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Spectral and Variational Analysis 
of Generalized Cylindrical 

and Elliptical Strip and 
Microstrip Lines 

Abstmct -In this paper, the variational technique in the spectral 
domain (VTSD) is shown to be an efficient method for computing the 
quasi-TEM parameters of arbitrary multiconductor and multidielectric 
cylindrical or elliptical strip configurations. Simple conformal mappings 
reduce the cylindrical or elliptical geometries to an equivalent rectangu- 
lar one with periodic boundary conditions. Minor modifications of 
previous work on planar structures allow us to analyze any cylindrical 
or elliptical geometry, computing the capacitance [Cl and inductance 
E1 matrices, from which the effective dielectric constants and mode 
impedances are obtained. 

I. INTRODUCTION 
N THE RECENT microwave literature, several papers I have been devoted to the analysis of striplike and 

microstriplike transmission lines printed on flexible di- 
electrics wrapped around cylindrical or elliptical surfaces. 
These systems can be used to excite conformal arrays 
mounted on cylindrical or elliptical objects. Coaxial-to- 
planar line transitions, slotted lines, and warping due to 
severe environmental changes can also be conveniently 
modeled with cylindrical strips. 

A number of authors have studied cylindrical and ellip- 
tical configurations using the quasi-TEM model. Wang 
uses a dual series representation to analyze the homoge- 
neous cylindrical stripline and the inhomogeneous cylin- 
drical microstrip [l]. The modified residue calculus tech- 
nique is used by Joshi et al. to solve cylindrical and 
elliptical striplines [2]. Conformal mappings have been 
applied to several simple configurations [31-[6] and, very 
recently, the more involved multiconductor striplinelike 
problem [7]. The Green’s function formulation with varia- 
tional expressions for the capacitance is used to analyze 
elliptic single [81 and coupled [91 arc strips and a nonsym- 
metrical pair of coupled cylindrical strips [lo]. Single [ l l ]  
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and broad-side-coupled [ 121 cylindrical strips have been 
analyzed solving the Laplace equation subject to the ap- 
propriate boundary conditions in a three-dielectric 
medium. The spectral-domain technique in cylindrical 
coordinates has been used to analyze single and symmet- 
rically coupled arc strips [13]. A significant step in the 
analysis of systems of this kind has been given in [141, 
where a general class of multiconductor cylindrical lines 
was studied by taking advantage of the periodicity of 
these structures and using the FFT algorithm in conjunc- 
tion with an iterative scheme. In addition, a full-wave 
analysis of single and coupled cylindrical strips printed on 
one-layer substrate has been reported in [151 and [161. 

The aim of the present paper is to show that general- 
ized cylindrical or confocal elliptical strip geometries (Fig. 
l(a)) can be easily studied by using the theory and com- 
puter programs previously developed for planar structures 
with rectangular boundary conditions. Note that most of 
the transmission lines mentioned in the previous para- 
graph can be viewed as particular cases of this generic 
multiconductor system. The method is based on the appli- 
cation of conformal mappings which transform the 
cylindrical or elliptical geometry into a planar one with 
rectangular periodic boundary conditions. This equivalent 
structure is analyzed by using the VTSD approach de- 
scribed in [ 171, [ 181 merely introducing slight modifica- 
tions in the analytical treatment and the computer pro- 
grams. This analysis allows one to compute the [,!,] and 
[ C] matrices characterizing the system under quasi-TEM 
operation and, from these, the modal impedances and 
effective dielectric constants. The original programs based 
on [17] and [18] have been improved by using better trial 
functions and a convenient asymptotic analysis in order to 
accelerate the convergence of the series appearing in the 
numerical computation. In this way, we have a very effi- 
cient algorithm to characterize, under the quasi-TEM 
assumption, very general cylindrical or confocal elliptical 
transmission systems involving an arbitrary number of 
dielectric layers and conductors distributed between them, 
even if they are printed in different interfaces. 
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ELLIPTIC YULTXSTRfPS SYSTEM 

w - plane I' 

I . '  
2 -  - '1:. I N Y 

I I 
I 
I I 1,!2 1 

t t I lht. 1 
I E 2  I 

I I I U 

(b) 

- I CL i y1  

0 I ' I  2n 

I 

u R  

Fig. 1. (a) Cross section of generalized elliptical multistrip and multi- 
dielectric structure. The notation for geometrical parameters defining 
arc strips and interfaces is included. When c = 0, ai = bi = r,, we have 
the cylindrical case. (b) Image structure in w plane of the configura- 
tion in (a). This structure is periodic in the U direction with period 
2iT. 

