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Resonant Modes of a Waveguide Iris Discontinuity:
Interpretation in Terms of Canonical Circuits
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Abstract— This paper presents an eigenproblem for com-
puting the resonances of multiresonant irislike discontinuities
in waveguides. The formulation of the eigenproblem is based
on integral equation methods, and its solution provides the
resonance frequencies (eigenvalues) and the associated resonant
aperture field’s patterns (eigenvectors). These eigenvectors can
be used as a basis for the expansion of the aperture fields
at any frequency within the band of interest, thus leading to
a significant reduction of the size of the method-of-moments
admittance matrix. Moreover, under certain approximations,
the orthogonality of the eigenvectors allows for the derivation
of a Foster-like canonical equivalent circuit with capacitances
and inductances that present a smooth frequency dependence.
In order to obtain an equivalent Foster circuit with frequency-
independent inductors and capacitors, a straightforward and
simple iterative refinement is proposed. The circuit thus obtained
accurately reproduces the response of the multiresonant irislike
discontinuity over a wide frequency band.

Index Terms— Circuit models, Foster’s synthesis, integral
equation (IE), waveguide discontinuities.

I. INTRODUCTION

THE presence of metallic discontinuities (iris/obstacle)
inside the waveguides has been used since mid-1900s

to create localized regions of electric/magnetic stored energy
that allows for the control of the scattering parameters of the
fundamental propagating mode [1]–[7]. Appropriate models
were reported to account for the effect of those discontinu-
ities [8]–[10], and their application to the design of filters
and other passive waveguide devices became a common prac-
tice. As is well known, the basic electromagnetic modeling
of such discontinuities lies in transmission line theory and
the characterization of the excess magnetic/electric energy
as lumped inductors/capacitors in an equivalent network.
The simplest case occurs when the discontinuity is planar
and infinitely thin along the propagation direction, and the
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operation frequency is far from the cutoff frequency of the
first higher order mode. In such a case, the discontinuity
is well modeled by just a single LC tank in parallel with
two transmission lines accounting for the propagation of the
fundamental mode at both sides of the discontinuity [8]–[10].
When the electrical size of the iris/obstacle scatterer
approaches half the operating wavelength, resonances asso-
ciated with this element start to appear, and the waveguide
shows the expected passband/stopband behavior. If the discon-
tinuity comprises multiple irises/patches, or a single iris/patch
discontinuity shows more than one resonance at the frequency
band of interest, a multiresonant discontinuity problem is
faced. In this situation, Foster’s reactance theorem ensures
that such discontinuity can be synthesized by either shunt-
tuned elements or series-tuned elements [8]. Although this
theorem provides a valuable physical insight into the behavior
of multiple-resonance discontinuities, it does not give any
information on the values of the inductors and capacitors for
a given discontinuity geometry. This information can easily
be extracted from the knowledge of the poles and zeros of
the discontinuity admittance, but certainly this knowledge is
reached only after the electromagnetic problem has already
been solved.

The microwave community has devoted a lot of effort to
find approximate and/or rigorous solutions to this problem;
in particular, for the case of irislike discontinuities, which
are the object of study in this paper, some of the analysis
methods reported in the literature can be found, for instance,
in [11]–[24]. The initial motivation of the authors of this
paper was to extend their previous efforts on the circuit
modeling of the scattering of periodic structures [25]–[27] to
find a wideband equivalent circuit model for a multiresonant
irislike discontinuity. Since, according to the discussion ealier,
the knowledge of the resonance frequencies provides valuable
information in order to build up a Foster-like equivalent circuit,
the authors’ effort was focused on the development of a
strategy to efficiently characterize the resonances of a mul-
tiresonant iris discontinuity inside a homogeneous waveguide.
Within the framework of an integral equation (IE) formu-
lation [14], [15], [28], [29], such a strategy is proposed
here in the form of a novel generalized eigenvalue problem
in which the eigenvalues provide the resonance frequencies
and the eigenvectors are the corresponding resonant profiles
of the aperture field (or the equivalent magnetic current at
the apertures). As an interesting by-product, it is found that
the resonant profiles extracted from the eigenproblem can
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be efficiently used as quasi-orthogonal basis functions that
yield a convenient alternative IE-method-of-moments (MoM)
scheme.

Here, it is worth noting that, at first sight, our procedure
might seem to follow the same line of action as the so-called
characteristic mode analysis (CMA), initially proposed in [30]
and [31] for problems involving radiation and scattering by
conducting objects and widely used thereafter [32]–[41]. How-
ever, despite the similarities in the mathematical formalism,
it should be noted that the eigenproblem proposed in this
paper is a different one, derived from enforcing the resonance
condition and, in consequence, providing by construction a
direct characterization of the resonances. Furthermore, to the
best of our knowledge, the CMA is not suitable for application
to discontinuities inside waveguides. Indeed, although it has
been adapted and applied to different problems of radiating
apertures [35]–[41], an extension of this procedure to the
case of apertures inside waveguides does not seem to be
feasible [42].

