T

�z
+ �

�n

�z
� − T	�0� = 0. �2�

Here, n�z� is the local number of particles density, T�z� is the
local granular temperature, and p�z�=n�z�T�z� is the pres-
sure. The temperature is defined from the kinetic energy in
the usual way but with the Boltzmann constant set equal to
unity. Moreover, � is the thermal heat conductivity and � is
the diffusive heat conductivity that is peculiar of granular
systems. More specifically, the generalized Fourier law giv-
ing the heat flux qz in the system is

qz = − �
�T

�z
− �

�n

�z
. �3�

Finally, 	�0��z� is the cooling rate accounting for the energy
dissipated in collisions. Upon deriving Eq. �1�, use has been
made of the local equation p�z�=n�z�T�z�, where p is the
hydrodynamic pressure, valid in the low-density limit.

The expressions of the transport coefficients and the cool-
ing rate appearing in the above expressions can be written in
the form �7,11�

���,T� = ������0�T� , �4�

���,T� = ������0�T� , �5�

	�0���,T� = 	����
p


0�T�
, �6�

with �0�T� and 
0�T� being the elastic ��=1� values of the
thermal heat conductivity and the shear viscosity,

�0�T� =
d�d + 2�2��d/2�

16�d − 1��
d−1

2

� T

m
�1/2

�−�d−1�, �7�


0�T� =
�d + 2���d/2�

8�
d−1

2

�mT�1/2�−�d−1�, �8�

respectively, and

�0�T� =
T�0�T�

n
. �9�

The dimensionless quantities ��, ��, and 	� are given in Ap-
pendix A. They only depend on the restitution coefficient �.
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Equation �2� shows the physically evident feature that, in
this state, hydrodynamic gradients are induced by the inelas-
ticity through the cooling rate. Consequently, a restriction to
small gradients, as it is the case in the Navier-Stokes ap-
proximation used above, also implies a limitation on the
value of � for which the theory can be expected to apply.
The interval of values of this parameter for which the theory
actually provides an accurate description is very hard to de-
termine a priori.

The system is supposed to be confined between two par-
allel walls located at z=0 and z=L, respectively. The nature
of this two walls will be specified and discussed later on. It is
convenient to introduce a dimensionless length scale  by
�21�

 = �a����	
z

L

dz�
1

��z��
+

�d−1pL

mg0

 , �10�

where

��z� � ��d−1n�z��−1 �11�

is proportional to the local mean free path, pL� p�z=L� is the
pressure of the gas next to the wall located at z=L, and

a��� �
32�d − 1��d−1	����

�d + 2�3�2�d/2������� − ������
. �12�

The  coordinate is a monotonic decreasing function of z
varying between

M � �z = 0� = �a����d−1�Nz +
pL

mg0
� �13�

and

m � �z = L� = �a���
�d−1pL

mg0
. �14�

In Eq. �13�, Nz denotes the number of particles in the system
per unit of section W �length or area� perpendicular to the
external field, Nz�N /W. It must be noted that the variation
interval of  depends on pL and Nz but not on the value of L.

The physical meaning of  can be illustrated by realizing
that it is proportional to the local pressure at the correspond-
ing height z. This follows from Eq. �1� that leads to

p�z� = mg0	
z

L

dz�n�z�� + pL =
mg0

�a����d−1
 . �15�

By substituting Eq. �1� into Eq. �2� and doing the change
of variable defined in Eq. �10�, a closed equation for the
temperature is obtained,


�2T1/2

�2 + b���
�T1/2

�
− T1/2 = 0, �16�

with

b��� �
2�� − ��

2��� − ���
. �17�

The general solution of the above differential equation reads
as �22�

T1/2�� = A−�I��� + B−�K��� , �18�

where A and B are constants to be identified from the bound-
ary conditions,

���� �
b��� − 1

2
=

��

4��� − ���
, �19�

and I� and K� are the modified Bessel functions of first and
second kind, respectively �22�.

Therefore, for the system being considered, the pressure
and temperature profiles are given by Eqs. �15� and �18�,
respectively. Consequently, the density profile is

n�� =
p��
T��

=
mg0

�a����d−1�A−�I��� + B−�K����2
.

�20�

Finally, the transformation from the  coordinate to the z one
is given by

z =
1

�a����d−1	


M d�

n���
�21�

that follows from Eq. �10�. It is worth to mention that the
presence of the diffusive heat conductivity � in the above
expressions is not at all irrelevant. Predictions implied by its
existence have been checked both by particle simulations
and experimentally �23–26�. To proceed any further, the
boundary conditions of the system at the top �z=L� and the
bottom �z=0� must be specified. This will be done in Sec. III.

III. CLOSED SYSTEM WITH A PISTON:
THE KINETIC BOUNDARY CONDITION

In order to maintain the system fluidized, it will be as-
sumed that energy is being continuously supplied to it
through the wall located at the bottom and that this is
achieved by vibrating it. The simplest possible way of vibra-
tion will be considered here, namely, with a sawtooth veloc-
ity profile. This means that all the particles colliding with the
wall find it with the same upward velocity vW �15,16�. More-
over, the amplitude of vibration of this wall is taken much
smaller than the mean free path of the grains in its vicinity.
As a consequence, the position of the wall can be taken in
practice as fixed at z=0 with very good accuracy. Finally,
since the main reason to introduce this vibrating wall is to
keep the granular matter fluidized, collisions of particles with
it will be considered as elastic for the sake of simplicity. Of
course, all the above corresponds to a very idealized wall
that cannot be fully implemented in actual experiments.

Next, the upper boundary condition must be specified.
The case of an open system �L→�� was studied in Ref. �21�.
Here, a different physical situation will be investigated. It
will be considered that there is a movable lid or piston on top
of the gas, as illustrated in Fig. 1. The piston has a finite
mass M contrary to the vibrating wall at the bottom that is
taken infinitely massive. The piston can only move in the z
direction, remaining always perpendicular to it, i.e., parallel
to the bottom wall. Its position and velocity will be denoted
by Z and Vz, respectively, so that L corresponds to the aver-
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age value of Z in the steady state. There is no friction be-
tween the piston and the lateral walls of the container.