11. GENERAL CONFIGURATIONS AND 

CONFORMAL MAPPINGS 
The cross section of a generalized confocal elliptical 

system has been drawn in Fig. l(a). Our purpose is to 
compute the [L] and [C] matrices of this multiconductor 
transmission line. Instead of working in an elliptical frame, 
we will exploit the theory and the programs developed by 
the authors for treating generalized planar configurations 
[17], [NI. In order to do this, we transform the original 
elliptical (Fig. l(a)) geometry into an equivalent one with 
periodic rectangular boundary conditions (Fig. l(b)) via 
the following conformal mapping: 

where the asterisk denotes complex conjugate; 2c = focal 
distance; z = x + jy; w = U + ju; and b, and a, are the 
minor and major semiaxes of inner ground ellipse. 

The original elliptical configuration in the z plane is 
mapped into the rectangular one in the w plane. With the 
mapping given by (l), geometrical parameters (a) and (b) 
of Fig. 1 are related in the following way: 

Hi = tanh-' ( bi+' / a i + ' )  - tanh-' ( bi / a i )  

u t  = tan-' [ ( a i / b i )  tan&] 

uk=tan- '  [(ai/bi)tancpk] ( 2 )  

(using the notation in Fig. l(a) and (b)). 
For a cylindrical configuration in the z plane (that is, 

c = 0, ai = b, = ri in Fig. l(a)) a suitable mapping function 
is 

w(z) = j l n (z* /a ) .  (3) 

In this way the cylindrical system is transformed into the 
rectangular one shown in Fig. l(b): 

H~ = In( rip' / r i )  u t  = 'pi U$ = &. ' (4) 
The equivalent configuration (Fig. l(b)) consists of an 

arbitrary number (N , )  of conducting strips lying in a 
certain number ( M )  of planar interfaces between Nd 
lossless isotropic dielectric layers, the whole being en- 
closed by a set of rectangular boundary conditions. The 
cylindrical or elliptical configuration and their corre- 
sponding transformed structures have the same [ C ]  and 
[ L] matrices (nonmagnetic materials are assumed). A 
generic configuration similar to the one in Fig. l(b) has 
been efficiently analyzed by the authors using the varia- 
tional technique in the spectral domain in [171 and [181. 
Since the analysis is parallel to the one reported in [17] 
and [18], we refer the reader to these papers and to the 
Appendix herein for details. A brief account will be given 
in the following section. 

111. NUMERICAL RESULTS 
The [ C ]  matrix is computed from the electrical energy 

stored per unit length in the structure for an appropriate 
set of excitations of the conductor strips [18]. The un- 
known surface charge distribution on the strips for each 
excitation is expanded into a set of basis functions and the 
expansion coefficients are computed to minimize the elec- 
trical energy (Rayleigh-Ritz method). In order to do this, 
we work in the Fourier transform domain, since the 
spectral Green's function matrix (SGFM) needed in the 
analysis can be easily obtained using the method reported 
in [17]. As is well known, [L] is obtained from the [C] 
matrix for the same structure without dielectrics. 

The numerical efficiency of the Rayleigh-Ritz algo- 
rithm strongly depends on the choice of trial functions for 
approximating the unknown surface charge density on the 
strips. In the uresent work we use a set of basis functions 

w( z) = cos-l( z * / c )  - j tan-' ( b ,  / a , )  (1) which has prbved to be very good for both quasi-TEM 
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and full-wave analyses because they incorporate the sin- 
gular behavior of the surface charge density ( p )  at the 
strip edges and the properties of Chebyshev polynomi- 
nals: 

nf 

p’( U) = p i (  U) + a i p i (  U) ( 5 )  
m = l  

S’ = (U:. + 4 ) / 2  W’= uk - U:. 

where T J t )  is a Chebyshev polynominal of the first kind 
of order rn. 