Back to our formulation, when the resonant profiles are
used as basis functions in the MoM, their orthogonality
properties lead to a simple interpretation of the resulting
equation system in terms of an equivalent circuit with pre-
cisely the topology of Foster’s first canonical form. In conse-
quence, the present proposal straightforwardly leads to Foster’s
synthesis of the discontinuity, yielding a systematic semi-
analytic procedure to compute the values of the capacitors
and inductors involved in the equivalent circuit. Although the
eigenproblem proposed in this paper is actually frequency-
dependent, a relevant feature of our proposal is that this
frequency dependence is found to be sufficiently smooth as
to allow for an additional postprocessing that avoids the
necessity of solving the eigenproblem for each frequency of
interest (which is very advantageous when studying wideband
operation).

This paper will be organized as follows. The basic formu-
lation of the eigenproblem is presented in Section II. The
discretization of the eigenproblem into matrix form is con-
sidered in Section III, which also shows numerical results that
illustrate the usage of the resonant profiles as basis functions.
The orthogonality properties of eigenvectors and the derivation
of the Foster-like equivalent circuits for the problem are
included in Section IV, together with some related numerical
results, and Section V adds discussions about the excitation of
the resonances and its interpretation within the frame of the
obtained circuit model. Finally, Section VI shows additional
results for a more complex discontinuity and introduces a
further refinement strategy before drawing some conclusions
in Section VII.

II. FORMULATION OF THE EIGENPROBLEM

The general structure under analysis consists of a planar
metallic iris discontinuity inside a homogeneous waveguide,
which can present multiple apertures. An example with rectan-
gular geometry and two apertures is shown in Fig. 1(a). Our
initial goal is to obtain a formulation that characterizes the
resonances of the discontinuity. A time-harmonic dependence
of the type exp(jωt) is assumed throughout this paper for

Fig. 1. (a) Example of the general structure under consideration.
(b) Schematic lateral view. (c) Equivalent magnetic currents at the apertures.

all the field quantities, with ω being the angular frequency.
In our procedure, and as usual in IE formulations, the apertures
can be replaced with equivalent unknown magnetic currents
placed at the aperture regions, as shown in Fig. 1(c). From
the continuity of the magnetic field through the apertures,
the IE for the unknown magnetic current M can be written
in a compact form as

2Hinc − Ŷ M = 0 (1)

where Hinc is the magnetic field of the incident waveguide
mode (in the absence of magnetic current, the incident mode
is completely reflected, hence the factor 2) and Ŷ is the
admittance operator that yields the jump in the magnetic field
due to M; namely,

Ŷ M = H2[M]z=0+ − H1[M]z=0− = 2H2[M]z=0+ . (2)

The admittance operator can easily be written as an expansion
in terms of the waveguide modes. Thus, let en denote the
transverse (to z) electric-field profile of the nth waveguide
mode and hn = ẑ × en denote the corresponding magnetic
field profile. These modal profiles are normalized so that

〈en, em〉 = 〈hn , hm〉 = δnm (3)

where the following usual inner product notation is used for
the projection integrals in the waveguide cross section (S):

〈f, g〉 =
∫

S
f∗(x, y) · g(x, y) dS. (4)
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Taking into account that the transverse electric field due to M
at the discontinuity plane is the aperture field Ea = M × ẑ, its
modal expansion is clearly given by

E|z=0 =
∑

n

〈en, Ea〉 en =
∑

n

〈hn, M〉 en . (5)

The expansion for the transverse magnetic field is then

H2|z=0+ = −H1|z=0− =
∑

n

Yn〈hn, M〉 hn (6)

with Yn being the transverse wave admittance of the modes
given by the ratio of the transverse modal field amplitudes,
which can be written as

Yn = |ẑ × Hn|
|ẑ × En | =

{
ωε0/βn, TM modes

βn/ωμ0, TE modes
(7)

where βn is the propagation wavenumber of the nth mode.
In a lossless scenario, this wavenumber is real for propagative
modes and imaginary for evanescent ones (βn ≡ −jαn).
From (2) and (6), it is apparent that

Ŷ M =
∑

n

2Yn〈hn, M〉 hn =
∑

n

2Yn p̂nM (8)

where

p̂nM = 〈hn, M〉 hn (9)

can be identified as the projection of M onto the nth mode
magnetic field profile and p̂n as the associated projection
operator. In the absence of losses, the wave admittances Yn

in (7) are real/imaginary for propagative/evanescent modes.
In consequence, the Ŷ operator is not Hermitian in general.
It is then convenient to consider propagative and evanescent
modes separately in the following way:

Ŷ M =
∑

n prop.