Collisions of particles with the piston on the top are
smooth and inelastic, with a velocity-independent coefficient
of normal restitution �P, where 0��P�1. Therefore, the
vector component, v�, of the velocity of the particle perpen-
dicular to the z axis remains unchanged in a collision with
the piston,

v�� = v�, �22�

where the prime is used here and henceforth to denote after-
collision quantities. On the other hand, when a particle with
a component vz of the velocity collides with the piston being
Vz the velocity of the latter, these values change instanta-
neously to

vz� = vz −
M

m + M
�1 + �P��vz − Vz� , �23�

Vz� = Vz +
m

m + M
�1 + �P��vz − Vz� . �24�

Therefore, in the collision the total momentum is conserved,
the relative velocity gz�vz−Vz changes to gz�=−�Pgz, and
there is a variation in the total kinetic energy given by

�E = −
mM

2�m + M�
�1 − �P

2 �gz
2. �25�

For �P�1 there is a loss of energy in every collision be-
tween a particle and the piston. The change in the z compo-
nent of the momentum Pz of the piston in a collision is

�Pz � M�Vz� − Vz� =
mM

m + M
�1 + �P�gz. �26�

Since a collision of a particle with the piston is only possible
if vz�Vz, it is �Pz�0 for all the collisions, indicating that

momentum is continuously transferred from the gas to the
piston. A relevant relationship to be used in the following is

dv�dVz� = �PdvdVz. �27�

For later use, it is convenient to consider also the so-called
restituting collision corresponding to the velocities v and Vz.
It is defined by the velocities v� and Vz

� leading as a conse-
quence of a collision to v and Vz. Their expressions are ob-
tained directly by inverting Eqs. �22�–�24�,

v�
� = v�, �28�

vz
� = vz −

M

m + M

1 + �P

�P
gz, �29�

Vz
� = Vz +

m

m + M

1 + �P

�P
gz. �30�

Also, it is gz
�=�P

−1gz and

dv�dVz
� = �P

−1dvdVz. �31�

The question now is how to translate the above collision
rules into one or more boundary conditions for the descrip-
tion of the granular gas below the piston. To discuss this
point in some detail, let us introduce the two-body distribu-
tion function for the piston and the gas, ��x ,Z ,Vz , t�, defined
for an arbitrary state as

��x,Z,Vz,t� = N	 dx2 ¯	 dxN��x,x2, . . . ,xN,Z,VZ,t� ,

�32�

where ��x1 ,x2 , . . . ,xN ,Z ,VZ , t�, with xi��ri ,vi, is the dis-
tribution function for the system composed by the piston and
the N grains at time t, and x��r ,v. Therefore, ��x ,Z ,Vz , t�
is proportional to the probability density of finding the piston
at height Z with velocity Vz and a grain at position r with
velocity v at time t. It is normalized as

	 dx	
0

�

dZ	
−�

�

dVz��x,Z,Vz,t� = N . �33�

The one-particle distribution function of the gas, f�x , t�,
can be obtained from � by integration over the piston posi-
tion and velocity,

f�x,t� = 	
0

�

dZ	
−�

�

dVz��x,Z,Vz,t� . �34�

Similarly, the probability distribution for the piston,
F�Z ,Vz , t�, is given by

F�Z,Vz,t� =
1

N
	 dx��x,Z,Vz,t� , �35�

and it is normalized to unity. No reference to any particular
state is involved in the above definitions.

For initial conditions in which all the particles are located
below the piston, the two-body distribution � at arbitrary
later times can be expressed in the form

M

vw

Z

go

W

FIG. 1. Sketch of the system studied in this paper.
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��x,Z,Vz,t� = ��Z − z��0�x,Z,Vz,t� , �36�

where ��x� is the Heaviside step function defined by ��x�
=1 for x�0 and ��x�=0 for x�0. The function
�0�x ,Z ,Vz , t� is not defined by Eq. �36� for z�Z, and it can
be considered as being regular everywhere as well as its
derivatives without restriction. In order to discuss the form
of �0 when the position of the particle is taken next to the
piston, it is useful to decompose it in the form

�0�x,Z,Vz,t� = �+�x,Z,Vz,t� + �−�x,Z,Vz,t� , �37�

with

�+�x,Z,Vz,t� � ��gz��0�x,Z,Vz,t� �38�

and

�−�x,Z,Vz,t� � ��− gz��0�x,Z,Vz,t� . �39�

In the last expression, it is ��−x��1−��x�.
Conservation of the flux of particles at the piston implies

that

�+�r,v�,Z,Vz
�,t�dv�dVz

��gz
����Z − z�

= �−�r,v,Z,Vz,t�dvdVz�gz���Z − z� , �40�

where v� and Vz
� are the restituting velocities defined by Eqs.

�28�–�30�. This is an exact relationship, valid for arbitrary
density, that can be derived also by starting from the evolu-
tion equation for ��x ,Z ,Vz , t� following from the Liouville
equation for ��x1 ,x2 , . . . ,xN ,Z ,VZ , t�. Equation �40� is ob-
tained by isolating the singular terms at z=Z �27�. When Eqs.
�28�–�31� are employed into Eq. �40�, it can be reduced to

�−�r,v,Z,Vz,t���Z − z� = �P
−2�+�r,v�,Z,Vz

�,t���Z − z� .

�41�

Combination of Eqs. �37� and �41� yields

�0�x,Z,Vz,t���Z − z� = �1 + �P
−2bP

−1��+�x,Z,Vz,t���Z − z� .

�42�

Here bP
−1 is an operator acting on the velocities v and Vz to its

right, replacing them by the precollisional values given by
Eqs. �28�–�30�.