At this point, some attention must be given to the 
numerical convergence of Fourier series appearing in the 
analysis (see [18, eqs. (8)-(10)1). The series arising from 
interactions between noncoplanar strips are quickly con- 
vergent, because the off-diagonal elements of the SGFM 
relating the Fourier transform of the potential and the 
surface charge in different interfaces decrease exponen- 
tially. However, interactions between strips lying at the 
same interface yield poorly convergent series (if the basis 
functions in (5) are used, the convergence is as l /n2) .  A 
significant improvement is achieved if the asymptotic tail 
extraction technique is applied (see the Appendix). In 
Fig. 2, we show a typical convergence pattern with and 
without asymptotic extraction. Clearly, asymptotic extrac- 
tion will result in an important reduction of CPU time. 
This fact is even more pronounced for multiple-strip 
configurations, and it has been verified for a wide variety 
of simple and coupled structures. 

On the basis of this theory we have written a computer 
program whose reliability and numerical efficiency have 
been conveniently tested. Table I shows the convergence 
of the normalized characteristic impedance (E,“*z,) with 
the number of trial functions for a cylindrical homoge- 
neous stripline. We have included some results tabulated 
in [14, table I, N = 20481 for comparison. The particular 
case a = 180, which can be exactly solved by conformal 
mapping (exact value = 5.361 O), has also been included. 
The agreement with data reported in [14] is excellent, and 
the exact value is also obtained. We can see from this 
table that bigger angles require more basis functions. 
Nevertheless, CPU time does not increase as quickly with 
the arc width, since bigger angles require adding fewer 
Fourier terms. Typically, four significant digits are ob- 
tained in 50-200 ms on a VAX-11/785 computer. Note 
that our method does not impose restrictions on the strip 
width, in contrast to the method in [14], based in the 
application of the FFT. 

The multiconductor case is also checked by compar- 
isons with data reported in [14, table 1111. In Table I1 we 
present results for the mode effective dielectric constants 
of six coupled strips. Slight differences could be due to 
the relatively small number of samples used in I141 to 
compute these data. In general, very good agreement with 
data published in [14] has been found. Discrepancies with 

‘ 0  7 0  20 30 

N u m b o s  of F o u n e s  to- 

Fig. 2. Percent deviation from the exact value of the normalized 
capacitance of a cylindrical strip as a function of the number of 
retained Fourier terms with (i) and without (ii) asymptotic extraction. 

graphic data published in [ l ]  and [ l l ]  pointed out in [141 
have also been detected. Since this disagreement has 
been found using two completely different methods, we 
can also conclude that the accuracy of the results in 111 
and [ l l ]  is questionable. 

Edge-coupled symmetrical arc strips have been consid- 
ered to compare with the results in [5] and 1131. The 
method in [5] is valid when the geometrical parameters 
are within a certain range of values. For these, very good 
agreement is found. However, the authors in [13] use as 
trial function for the charge density just the zeroth-order 
term in (5). This choice results in serious numerical errors 
when strips are strongly coupled. This is because the 
charge distribution is not symmetrical around the center 
of the strip, as is assumed in [13]. When wide arc strips 
are involved, the charge distribution tends to be almost 
uniform. Thus, significant discrepancies with results in 
[13] also arise in this case. Table I11 illustrates these facts. 
Results in the first column (nf = 0)  correspond to the 
method in [13]. In order to obtain accurate results, a few 
basis functions must be retained. Note that odd trial 
functions are closely related to the coupling effect, since 
these take into account the asymmetry of the charge 
distribution on coupled strips. Even functions must be 
added when wide strips are involved. Similar accuracy 
problems are also expected to occur in [8]-[101, where 
poor trial functions are used. 

Noncoplanar strips can be also treated with our pro- 
gram. We have also tested this case. For instance, we 
have considered the symmetrical broadside-coupled strips 
analyzed in [6] and [12]. In these papers, the ratio be- 
tween radii is chosen in such a way that even and odd 
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a Results number of trial functions (nf) 

1.00  

19 .95  

39.99 

60 .03  

80.07 

99 .93  

119.97 

140.01 

i n  [141 
N=2048 

38 .14  

21 .27  

14 .75  j 11.29  

0 1 2  3 4  5 6  

189.0 

39.18 38.11 

22.97 21.27 21 .26  

16.61 14.76 14.75 

13.16 11.31 11.29 

10 .97  9 .  180 9.162 

9 .437  7 .718  7 .698  7 . 6  

8 . 3 0 3  6 .659  6 .638  6 . 6  

180.00 

TABLE I1 
EFFECTIVE DIELECTRIC CONSTANTS OF SIX COUPLED STRIPLINES 

AS A FUNCTION OF SEPARATION ANGLE 

(a) Results reported in 114, table 1111. 
(b) Our results. 