2Yn p̂nM + j
∑

n evan.

2Bn p̂nM

= ĜM + jB̂M (10)

where the Bn susceptances are given by

Bn =
{

ωCn; Cn = ε0/αn, TM modes

−(ωLn)−1; Ln = μ0/αn, TE modes
(11)

with αn being the attenuation constants of evanescent modes.
Taking into account (10), the IE (1) can be rewritten as

2Hinc − ĜM = jB̂M. (12)

In the following, it will be assumed that only the n = 0 mode
is propagative, with all the remaining ones being evanescent.
This corresponds to the usual practical case in which the fre-
quency range of interest lies within the monomode operation
band of the waveguide. In this case, we have

Hinc = Y0 Einch0 (13)

ĜM = 2Y0TE inch0 (14)

where Einc is the electric-field amplitude of the incident wave
and T its transmission coefficient. The IE (12), thus, becomes

−2Y0 Einc R h0 = jB̂M (15)

where R is the reflection coefficient for the electric field, with
T = 1 + R. Now, it is key to realize that, at resonance
frequencies, the impinging mode is completely transmitted
through the discontinuity and, therefore, at resonance frequen-
cies, the corresponding resonant magnetic current patterns
must satisfy the following IE in the aperture region:

B̂M = 0. (16)

Next, we can write the B̂ operator as

B̂ = ωĈ − ω−1 L̂−1 (17)

where Ĉ and L̂−1 operators, given by

Ĉ =
∑

n,TM

2Cn p̂n (18)

L̂−1 =
∑
n,TE

2

Ln
p̂n (19)

represent the contributions of TM and TE evanescent modes
to the susceptance operator, respectively. Introducing now (18)
and (19) into the resonance condition (16) finally leads to

L̂−1M = ω2ĈM. (20)

This equation is a generalized eigenproblem whose eigenval-
ues are the square of the resonance angular frequencies and
its eigenfunctions are the corresponding resonant magnetic
current (or aperture field) profiles. The L̂−1 and Ĉ operators
are Hermitian and positive definite. As a simple proof of the
latter, consider that any magnetic current M defined over the
apertures will excite evanescent fields, with some amount of
time-average reactive electric (magnetic) energy stored in the
fields of the TM (TE) evanescent modes. Since these time-
averaged electric and magnetic stored energies can be written
as

We = 1

4
〈M, ĈM〉 (21)

Wm = 1

4ω2 〈M, L̂−1M〉 (22)

it follows that Ĉ and L̂−1 are positive definite.

III. SOLUTION OF THE EIGENPROBLEM

As it is customary when dealing with IEs, the unknown
M value in (20) is now expanded into a set of basis functions

M =
N∑

i=1

ai mi (23)

so that (20) is turned into the following standard Hermitian
definite matrix eigenproblem:

L−1 · a = ω2C · a (24)

with a being the column vector containing the coefficients of
the magnetic current expansion and where L−1 and C matrices
are

C =
∑

n,TM

2Cn pn (25)

L−1 =
∑
n,TE

2

Ln
pn (26)
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with the entries of the pn matrices given by

pn,i j = 〈mi , p̂nm j 〉 = 〈mi , hn〉〈hn , m j 〉. (27)

The solution of the generalized eigenproblem (24) can be
carried out by some of the many reliable linear algebra
packages; for instance [43].

At this point, it should be noted that the L̂−1 and Ĉ oper-
ators, as well as the L−1 and C matrices, are not frequency-
independent. The reason lies in the frequency dependence of
the attenuation constants (dispersion) of evanescent modes,
which affects the Ln and Cn modal inductances and capac-
itances defined in (11). However, this dispersive behavior of
evanescent modes is relatively smooth except in a narrow
frequency band around their cutoff frequency, which leads to
a relatively weak frequency dependence of the matrices in the
eigenproblem unless working at frequencies close to the upper
bound of the monomode band. The idea is then to compute the
matrices in (24) at a convenient value of frequency (e.g., at
the center of the frequency band of interest) and solve the
eigenproblem to obtain the resonance frequencies that fall
within the monomode band. The eigenvalues thus obtained
will give resonance frequencies that are only approximate,
although, in general, it is found that the corresponding res-
onance magnetic current profiles (eigenvectors) form a quite
suitable set of basis functions to expand with good accuracy
the actual magnetic current excited by the impinging wave
over all (or most of) the monomode frequency band. In con-
sequence, in an MoM solution of the original IE (1) for the
discontinuity problem, these resonant profiles can be advan-
tageously used as basis functions. The main benefit would
come from the reduction of the size of the algebraic system to
be solved to just the number of resonances found within the
monomode band. Depending on the number of apertures in the
discontinuity and their geometry, this reduction can be very
significant.