Equation �42� shows that �0 is fully determined at z=Z if
�+ is known at the same position. Consequently, upon intro-
ducing simplifications or approximations on the value of �0
at the piston, i.e., on �0��Z−z�, they must refer only to ei-
ther �+��Z−z� or �−��Z−z�. Otherwise, the exact relation-
ship given by Eq. �42� may be violated. A natural question in
this context is how relevant is that relation in practice. In
other words, is any fundamental physical property possibly
lost if Eq. �42� is not satisfied in a given approximate de-
scription? The answer to this question is affirmative as it will
be seen in Sec. IV.

In the limit of a very dilute gas, a simple approximation
similar to the one leading to the Boltzmann equation �27� is
to assume that

�+�x,Z,Vz,t���Z − z� = f�x,t�F�Z,Vz,t���gz���Z − z� ,

�43�

therefore neglecting all the correlations between the piston
and the particles colliding with it before the collision. Using
the above approximation into Eq. �42�, it is found that

�0�x,Z,Vz,t���Z − z� = f�x,t�F�Z,Vz,t���Z − z�

+ ��− gz���P
−2bP

−1 − 1�

�f�x,t�F�Z,Vz,t���Z − z� . �44�

Upon deriving this equation use has been made of the rela-
tions

bP
−1��gz� = ��gz

��bP
−1 = ��− gz�bP

−1, �45�

following from the definition of bP
−1 and the relationship be-

tween gz and gz
�. The physical meaning of Eq. �44� is evident:

correlations between the piston and the particles in its neigh-
borhood are created by the collisions.

In this section, only the kinetic boundary condition for the
piston at the top of the system has been considered. The
analysis of the vibrating wall located at the bottom is much
simpler, and it will be discussed later on.

IV. HYDRODYNAMIC BOUNDARY CONDITIONS

In the following, attention will be restricted to the macro-
scopic steady state described in Secs. II and III. Then, the
height of the system L there corresponds to the average po-

sition of the piston, Z̄, in the kinetic theory description, while
the average velocity of the piston is required to vanish;

V̄z �
1

N
	 dx	

0

�

dZ	
−�

�

dVzVz�st�x,Z,Vz�

= 	
0

�

dZ	
−�

�

dVzVzFst�Z,Vz� = 0, �46�

where the indices st are used to refer to properties of the
system in the steady state. Although the above property can
be accomplished in other ways, here the simplifying assump-
tion that �st�x ,Z ,Vz� and, therefore, Fst�Z ,Vz� are even func-
tions of Vz is made. This is consistent with the results from
molecular-dynamics simulations to be reported later on.
Also, it must be kept in mind that for the state we are con-
sidering, �st depends on the position of the particles only
through the coordinate z although it is not made explicit in
the notation.

It is interesting and illuminating to compute the force F
that the granular gas makes on the piston in this state. Be-
cause of symmetry reasons, the force only has z component,
that is computed in Appendix B with the result

Fz = WnLTL,z, �47�

where nL is the number density of the granular gas next to
the piston, i.e., nL=n�z→L�, and TL,z is a temperature param-
eter of the gas in the same region defined from the z compo-
nent of the velocity or, equivalently, proportional to the zz
component of the pressure tensor,
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TL,z �
1

nL
	 dz	 dv	

0

�

dZ	
−�

�

dVzmvz
2�0,st�x,Z,Vz���Z − z� .

�48�

In the Navier-Stokes approximation used in Sec. I, TL,z co-
incides with the temperature of the gas at the piston, TL, and
Eq. �47� is the expected result since it agrees with the hydro-
dynamic interpretation of the pressure tensor. In its deriva-
tion, a crucial role is played by the kinetic boundary condi-
tion given in Eq. �41�, as it is shown in Appendix B. Still
more, the specific form of �+,st is not relevant as long as
�−,st be consistently derived from it. Otherwise, the pressure
of the dilute gas defined as the product of the local density
times the local temperature would not agree with the scalar
defined from the hydrodynamic pressure tensor, characteriz-
ing the internal forces in the fluid.

In order to develop a consistent theory, it is then conve-
nient to express the hydrodynamic fields of the granular gas
in the vicinity of the piston in terms of only �+,st instead of
the complete distribution �0,st. The expression of the number
density nL introduced above in terms of �0,st reads as

nL �	 dz	 dv	
0

�

dZ	
−�

�

dVz�0,st�x,Z,Vz���Z − z� .

�49�

By means of the decomposition formulated in Eq. �37� and
using boundary condition �41�, the above expression can be
put in the form

nL =
1 + �P

�P
nL

�+�, �50�

with

nL
�+� � 	 dz	 dv	

0

�

dZ	
−�

�

dVz�+,st�x,Z,Vz���Z − z� .

�51�

Also, it is easily verified that the local velocity flow vanishes
at the piston in the steady state as it should. Finally, consider
the temperature of the gas next to the piston, TL, given by

d

2
nLTL �	 dz	 dv	

0

�

dZ	
−�

�

dVz
mv2

2
�0,st�x,Z,Vz���Z − z� .

�52�

It is convenient to distinguish between the perpendicular and
z contributions to this temperature,

TL =
1

d
TL,z +

d − 1

d
TL,�, �53�

where TL,z is defined in Eq. �48� and

TL,� �
1

�d − 1�nL
	 dz	 dv	

0

�

dZ	
−�

�

dVzmv�
2

��0,st�x,Z,Vz���Z − z� . �54�

Boundary condition �41� leads directly to

TL,� = TL,�
�+� , �55�

with

TL,�
�+� �

1

�d − 1�nL
�+�	 dz	 dv	

0

�

dZ	
−�

�

dVzmv�
2

��+,st�x,Z,Vz���Z − z� . �56�

A more involved calculation gives

TL,z =
�P�M − m�
M − �Pm

TL,z
�+� − Hz

�+�, �57�

where

TL,z
�+� �

1

nL
�+�	 dz	 dv	

0

�

dZ	
−�

�

dVzmvz
2�+,st�x,Z,Vz���Z

− z� , �58�

Hz
�+� �

2�PMm

�M − �Pm�nL
�+�	 dz	 dv	

0

�

dZ	
−�

�

dVzvzVz

��+,st�x,Z,Vz���Z − z� . �59�

At this point, a simplifying hypothesis on the precollisional
two-body distribution at contact is made. The associated
marginal velocity distribution is approximated by a product
of Gaussian distributions, namely, it is assumed that