8 .453  5 .452  5.379 5.366 5 .363  5 .362  5.361 

modes can be defined, and the analysis is applied to the 
single conductor geometry corresponding to each mode. 
We have analyzed these structures both by considering 
them as particular cases of the more general asymmetric 
configuration and by using the theory of odd and even 
modes, introducing the appropriate electric or magnetic 
wall [12]. The numerical results obtained with both proce- 
dures are indistinguishable. Very good agreement has 
been found with the conformal mapping results in [61 for 
a wide range of values of a. However, slight discrepancies 
with the variational results in [12] were found for high 
values of a. This is due again to a lack of precision in the 
estimation of charge distribution, as is evident from Fig. 
3. In this figure, we show the ratio of phase velocities for 
broadside-coupled microstrip lines using nf = 0 and nf = 6 
in (5). The computed results coincide with graphic data 
reported in [12] when nf = 0, but significant deviation is 
found (10% for wide strips) when more terms are used to 
approximate the charge distribution. In the limiting case 
a = 180, which can be exactly solved, we get five signifi- 
cant digits using four basis functions in (5). 

In order to check the validity of the program for elliptic 
arc strips, we have compared our data with the very 
accurate conformal mapping results reported in [3]. These 

TABLE I11 
EVEN- AND ODD-MODE CHARACTERISTIC IMPEDANCE OF EDGE-COUPLED 

CYLINDRICAL STRIPS 

number of trial functions (nf) 

50.92  49.89 48.80 48.77 48 .77  48.77 
37.07 35.59 35 .55  35.47 35.45 35 .45  

16 .79  16.63 14.29 14.27 14.26 14 .25  14.25 
13.67 13.45 12.87 12 .82  12.81 12 .79  12 .79  

45 .52  45.47 45 .02  45 .02  
42.47 42.41 42 .23  42 .23  

20 

80 

20 

15 .88  15 .88  14 .02  14.02 14.01 14.01 
14.58 14 .58  13.46 13.46 13.46 13.46 

b / a = 1 . 4 ;  c / a = 1 . 8 ;  c = 2  

nf = 0 corresponds to the 
technique in [131 

1.Sr  . 1 

1-4 b-f-P- - - - 

1 . 1 1  ow’ 

1 1 1 50 50 100 

Holt--onglr <drgrrrr> 

Fig. 3. Variation of mode velocity ratios of broadside-coupled mi- 
crostrip lines as a function of half-angle strip arc. Notation is the same 
as that in [12, fig. 61: - - - - - results in [12]; 0 our results with nf = 0 
in (5); - our results with n f =  6. (i) p / a  = 0.1, (ii) p / a  = 0.3, 
(iii) p / a  = 0.6, (iv) p / a  = 1.0. b / a  = 1.4, E ,  = 2.32. 

results are limited to single elliptical stripline in homoge- 
neous medium, but they are good enough for our compar- 
ison purpose. We have made comparisons with all graphic 
data reported in [3], and the agreement is excellent in all 
cases. In Fig. 4, for example, we show the characteristic 
impedance of an elliptical stripline as a function of the 
arc width for different locations with respect to the major 
axis (0,) and two different distances to the inner elliptical 
ground ( h  / a ) .  As expected, the characteristic impedance 
depends on Bo, which enters as a new variable not existing 
in the cylindrical case. 

In conclusion, the computer programs based on the 
theory in this paper can be used with confidence to 
compute the characteristic parameters of a very wide 
variety of cylindrical or elliptical transmission systems. 
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Fig. 4. Characteristic impedances of elliptic stripline in homogeneous 
medium (air) versus strip angle ( A  4): - results reported in [31; 
A our results. 