Let M j be the obtained resonant profiles, written as

M j =
N∑

i=1

ai j mi , j = 1, . . . , Nr (28)

where ai j are the entries of matrix a formed out of the
eigenvectors of (24) by columns. The change of basis from
the original set of functions (23) to the resonant profiles is
carried out by applying the following usual transformation to
the already computed pn matrices:

p̃n = a† · pn · a (29)

where the dagger denotes the conjugate transpose.
In order to illustrate the performance of the resonant profiles

as basis functions, a first numerical example is considered
in Fig. 2, which shows the magnitude and phase of the
reflection coefficient for a three-slit discontinuity in a rectan-
gular waveguide (see Fig. 2(a) and its inset for the structure
parameters). Solid lines represent the values obtained using an
in-house MoM code with subsectional rooftop basis functions
over a rectangular mesh of the slits. Numerical results obtained
with software CST Microwave Studio have also been added

Fig. 2. (a) Magnitude and (b) phase of the reflection coefficient for a three-
slit discontinuity in a rectangular waveguide. Waveguide dimensions: a = 2b.
Slit lengths: wx1 = 0.75a, wx2 = 0.6a, and wx3 = 0.8a. Slit widths: wy1 =
0.075a, wy2 = 0.065a, and wy3 = 0.075a. Vertical positions: y1 = 0.085a,
y2 = 0, and y3 = −0.085a. Horizontal offset: x1 = 0, x2 = 0.05a, and
x3 = 0.

for validation purposes. Three resonances (reflection nulls) can
be observed within the monomode band at f1 = 1.20 fTE10 ,
f2 = 1.41 fTE10 , and f3 = 1.68 fTE10 , with fTE10 being the
cutoff frequency of the TE10 mode. Alternatively, the same
set of basis functions is used to evaluate the L−1 and C
matrices at the center of the monomode band ( f = 1.5 fTE10 ).
The solution of the resulting eigenproblem (24) provides three
eigenvalues within the considered band, located at f1 =
1.15 fTE10 , f2 = 1.40 fTE10 , and f3 = 1.70 fTE10 , together with
their corresponding eigenvectors (magnetic current resonant
profiles). A color map of the magnitude of the aperture
electric field for the three resonant profiles is shown in Fig. 3.
As mentioned earlier, the eigenvalues are approximate values
of the resonance frequencies, but it is interesting to note that
the second one is already very close to the MoM “exact”
value, since it lies relatively close to the reference frequency
at which the eigenproblem matrices were computed. If the
three resonant profiles thus obtained are now taken as basis
functions in the MoM, we obtain the dashed-line curves
in Fig. 2. An excellent agreement with the original MoM is
found all along the monomode band both in magnitude and
phase.

It should be pointed out that the proposed formulation (and
thus the circuit models derived from it in Section IV) only
deals with zero-thickness discontinuities. However, different
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Fig. 3. Magnitude of the aperture electric field of the resonant profile
obtained for the (a) first, (b) second, and (c) third resonance of the three-slits
discontinuity previously analyzed in Fig. 2 after solving the eigenproblem at
the middle frequency of the monomode band. These resonant profiles are used
as basis functions in the MoM to obtain the dashed curves in Fig. 2.

comparisons with numerical results for finite-thickness irises
obtained using commercial simulators (not included here)
indicate that the effects of the finite thickness are well approxi-
mated by our results for practical values of the thickness. As an
example, for the structure analyzed in Fig. 2, a resonance
frequency shift of about 1% is found for a 0.5-mm-thick screen
in a waveguide with a = 20 mm.

IV. ORTHOGONALITY AND CIRCUIT MODEL

Let us assume that we have already solved the eigen-
problem (24) using the matrices computed at a given frequency
value, and we have thus obtained a set of Nr resonances within
the frequency band of interest with associated magnetic current
profiles {Mi }i=1,...,Nr . Using these resonant profiles as basis
functions, the unknown magnetic current at the apertures is
written as

M =
Nr∑

i=1

biMi . (30)

The application of the MoM to the IE in (15), assuming that
Einc = 1 without loss of generality, leads to the following

system of algebraic equations:

−2Y0 R 〈M j , h0〉 = j
Nr∑

i=1

〈M j , B̂Mi 〉bi . (31)

As our eigenproblem is Hermitian definite, the eigenvectors
corresponding to different eigenvalues are orthogonal with
respect to both L̂−1 and Ĉ , and therefore,

〈M j , L̂−1Mi 〉 = 〈M j , ĈMi 〉 = 0 for i �= j. (32)