	 dz	
0

�

dZ�+,st�x,Z,Vz���Z − z� = fst
�+��v�Pst�VZ���gz� ,

�60�

where

fst
�+��v� = 2nL

�+��MB�v��� m

2�TL,z
�+��1/2

e−mvz
2/2TL,z

�+�
, �61�

�MB�v�� = � m

2�TL,�
��d−1�/2

e−mv�
2 /2TL,�, �62�

Pst�Vz� = � M

2�TP
�1/2

e−MVz
2/2TP. �63�

Although in the same spirit, Eq. �60� is a somewhat stronger
assumption than the particularization of Eq. �43� for the
steady state under consideration. The presence of nL

�+� and
TL,z

�+� in Eq. �61� and of TL,� in Eq. �62� is required by con-
sistency with the previous results in this section. Moreover, it
will be assumed in the following that TL,�=TL for the sake of
simplicity. Because of Eq. �53� this implies that also TL,z
=TL and, therefore, all the diagonal components of the pres-
sure tensor of the gas in the vicinity of the piston are the
same, consistently with the Navier-Stokes approximation.

Using Eqs. �60�–�63� it is obtained that HZ
�+�=0 and, there-

fore, Eq. �57� reduces to

J. JAVIER BREY AND M. J. RUIZ-MONTERO PHYSICAL REVIEW E 79, 031305 �2009�

031305-6



TL = TL,z =
�P�M − m�
M − �Pm

TL,z
�+�. �64�

Equations �50� and �64� relate the properties of the flux of
grains reaching the wall with the local hydrodynamic fields
of the granular gas next to the wall. They will be employed
now to derive an expression for the heat flux at the piston,
QL. Using standard kinetic theory arguments, this quantity
can be computed from the variation in kinetic energy of the
grains colliding with it, namely, it is given by the energy of
the flux leaving the piston minus that of the flux reaching it.
Then, it can be written as

QL =	 dz	 dv	
0

�

dZ	
−�

�

dVz
m

2
�vz

2

− vz�
2�gz�+,st�x,Z,Vz���Z − z� . �65�

This expression is easily evaluated in the Gaussian approxi-
mation given by Eqs. �60�–�63� with the result

QL = 2� 2

�m
�1/2 M

M + m
�1 + �

�P
�1/2�M − �Pm

M − m
�3/2

��1 −
�1 + �P��1 + ��M

2�M + m� 
nLTL
3/2, �66�

where

� �
mTP

MTL,z
�+� =

�P�M − m�mTP

�M − �Pm�MTL
. �67�

The calculation of the power injected into the system through
the vibrating wall at the bottom is much more direct, and it is
outlined in Appendix C. There, it is shown that the heat flux
at this wall is given by

Q0 = vWp0, �68�

with p0� p�z=0�= p�=M� is the pressure of the granular
gas in the region just above the vibrating wall. Equation �68�
was proposed in Refs. �15,16� and used many times in the
literature since then. To get the value of p0, first note that Eq.
�15� gives

p0 = pL + mg0Nz. �69�

The value of pL can be obtained by means of Eq. �47� after
substituting TL,z by TL accordingly with Eq. �64�. Mechanical
equilibrium of the piston in the steady state requires that
Fz=Mg0 and, therefore,

pL � nLTL =
Mg0

W
. �70�

Once pL is known, the values of M and m defined in Eqs.
�13� and �14�, respectively, can be determined. The next step
is to identify the constants A and B introduced in Sec. II and
appearing in the expressions of the density and temperature
profiles �Eqs. �18� and �20��. To do so, two boundary condi-
tions are needed. They are provided by requiring the values
of QL and Q0 given above to agree with the hydrodynamic
expression of the heat flux qz given in Eq. �3�, particularized
for each of the wall boundaries, i.e.,

QL = lim
z→Z

qz�z� , �71�

Q0 = lim
z→0

qz�z� , �72�

with

qz�z� = − �0���� − ���
�T

�z
− ��mg0
 . �73�

By using Eqs. �10�, �18�, and �19�, as well as properties of
the modified Bessel functions �22�, the above expression be-
comes

qz�� = 2mg0
�0�T�
T1/2 ��� − ���1−��AI�−1�� − BK�−1��� .

�74�

Making in this equation =m and equating the result to the
expression of QL in Eq. �66� a relationship between the
constants A and B is obtained,

B

A
=

I�−1�m� − e��,�P�I��m�
K�−1�m� + e��,�P�K��m�

, �75�

where

e��,�P� =
16�2�d − 1���d−2�/2

d�d + 2�2��d/2�
M

M + m
�1 + �

�P
�1/2

� �M − �Pm

M − m
�3/2�1 −

�1 + �P��1 + ��M
2�M + m� 


�
1

�a������ − ���
. �76�

Next, Eq. �74� is particularized for =M and afterward
put equal to the right-hand side of Eq. �68�. This leads to

AI�−1�M� − BK�−1�M� = M
� 8�d − 1���d−1�/2

d�d + 2�2��d/2�
m1/2vW

�a������ − ���
.

�77�

An alternative to one of the two boundary conditions used
above would be to require that the total power dissipated in
the system due to the inelasticity of collisions be the same
as the net heat flux injected in the system through the
boundaries. This leads to a relation between A and B that is a
combination of Eqs. �75� and �77�, consistently with the fact
that the condition follows directly from the hydrodynamic
equations. This can be realized by noting that the energy
balance equation in the steady state reads as �see Eqs. �2� and
�3��

�qz

�z
= −

nd

2
T	�0�, �78�

whose integration between z=0 and z=L gives
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qz,L − qz,0 = −
d

2
	

0

L

dzp�z�	�z� . �79�

The right-hand side of this equation is clearly identified as
the energy dissipated in the system per unit of time and sec-
tion due to the inelasticity of collisions.

To close the identification of the hydrodynamic profiles in
the system, a prescription to determine the parameter � de-
fined in Eq. �67� is needed. This in turn calls for an expres-
sion for the temperature of the piston TP. It is well known
that a peculiar feature of granular gases is the violation of
energy equipartition �8,28–30� that in the present case mani-
fests itself by the difference between TP and TL. This has
been discussed with some detail in �31�. For values of the
restitution coefficient � close to unity, a good approximation
to the value of � is obtained by taking TP /TL equal to unity.

A relevant quantity characterizing the macroscopic state

of the system is the average height of the piston, L= Z̄. The
theoretical prediction for it is obtained from Eq. �21� once
the values of M and m have been obtained and the density
profile is known,

L =
1

�a����d−1	
m

M d

n��
. �80�

V. MOLECULAR-DYNAMICS SIMULATIONS

To test the theoretical predictions discussed in Secs. II–IV,
MD simulations of a two-dimensional �d=2� system of in-
elastic hard disks have been performed. To avoid undesired
boundary effects, periodic boundary conditions with period-
icity W were used in the direction perpendicular to the z axis.
In all the simulations to be reported in the following, the
grains were initially located in a square lattice with a Gauss-
ian velocity distribution. The initial position of the piston
was slightly above the highest layer of grains. Then, the sys-
tem was evolved in time accordingly with the mechanical
rules governing the dynamics of the particles and the piston,
and it was observed that, for values of the restitution coeffi-
cient � between 0.9 and 1, a steady state with only gradients
in the vertical direction and no flow field was reached. Ac-
tually, in order for the system to reach this state, its width W
has to be not too large since otherwise transversal inhomo-
geneities of the type discussed in Refs. �20,32� develop into
the system. The results presented below have been time av-
eraged once the system is in the steady state and also over
several trajectories. More precisely, once the stationary state
was reached, its trajectory was followed for 4000 collisions
per particle, and 10 different trajectories were used in each
case.

To carry out a systematic analysis of the theoretical pre-
dictions, it is necessary to reduce the number of parameters
of the system by fixing some of them. In the present study,
the values N=420 and W=70� �Nz=6�−1� have been used in
all the simulations. The reason is that the dependence on Nz
of the theoretical results follows trivially once the hydrody-
namic description is assumed to hold, and analysis of the
simulation results indicates that the above values are appro-
priate for the purposes here, in the sense that a hydrodynamic

behavior is observed. Moreover, only results for values of �
in the interval 0.9���1 will be reported, the reason being
that for smaller values of the restitution coefficient of the
gas, qualitative and quantitative strong deviations from the
theoretical predictions were found. This is not surprising
since the Navier-Stokes approximation is expected to fail
beyond the weak dissipation limit as a consequence of the
coupling between gradients and inelasticity, as pointed out in
Sec. II.

A. Hydrodynamic profiles

In Figs. 2 and 3, the dimensionless pressure �p�� and tem-
perature �T�� profiles, respectively, are plotted as a function
of the length scale  defined in Eq. �10�, for two different
combinations of the parameters M /m, �, and �P, as indi-
cated in the figures themselves. Remind that  is a decreas-
ing function of z. The dimensionless fields are defined by

T� �
T

mvW
2 , p� �

pm�

g0
. �81�

It is easily seen that in these units, the theoretical predictions
for the hydrodynamic fields become independent of the ve-
locity vW of the vibrating wall and also of the acceleration
g0. Of course, this applies as long as the system is fluidized
and its density low everywhere.

Consider first the pressure field. The theoretical prediction
is given by Eq. �15� and does not involve the parameters A
and B appearing in the temperature and density profiles. It is
represented by the solid lines in Fig. 2. In the simulations,
the  coordinate has been measured directly by using the
discrete version of Eq. �10�. On the other hand, the pressure
at each value of z has been obtained from the data for the
density and the temperature at the same value. In the low-

0.3 0.8 1.3ξ
0

4

8

p* α=0.98 αP=0.8 M=92m

0.3 0.8 1.3 1.8ξ
0

4

8

p* α=0.94 αP=0.99 M=48m

FIG. 2. Dimensionless pressure �p�� profiles for two steady
states of the system of inelastic hard disks depicted in Fig. 1. The
solid lines are the theoretical predictions given in the main text,
while the symbols are MD simulation results. The empty circles
have been computed using p�=n�T�, while the triangles have been
calculated by means of Eq. �82�. The values of the parameters of the
system are M =48m, �=0.94, �P=0.99, and vW=7�g0� for the
top figure, and M =92m, �=0.98, �P=0.8, and vW=3�g0� for
the bottom one.
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density limit considered in the theory, it is p�=n�T�, where
n��n�vW

2 /g0. The results for the pressure represented by
empty circles in the figures have been computed in this way.
A good agreement is observed between theory and simula-
tion in the bulk of the system, i.e., outside the boundary
layers next to the upper and lower walls. The results can be
considered as satisfactory, especially taking into account that
there are no adjustable parameters. Nevertheless, it is true
that a systematic although small deviation is observed. Equa-
tion �15� is a quite general result, which only requires for its
derivation the restriction to the Navier-Stokes order approxi-
mation without any particular expression of the transport co-
efficients or of the �local� equation of state. Thus it seems
sensible to check whether the origin of the observed discrep-
ancy lies in the way in which the pressure is computed from
the simulation data, namely, by using the ideal gas equation
of state. For this reason, the local pressure has also been
calculated from the MD data by using the equation of state
proposed by Grossman et al. �18� for hard disks at finite
density,

p = nT
nc + n

nc − n
, �82�

where nc=2�−2 /�3 is the maximum packing number density.
The pressure values obtained by this procedure are repre-
sented by empty triangles in Fig. 2. Now, a much better
agreement is obtained. It is concluded that density correc-
tions are identifiable in the pressure in spite of the density
being quite small. Actually, the same values of the pressure
are obtained if instead of Eq. �82�, the second virial approxi-
mation for the equation of state of a gas of hard disks is used.