In other words, both the L−1 and C matrices are diagonal in
the basis of the magnetic-current resonant profiles. Rigorously
speaking, this orthogonality relation only holds for the single
frequency at which the eigenproblem was solved. However,
due to the relatively smooth frequency dependence of the
B̂ operator, it seems reasonable to expect that these resonant
profiles remain quasi-orthogonal within the monomode band
of interest, and therefore, we will next assume that (32) is a
good approximation in this frequency band. Using the modal
expansion of the electric field at the discontinuity plane, it is
also found that

1 + R = T = 〈h0, M〉 =
Nr∑

i=1

〈h0, Mi 〉bi =
Nr∑

i=1

Vi (33)

where Vi = 〈h0, Mi 〉bi can be interpreted as a partial voltage
drop associated with the i th resonant profile. Taking into
account these considerations, from (31)–(33), the following
equation is reached:

Y0(1 − R) − Y0T = j

[
ωCi (ω) − 1

ωLi (ω)

]
Vi (34)

with

Ci (ω) = 〈Mi , ĈMi 〉
|〈h0, Mi 〉|2 Li (ω) = |〈h0, Mi 〉|2

〈Mi , L̂−1Mi 〉
. (35)

Note that, if C̃ and L̃
−1

represent the matrices in the basis
of the resonant profiles, then (35) can directly be written in
terms of their diagonal elements as

Ci (ω) = C̃ii (ω)

|〈h0, Mi 〉|2 Li (ω) = |〈h0, Mi 〉|2
L̃−1

ii (ω)
. (36)

From a transmission-line model standpoint, the left-hand side
of (34) is clearly identified as the difference between the
current at both sides of the discontinuity. In consequence,
(33) and (34) are fully consistent with the equivalent
network shown in Fig. 4, which consists of Nr series-
connected resonant LC tanks whose L and C values are
given by (35) or equivalently by (36). Actually, this circuit
model can be regarded as a canonical Foster synthesis [8]
with frequency-dependent elements. It could be objected that
Foster’s canonical form includes, in general, an additional
LC series resonator. However, it should be considered that,
first, the topology of the equivalent circuit has not been
qualitatively or heuristically proposed but derived from the IE
formulation and, second, that such additional L and C series
elements could naturally appear in our model as the degener-
ation of a LC shunt tank with infinite value of L or null value
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Fig. 4. Circuit model derived under the approximation that the eigenvectors
keep their orthogonality in the frequency band of interest. The circuit has
the topology of Foster’s first canonical form but with frequency-dependent
capacitances and inductances.

Fig. 5. (a) Magnitude and (b) phase of the reflection coefficient obtained
using the MoM and using the Foster-like circuit model with frequency-
dependent elements shown in Fig. 4. Structure parameters: same as in Fig. 2.

of C (namely, resonance frequencies at either zero or infinity).
The derivation of this equivalent Foster’s synthesis, both its
topology and the values of the elements involved, is considered
a relevant achievement of the present procedure.

The application of the previous circuit model approach to
the structure considered in Fig. 2 is shown in Fig. 5, which
shows the reflection coefficient provided by the circuit model
together with the original MoM results. Although a close
inspection of these plots reveals some slight deviations, it can
be said that the performance of the circuit model is very good
overall. In terms of computational effort, it is worth noting
that, according to (35) or (36), the computation of each value
of the circuit elements at each frequency value is similar to
that of a single element of the Galerkin matrix.

Fig. 6. Inductances and capacitances of the frequency-dependent circuit
model for the structure previously analyzed in Fig. 5, computed using (35)
for each of the three resonances. All the curves are normalized to their original
values at the central frequency of the monomode band (see Table I).

TABLE I

CIRCUIT ELEMENT VALUES

Although Fig. 5 shows a very good performance of the
frequency-dependent circuit, a circuit model with frequency-
independent elements can be preferable for practical design
purposes, even though some loss of accuracy should then
be expected. In this regard, Fig. 6 shows the frequency
dependence of the six circuit elements used in Fig. 5. All the
capacitances and inductances are normalized to their original
values obtained at the center frequency of the monomode
band (the reference frequency at which the eigenvalue problem
was solved). These values are shown in the columns labeled
“original” in Table I for a waveguide with a = 20 mm
( fTE10 ≈ 7.5 GHz). It can be observed that the frequency
dependence of the capacitances and inductances associated
with the second and third resonances is very weak and a bit
stronger for the first resonance. In any case, the observed fre-
quency behavior of these circuit elements is quite smooth, and
even for the worst case (the capacitance corresponding to the
first resonance C1), its variations within the monomode band
are within 20% of its value at the center frequency. Therefore,
as a first proposal for a frequency-independent circuit, we can
just take the values of the circuit elements at the reference
frequency at which the eigenproblem was solved (these values
are already available after solving the eigenproblem, since
the L−1 and C matrices have already been computed at that
frequency value). The results obtained using this frequency-
independent circuit model are shown in Fig. 7 (dashed curve
labeled “original circuit”). The agreement with the MoM
results is reasonable, although some deviations can be clearly
observed, as expected. In particular, the deviations are more
pronounced in the first resonance, which is clearly shifted
toward lower frequencies. The second and third resonances are
less affected, as expected since they are closer to the reference
frequency (1.5 fTE10).
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Fig. 7. (a) Magnitude and (b) phase of the reflection coefficient obtained
using the MoM and using the obtained Foster canonical circuit models
with frequency-independent elements, for the same discontinuity previously
analyzed in Figs. 2–6. The curve labeled “original circuit” corresponds to
the results obtained using the circuit elements computed at the original
reference frequency f/ fTE10 = 1.5. The curve labeled “refined circuit” is
obtained using the circuit elements that result after applying the iterative
refinement (37)–(39). The numerical values of the elements of both circuits
for a = 20 mm are shown in Table I.

Although the results provided by the above-mentioned
circuit with frequency-independent elements may be quite
reasonable, in many practical cases, they will not be accu-
rate enough. However, the frequency-independent equivalent
circuit can be taken as a starting point for an iterative strategy
designed to refine the values of the circuit elements. Next,
we propose a very simple procedure that, in our experience,

has proved to be very efficient and reliable. Let ω
(0)
i denote

the approximate angular frequency of the i th resonance already
obtained after solving the eigenproblem at the reference fre-
quency. The first step is to compute the values of the associated
inductance and capacitance at the approximate resonance fre-
quency ω

(0)
i using (35). These first refined values are denoted

as L(1)
i and C(1)

i . From these values, we can compute a new
value of the resonance frequency, and so on. This iterative
strategy can be summarized as

C(k)
i = Ci

(
ω

(k−1)
i

) = 〈Mi , Ĉ
(
ω

(k−1)
i

)
Mi 〉

|〈h0, Mi 〉|2 (37)

L(k)
i = Li (ω

(k−1)
i ) = |〈h0, Mi 〉|2

〈Mi , L̂−1(ω
(k−1)
i )Mi 〉

(38)

ω
(k)
i = 1√

L(k)
i C(k)

i

(39)

where it should be noted that the resonant magnetic-current
profile Mi used throughout the iterative process is always the
same one originally obtained at the reference frequency ω

(0)
i .

In our experience, in most cases, this simple strategy converges
conveniently within reasonable tolerance margins after just a
few iterations (in our computations, we typically require a
relative error below 0.1% between two consecutive iterations).
By applying this iterative strategy to the previously considered
three-slit discontinuity, we obtain the refined values of the
circuit elements shown in Table I. The correction introduced
with respect to the original values is more noticeable in the
case of the first resonance, as expected since the shift with
respect to the resonance frequencies predicted by the MoM
results is less pronounced for the second and third resonances.
The reflection spectrum provided by this refined circuit model
is also shown in Fig. 7, labeled as “refined circuit.” As it can
be observed, the iterative strategy provides a circuit model
that mostly corrects the deviations of the previous circuit and,
although not quite as accurate as the circuit with frequency-
dependent elements, the comparison with MoM results is very
satisfactory.

As an additional relevant comment it should be pointed out
that, with independence of the circuit model interpretation,
the above-proposed iterative scheme can be interesting by
itself as an efficient and systematic strategy to compute the
resonance frequencies of a given multiresonant iris waveguide
discontinuity.

V. EXCITATION OF THE RESONANCES

The degree of excitation of the resonances is an interesting
and relevant issue that finds a very appropriate framework
of discussion within the proposed formulation thanks to the
possible interpretation in terms of the obtained circuit models.
To illustrate the discussion, we will consider a symmetric
variation of the three-slit discontinuity analyzed in Section IV
(see Fig. 8 for the structure parameters). After solving the
associated eigenvalue problem, three resonances are obtained
within the monomode band at f1 = 1.127 fTE10 , f2 =
1.332 fTE10 , and f3 = 1.686 fTE10 . However, the MoM results
in Fig. 8(a) show only two resonances. The reason of this
apparent disagreement lies in the parity of the vertical compo-
nent of the aperture field profile of the first resonance, which
is odd with respect to the horizontal middle plane of the
discontinuity and, therefore, it is not excited by the impinging
TE10 mode. When using the obtained resonant profiles as
basis functions in the MoM, the excitation coefficient of the
first resonant profile is negligible, because its projection over
the impinging wave, given by 〈h0, M1〉 = 〈e0, Ea,1〉 in the
formulation, is virtually zero.