The scaled temperature profiles shown in Fig. 3 also ex-
hibit a good agreement between the theoretical predictions
and the simulation results. Moreover, the best fits obtained
varying the parameters A and B in Eq. �18� are also plotted.
Introducing density corrections to the expression for the tem-

perature as discussed above for the pressure is far from
trivial. The arguments in Sec. II leading to a closed separated
equation for the temperature do not apply anymore, and the
resulting differential equations do not seem to have an el-
ementary solution. In any case, the above results clearly con-
firm the accuracy of both the hydrodynamic equations and
the used boundary conditions. Notice that the boundary layer
next to the movable piston is much narrower for the tempera-
ture than for the pressure.

Similar degree of agreement has been found for all the
studied combinations of parameters in the intervals 20
�M /m�120, 0.9���1, and 0.6��P�1. In particular,
the inelasticity of the collisions between the movable piston
and the grains, measured by the coefficient �P, seems to
affect very weakly the accuracy of the theory.

It is interesting to plot also the hydrodynamic profiles in
the original scale z or, equivalently, as a function of z�

=zg0 /vW
2 . In Fig. 4, the temperature profiles in the z� scale

are shown for the same two steady states as in the previous
figures. Also included are the profiles obtained with the best
fitting parameters A and B. It is observed that the agreement
between theory and simulation is now worse than in the pre-
vious figures, where the spatial scale  was employed. This is
not at all surprising since in the transformation of the theo-
retical prediction from the scale  to the scale z �Eq. �10��,
the density profile is involved, and the ideal gas equation of
state has been used. Consequently, the density effects dis-
cussed above manifest themselves in the transformation.
Moreover, the scale z is defined from  in a cumulative way,
as an integral over the density profile so that the discrepan-
cies increase as z decreases. This effect is also clearly iden-
tified in Fig. 5, where the profiles for the reduced density n�

are given. It is also seen that the simulation results extend to
larger values of z than the theoretical predictions for the
profiles. It is worth to emphasize that the maximum value of
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α=0.98 αP=0.8 M=92m

0.3 0.8 1.3 1.8ξ
0
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T*

α=0.94 αP=0.99 M=48m

FIG. 3. �Color online� Dimensionless temperature profile T� for
the same two steady states as in Fig. 2. The solid line is the theo-
retical prediction given by Eq. �18� with the values of A and B
determined in Sec. IV. The empty circles are MD results and the
dashed line �red online� is the best fit to Eq. �18� by varying A and
B.
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α=0.94 αP=0.99 M=48m

FIG. 4. �Color online� Temperature profiles for the same sys-
tems as in Fig. 2, but now as a function of the reduced original
coordinate z� defined in the text. The solid line is again the theoret-
ical prediction with no adjustable parameters, and the symbols are
the MD simulation results. The dotted-dashed lines �green online�
have been obtained by fitting the two parameters A and B appearing
in the expression of the temperature field using, moreover, the equa-
tion of state �Eq. �82�� as discussed in the main text.
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the density, nmax, remains quite low in both systems. For the
system with �=0.94, it is nmax�0.045�−2�0.039nc, while
for the one with �=0.98, nmax�0.04�−2�0.035nc.

The previous analysis of the profiles in the  variable
suggests that the analytical expression of the reduced tem-
perature in that variable is rather robust in the sense of being
very little affected by the finite density effects that, on the
other hand, produce identifiable modifications on the pres-
sure and density profiles. To check this idea, which can be
useful to describe real experiments, the simulation profiles in
Figs. 4 and 5 have been also fitted as follows. The pressure is
given by Eq. �15�, and for the temperature, T��, Eq. �18� is
used, with A and B being adjustable parameters. Neverthe-
less, the equation of state is not that of an ideal gas but the
one given in Eq. �82�. This equation of state is used both to
compute the pressure from the simulation data, as discussed
above, and also to transform from the  coordinate to the z
one by means of Eq. �10�. The profiles obtained in this way
are also included in Figs. 4 and 5 and reproduce fairly well
the hydrodynamic profiles in the bulk on the system.

B. Global properties and boundary conditions

The theoretical result for the average position of the pis-
ton L is given by Eq. �80�, with the density profile given by
Eq. �20� and the values of the constants A and B following
from Eqs. �75� and �77�. In Fig. 6, the above prediction is
compared with MD simulation results. The value of the di-
mensionless height L�=Lg0 /vW

2 as a function of M /m is plot-
ted for two systems, one with �=0.94 and �P=0.99, and the
other one with �=0.99 and �P=0.8. The error bars in the
simulations data have been obtained from the mean-square
fluctuations of the position of the piston around its average
value once in the steady state. Although there is a systematic
underestimation of L, the agreement between theory and

simulation is good over a quite wide range of values of the
mass ratio. Prompted by the previous discussion of the hy-
drodynamic profiles, it is tempting to investigate whether
some of the observed discrepancy is due to finite density
corrections. Then, instead of using Eq. �20� for the density
profile, the equation of state �Eq. �82�� was employed. In the
latter, the pressure was given by Eq. �15� and the temperature
by Eq. �18�, with A and B still determined from Eqs. �75� and
�77�. The problem is that now the resulting expression for L�

depends on the velocity of the bottom vibrating wall, vW, and
the simulation data in Fig. 6 have been obtained with differ-
ent values of this velocity. For this reason, two different re-
sults are reported in the figure, corresponding to the two
extreme values of vW used in the simulations. Although the
dependence of the results on vW is small, it is clearly appre-
ciable on the scale of the figure. As expected, the curve cor-
responding to the largest value of vW is the closest to the
ideal gas prediction since the larger vW the more dilute the
system. Although some discrepancy between theory and
simulation still persists, increasing as the value of � de-
creases, it seems fair to conclude the presence of finite den-
sity effects in the simulation results.

Another relevant property characterizing globally the sys-
tem is the power dissipated per unit of section W, as a con-
sequence of the inelasticity of collisions. As discussed at the
end of Sec. IV, this quantity is related with the heat flux at
the boundaries by

D = QL − Q0. �83�

The fluxes QL and Q0 have been computed in Sec. IV by
using approximate kinetic theory arguments, and the expres-
sions derived for them are given by Eqs. �66� and �68�, re-
spectively. These expressions are closed by means of Eqs.
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FIG. 5. �Color online� Density profiles for the same systems as
in Fig. 2 as a function of the reduced coordinate z� defined in the
text. The solid line is the theoretical prediction with no adjustable
parameters and the symbols MD simulation results. The dotted-
dashed lines �green online� have been obtained by fitting the two
parameters A and B appearing in the expression of the temperature
field using, moreover, the equation of state �Eq. �82�� as discussed
in the main text.
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FIG. 6. Average position of the piston L� measured in the di-
mensionless units defined in the text as a function of the mass ratio
M /m for two different pairs of the restitution coefficients � and �P

as indicated in the figures. The symbols are MD simulation results
and the solid lines are the theoretical prediction derived in Sec. IV.
The dashed lines and the dot-dashed lines have been obtained by
using the equation of state �Eq. �82�� and correspond to the largest
and smallest values of the velocity of the bottom wall vW used in
the simulation, respectively.
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�69� and �70� and making, as above, the additional approxi-
mation TP /TL�1 in the expressions of �, Eq. �67�.

In the MD simulations, D is directly obtained from the
loss of kinetic energy in each collision. In Fig. 7,

D� �
�D

mg0vW
�84�

is plotted as a function of M /m for the same pairs of values
� ,�P as in Fig. 6. The agreement between theory and MD
simulation is quite good. This provides strong additional sup-
port for the analysis of the boundaries carried out in Secs. III
and IV and, consequently, for the boundary conditions em-
ployed in the hydrodynamic equations.

VI. CONCLUSIONS

In this paper, the steady state of a fluidized granular gas of
smooth inelastic hard spheres in presence of gravity, and
with a movable lid on the top, has been investigated. It has
been shown that, for weak inelasticity of the grain-grain col-
lisions, the inelastic Navier-Stokes equations provide an ac-
curate description of the density, temperature, and pressure
profiles. For stronger inelasticity of the grains, a hydrody-
namic description beyond the Navier-Stokes approximation
is needed due to the coupling between gradients and inelas-
ticity.

The issue of the required boundary conditions to solve the
hydrodynamic equations has also been addressed. Here, the
system was fluidized by means of a vibrating elastic wall at
the bottom. For simplicity, it was assumed to move in a
sawtooth way and with high frequency and small amplitude.
The collisions of the particles with the piston on the top were
modeled as smooth and inelastic. The above mechanical
characterization of the walls was translated into exact bound-
ary conditions for the joint distribution functions of each of
the walls and the gas next to it. These kinetic boundary con-
ditions are general, with restriction neither in the gas density

nor in the inelasticity. They must be taken into account when
finding approximate hydrodynamic boundary conditions.
Otherwise, relevant exact properties, as the hydrodynamic
meaning of the pressure of the gas at the boundaries, can be
violated. Here, an approximation consistent with the kinetic
boundary condition was developed and shown to lead to
quite accurate results. It must be emphasized that the aim
here has not been to analyze in detail the boundary layers
next to the walls but rather to identify the effective boundary
conditions that must be satisfied by the hydrodynamic fields
extrapolated to the boundaries from the bulk of the system.

Very recently, the so-called Knudsen temperature jump at
a thermal wall has been incorporated at the Navier-Stokes
equations of a weakly inelastic dilute gas of hard disks �33�.
As mentioned in Sec. I, thermal walls have not been proven
to correspond to any well-defined limit of vibrating walls.
For the specific case of the inelastic piston on top of the
system considered here, any analogy with a thermal wall
seems very hard to justify. Moreover, the approximation fol-
lowed in �33� involves the determination of a constant pref-
actor by means of MD simulations, while here all the con-
stants are determined by the theory.

The accuracy of the theoretical predictions has been
checked by comparison with MD simulations. For some of
the properties measured, e.g., the pressure profile, finite den-
sity effects have been identified and a practical way of ac-
counting for them has been proposed. Of course, these ef-
fects could have been avoided by using the direct simulation
Monte Carlo �DSMC� method �10,34� instead of molecular
dynamics. Nevertheless, the latter seems more appropriate in
the present context, in which the interest focuses on the hy-
drodynamic description of a given state and not on a prop-
erty of the Boltzmann equation. MD simulations provide re-
sults closer to real experiments since they are not based on
the validity of any kinetic equation.

The interest has been on the description of the granular
gas and its interaction with the piston. Of course, the study of
the properties of the piston itself is also of great interest. For
instance, its position fluctuations give the volume fluctua-
tions of the gas. Some partial results have already been re-
ported elsewhere �31�, but many points still deserve addi-
tional attention.
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APPENDIX A: TRANSPORT COEFFICIENTS
FOR A DILUTE GRANULAR GAS

Here, the expressions of the dimensionless functions in-
troduced in Sec. II are given for the sake of completeness.
They read as �7,11�

����� = ��2
���� −

2d

d − 1
	����
−1

�1 + c����� , �A1�

10 50 90 130M/m
−8

−7.5

−7

−6.5

−6

D*
α=0.98 αP=0.8
α=0.94 αP=0.99

FIG. 7. Dimensionless dissipated power D� per unit of transver-
sal length in the steady state as a function of the ratio between the
mass of the piston, M, and the mass of the grains, m. The symbols
are MD simulation results, while the lines have been obtained from
the expressions of the fluxes at the boundaries derived in this paper.
The circles and solid line correspond to systems with �=0.98 and
�P=0.8, and the squares and the dashed line correspond to �
=0.94 and �P=0.99.
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����� = 2	���������� +
�d − 1�c����

2d	���� 

��2�d − 1�

d
�2

���� − 3	����
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, �A2�

	���� =
2 + d

4d
�1 − �2��1 +

3

32
c����
 , �A3�

where

�2
���� �

1 + �

d − 1
�d − 1

2
+

3�d + 8��1 − ��
16

+
4 + 5d − 3�4 − d��

1024
c����
 , �A4�

c���� �
32�1 − ���1 − 2�2�

9 + 24d + �8d − 41�� + 30�2�1 − ��
. �A5�

These results have been obtained from the inelastic Boltz-
mann equation for hard spheres and disks by means of a
generalized Chapman-Enskog algorithm in the so-called first
Sonine approximation �7,11�.