It is then very convenient to have a figure of merit to
measure the degree of excitation of the different resonant
profiles so that those resonances that are very weakly excited
(or not excited at all) can be discarded. A first idea could
be to use the magnitude of the projection |〈h0, M〉| itself,
but this choice has the disadvantage that its value obviously
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Fig. 8. Magnitude of the reflection coefficient. (a) Symmetric three-slit
discontinuity. Waveguide dimensions: a = 2b. Slit lengths: wx1 = 0.8a,
wx2 = 0.6a, and wx3 = wx1. Slit widths: wy1 = 0.075a, wy2 = 0.065a,
and wy3 = wy1. Vertical positions: y1 = 0.085a, y2 = 0, and y3 = −y1.
Horizontal offset: x1 = x2 = x3 = 0. (b) Nonsymmetric structure derived
from the previous structure but now with wx1 = 0.775a and wx3 = 0.8a.

depends on the specific normalization of the resonant profiles.
Other figures should then be proposed for that purpose. In this
way, it is found that the canonical circuit-model approach
naturally provides a convenient and intuitive choice. For a
given resonance, we can define an “intrinsic impedance” of
its associated resonator in the circuit as

Zi =
√

Li

Ci
= |〈h0, Mi 〉|2√

〈Mi , ĈMi 〉〈Mi , L̂−1Mi 〉
. (40)

Following a circuit-theory rationale, the ratio of this intrinsic
impedance to the characteristic impedance of the imping-
ing mode would provide a good measure of the degree
of excitation of the resonance. If this ratio is very small,
the associated resonator in the circuit model would practically
behave as a short circuit and will not have any significant
effect in the spectrum, except at frequencies very close to
its resonance frequency. In our experience, resonances with
a ratio under 10−5 can be safely discarded. For the symmetric
discontinuity analyzed in Fig. 8(a), the ratio of impedances for
the first resonance is virtually zero (our numerical calculation
yields a value less than 10−20).

If the symmetry of the structure considered in Fig. 8(a)
is now broken by slightly changing the length of one of the
off-centered slits, the reflection spectrum shown in Fig. 8(b)

is obtained. This new spectrum is very similar to the one
in Fig. 8(a) except for the appearance of the first resonance
that was missing in the symmetric structure. The values of
the intrinsic impedances of the three resonators obtained after
solving the eigenvalue problem at the middle frequency of
the monomode band are Z1 = 0.008ZTE10 , Z2 = 0.65ZTE10 ,
and Z3 = 0.57ZTE10 . Since the impedance of the first
resonator is very small in comparison with the characteristic
impedance ZTE10 , its associated resonance is very narrow
(which is clearly related to the fact that the corresponding
resonant field profile is quasi-odd with respect to the horizontal
middle plane). It can also be observed that the reflection
zero is very closely followed by a total reflection peak.
This Fano-like behavior can, as well, be easily explained
in terms of the circuit model. First of all, the existence of
the reflection peak can be seen as a direct consequence of
Foster’s reactance theorem, which, in this context, guarantees
that there is always a reflection peak between two reflection
zeroes. The reason that this reflection peak appears so close
above the resonance (reflection zero) frequency can be found
in the small value of the resonator intrinsic impedance. Just
above the first resonance frequency, the first resonator presents
a high capacitive reactance that very quickly falls down to
almost negligible values as frequency is slightly increased, thus
canceling the inductive reactance of the other two resonators
at some higher frequencies but very close to the reflection
zero. This series resonance clearly results in an short-circuit
behavior of the discontinuity that causes total reflection of the
impinging wave. Similar discussions could also be applied to
other structures, which can be very beneficial to understand
the physical basis of some complex transmission/reflection
spectra and thus help to guide design and/or optimization
procedures.

VI. FURTHER RESULTS AND REFINEMENT

In this section, the above-mentioned formulation is applied
to a more complex discontinuity that comprises five differ-
ent nonsymmetrical slots [see the inset in Fig. 9(a)]. Also,
a further refinement is proposed that introduces a correction
in the resonant profiles. Thus, Fig. 9 shows a comparison
between the reflection coefficient computed by the direct
application of the MoM and by using the equivalent circuits,
both with frequency-dependent and frequency-independent
elements (only the magnitude of the reflection coefficient is
shown, since a very similar agreement is also found in the
phase results for all the comparisons). The results provided by
the frequency-dependent circuit in Fig. 9(a) are overall very
good, but the deviations with respect to MoM results, although
small, are more noticeable than those found for the three-
slit case in Fig. 5(a), especially toward the high-frequency
portion of the monomode band. Clearly, the reason for this
deviation can be found in the frequency dependence of the
eigenvalue problem, which causes the resonant profiles not to
be strictly orthogonal at frequencies sufficiently higher than the
reference frequency at which they were obtained. Concerning
the performance of the frequency-independent circuit models,
it is observed in Fig. 9(b) that the original circuit obtained
from the solution of the eigenproblem at f = 1.5 fTE10
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TABLE II