APPENDIX B: CALCULATION OF THE FORCE
EXERTED BY THE GAS ON THE PISTON

IN THE STEADY STATE

The force exerted by the granular gas on the piston equals
the rate of momentum transferred from the gas to the piston
in the collisions. When a particle collides with the piston, the
amount of momentum given by the former to the latter is
given by Eq. �26�. Then, the average force on the piston Fz is

Fz =	 dx	
0

�

dZ	
−�

�

dVz��gz�gz�Pz�0,st�x,Z,Vz���Z − z�

=
mM

m + M
�1 + �P�	 dx	

0

�

dZ	
−�

�

dVzgz
2�+,st�x,Z,Vz�

���Z − z� . �B1�

This expression can be rewritten in a more familiar form.
First, decompose it as

Fz = m	 dx	
0

�

dZ	
−�

�

dVzvzgz�+,st�x,Z,Vz���Z − z�

− m	 dx	
0

�

dZ	
−�

�

dVz�vz −
M

m + M
�1 + �P�gz


�gz�+,st�x,Z,Vz���Z − z� . �B2�

Next, taking into account Eq. �23�, the second term on the
right-hand side of this equality is seen to be equivalent to

− m	 dx	
0

�

dZ	
−�

�

dVzvz�gz�+,st�x,Z,Vz���Z − z�

= − m	 dx�	
0

�

dZ	
−�

�

dVz
�vzgz

��+,st�r,v�,Z,Vz
����Z − z�

= m	 dx	
0

�

dZ	
−�

�

dVzvzgz�−,st�x,Z,Vz���Z − z� . �B3�

In the above transformations, x���r ,v� and the exact
boundary condition in Eq. �41� has been employed. Substi-
tution of Eq. �B3� into Eq. �B2� and use of the parity of �0,st
with respect to Vz as well as its independence from r� give

Fz = m	 dx	
0

�

dZ	
−�

�

dVzvzgz�0,st�x,Z,Vz���Z − z�

= WnLTL,z, �B4�

where nL is the density of the granular gas next to the piston
and TL,z a temperature parameter defined from the z compo-
nent of the velocity. Its expression is given in Eq. �48�.

It is worth to stress that no assumption has been made
over the properties of �0,st other than the associated with the
general symmetry properties of the steady macroscopic state
under consideration and boundary condition �41�.

APPENDIX C: THE BOUNDARY CONDITION
AT THE VIBRATING WALL

Accordingly with the description of the vibrating wall lo-
cated at the bottom of the system given at the beginning of
Sec. III, when a particle with velocity v, being vz�0, col-
lides with this wall, its velocity is instantaneously changed
into v� defined by

vz� = 2vW − vz, v�� = v�. �C1�

Here, as already mentioned, vW is the �upward� velocity of
the wall and v� is the vector component of v perpendicular
to the z axis. The kinetic energy gained by the particle in
such a collision is

�� = 2m�vW
2 − vWvz� . �C2�

For physical initial conditions in which there are no particles
below the vibrating wall, the one-particle distribution func-
tion of the gas at arbitrary later times verifies

f�x,t� = ��z�f0�x,t� , �C3�

where f0�x , t� and its derivatives can be taken regular at z
=0. Next, the above distribution function is decomposed at
the wall as

f0�x,t���z� = f0
�+��x,t���z� + f0

�−��x,t���z� , �C4�

with
f0

����x,t� = ���vz�f0�x,t� . �C5�

Conservation of the flux of particles at this wall is ex-
pressed by

f0
�−��x,t��vz���z�dv = f0

�+��x�,t��vz����z�dv�, �C6�
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where x���r ,v�. Using Eq. �C1�, the above relation can be
transformed into

f0
�+��x,t�vz��z� = f0

�−��x�,t��vz����z� . �C7�

The heat flux at the vibrating wall, Q0, is given by the rate
of energy input per unit of section of the wall, i.e.,

Q0�r�,t� =	 dz	 dv�vz���f0
�−��x,t���z�

=	 dz	 vmvz
2vWf0

�−��x,t���z���z�

+	 dz	 dvm�vz�vW�2vW − vz�f0
�−��x,t���z� .

�C8�

Consider the second term on the right-hand side of the above
expression. Use of Eq. �C7� yields

	 dz	 dvm�vz�vW�2vW − vz�f0
�−��x,t���z�

=	 dz	 dvmvz
2vWf0

�+��x,t���z� , �C9�

and substitution of this into Eq. �C8� gives

Q0�r�,t� =	 dz	 dvmvz
2vWf0�x,t���z�

= vWn0�r�,t�T0,z�r�,t� , �C10�

where

n0�r�,t� � 	 dz	 dvf0�x,t���z� �C11�

and

n0�r�,t�T0,z�r�,t� � 	 dz	 dvmvz
2f0�x,t���z� . �C12�

Equation �68� in the main text follows by particularizing Eq.
�C10� for the one-dimensional steady state considered in this
paper and assuming isotropy of the pressure tensor of the gas
next to the vibrating wall.

The issue of the energy injected in a granular gas by
means of an elastic vibrating wall moving in a sawtooth way
has been addressed previously in Ref. �35�. The arguments
there are restricted to a particular state with the gas modeled
by means of Gaussian distributions. Moreover, although the
results reported in �35� are consistent with Eq. �C10�, the
simplicity of this latter form of expressing the result was not
realized there.
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