CIRCUIT ELEMENT VALUES AND RESONANCE FREQUENCIES (FIVE SLITS)

Fig. 9. Comparison between the reflection coefficients obtained using the
MoM and using the Foster-like circuit models with (a) frequency-dependent
and (b) frequency-independent elements. The inset in (a) shows a sketch of the
considered five-slits discontinuity, with the following parameters. Waveguide
dimensions: a = 2b; slit lengths: wx1 = 0.75a, wx2 = 0.7a, wx3 = 0.55a,
wx4 = 0.65a, and wx5 = 0.6a; slit widths: wy1 = 0.035a, wy2 = 0.025a,
wy3 = 0.03a, wy4 = 0.025a, and wy5 = 0.03a; vertical positions: y1 = 0.1a,
y2 = 0.05a, y3 = 0, y4 = −0.075a, and y5 = −0.15a; and horizontal offsets:
x1 = 0.05a, x2 = 0, x3 = −0.1a, x4 = −0.05a, and x5 = 0.

still yields somewhat reasonable results, although it clearly
shows the expected deviations as the frequency moves away
from the central reference value. The refined circuit obtained
after applying the iterative refinement scheme proposed in
Section V satisfactorily corrects these deviations for the
lower and intermediate frequencies, but, like the frequency-
dependent circuit, it still exhibits some more noticeable differ-
ences with respect to MoM at higher frequencies. The values
of the capacitances and inductances of both the original and
the refined circuit model are shown in Table II (the largest
dimension of the waveguide is once again set to a = 20 mm),

Fig. 10. Comparison between the original MoM data and the results obtained
using the new resonant profiles provided by (41), for the same five-slits
discontinuity previously analyzed in Fig. 9. (a) Circuit model with frequency-
dependent elements. (b) Circuit model with frequency-independent elements.

together with the resonance frequencies predicted by the
circuit models and obtained with the MoM (the values of the
resonance frequencies are normalized to fTE10).

In order to overcome these limitations to some extent,
we can introduce a correction in the resonant profiles as
follows. At each value of the resonance frequency ωi obtained
after the iterative refinement, the eigenproblem is solved using
the original resonant profiles as basis functions. Namely, if Nr
is the number of resonances, we solve the following Nr matrix
eigenproblems of size Nr × Nr:

L̃−1(ωi ) · b = ω2 C̃(ωi ) · b, for i = 1, . . . , Nr. (41)

Thus, the i th eigenvector of the i th eigenproblem is taken as
the new resonant profiles corresponding to the i th resonance.
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When these new resonant profiles are used in (35) to compute
the frequency-dependent elements, we obtain the reflection
coefficient results as shown in Fig. 10(a). As it can be
observed, the agreement with the original MoM is sensibly
improved with respect to Fig. 9(a), and now, both curves are
practically indistinguishable. Alternatively, in order to have a
circuit with frequency-independent elements, we can use the
new resonant profiles to evaluate the i th capacitance and induc-
tance using (35) at the corresponding ωi resonance frequency
(the refined values of the resonance frequency previously
obtained from the iterative strategy). The values of the circuit
elements thus obtained for the five-slit discontinuity under
consideration, as well as the corresponding resonance fre-
quencies, are also included in Table II (“new prof.” columns).
In Fig. 10(b), the values of the reflection coefficient magnitude
provided by this frequency-independent circuit are compared
with the original MoM results. The agreement between both
sets of data is quite satisfactory, and once again a noticeable
improvement is observed with respect to Fig. 9(b).

VII. CONCLUSION

A novel formulation for the determination of the response
of multiresonant irislike discontinuities in a hollow-pipe
waveguide has been presented. The resonance frequencies are
obtained from the eigenvalues of a properly posed eigenvalue
problem. The associated eigenvectors are the resonant electric-
field profiles on the aperture domains and can be used as
a convenient basis in a moment-method formulation. The
orthogonality properties of the eigenvectors can be exploited to
derive an equivalent circuit in the form of a canonical Foster
topology although involving frequency-dependent capacitors
and inductors. Furthermore, using iterative refinement tech-
niques, the values of the circuit components of a frequency-
independent Foster topology can be systematically obtained
from the proposed formulation, rather than from the full
electrical response of the multiresonant structure, as it has been
done in other works. The agreement between the full-wave
results and the results generated using the frequency-dependent
and the optimized frequency-independent equivalent Foster
networks is very good over a very wide frequency band.
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