With the aim of including an example not reported in 
previous literature, we show in Fig. 5 the effective dielec- 
tric constants and mode impedances of a pair of asymmet- 
rical coupled cylindrical strips printed on a two-layer 
substrate. In Fig. 5(a) we can see that the c- and r-mode 
effective dielectric constants can be made almost equal by 
a proper choice of the thickness of the inner dielectric 
(which has the lower dielectric constant). The range of 
values of ( b  - a ) / a  where the effective dielectric con- 
stants are very close is around a critical point defined by 
the equalization of the inductive and capacitive couplings. 
In this zone, the mode line impedances exhibit the singu- 
lar behavior shown in Fig. 5(b). The c or T nature of each 
mode changes to each side of the critical point; that is, 
the corresponding mode number changes the sign. This 
behavior is similar to that reported in [19] for coupled 
asymmetric microstrips with overlay. A detailed analysis 
of these phenomena and an analysis of other particular 
structures are out of the scope of this paper, which 
focuses more on the computational method to solve this 
kind of structure than on the analysis of the behavior of 
particular configurations. 

IV. CONCLUSIONS 
In this paper we have stated that very general single- 

conductor or multiconductor cylindrical/elliptical strip 
configurations embedded in a layered dielectric medium 
can be reduced, via conformal mapping, to a rectangular 
geometry with the same [I,] and [ C ]  matrices. The analy- 
sis of this equivalent structure is achieved by taking ad- 

< b - a > / a  

(b) 

Fig. 5. (a) Effective dielectric constants of c and n- modes of a pair of 
asymmetric cylindrical strips on two-layer substrate. (b) Modal line 
impedances of the same structure. Note the singular behaviour around 

ZzT. a1 = lo", az  = 20", 0 = 5", c / a  = 1.2, c1 = 2.32, c2  = 10. 
. _ ._  the critical point. ---- Zlc; ...... ZIT; - Zzc; .- 

vantage of previous work on boxed planar structures. The 
numerical convergence of the programs is greatly acceler- 
ated incorporating the asymptotic behavior of the series 
appearing in the analysis, in such a way that efficient 
programs have been written. It has also been pointed out 
that excessively simple approximations to the surface 
charge distribution yield meaningful numerical errors, 
mainly when strong coupling or wide strips are involved. 
As an application example, the singular behavior of the 
characteristic parameters of asymmetric coupled struc- 
tures on multilayer substrates has been shown. 

APPENDIX 

Here we include certain remarks on th_e computation of 
the spectral Green's function matrix, [Gij(n)], with i ,  j = 

1,. e ,  M ,  used in the VTSD [17], [18] and on numerical 
aspects concerning the addition of Fourier series involved 
in the method. 
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The structure analyzed in this paper (Fig. l(b)) differs 
from the configurations studied in [171 and [181 in the 
nature of the lateral boundary conditions. The structure 
in this work is periodic with period 277 in the U direction 
instead of having electric or magnetic sidewalls. Then, all 
the quantities are Fourier transformed using the defini- 
tion: 

F ( n )  = / 2 T f ( u ) e ~ n u d u .  0 (AI) 

As a consequence, [GJn)]-' =[L,,(n)] can be com- 
puted from [17, eqs. (2)-(17)] making the following substi- 
tutions: 

k,-n E,*: = Ey*:-E,  (A2) 
where-the subscript i refers to the ith layer in Fig. l(b), 
and [L,,(n)] is a tridiagonal symmetrical matrix with ele- 
ments defined by 

where Ljk and p k  are the Fourier transform of free surface 
charge and the potential distributions on the kth inter- 
face (see Fig. l(b)). That is, the original boundary condi- 
tion problem is separated into simpler problems defined 
by the boundary conditions in (A3). The solutions to these 
problems are given in [17, eqs. (12)-(17)] in terms of 
certain g i j ( n )  functions defined in [17, eq. (611. The physi- 
cal meaning of these functions is evident from [17, eq. 
(5)l. They are the factors relating the Fourier transform of 
the free charge density and the potential distributions in 
the configurations shown in Fig. 6. 

On the other hand, all the Fourier series appearing in 
[171 and [181 must be added from n = --M to n = +-M 

instead of from n = 1 to n = W .  In Section I11 we referred 
to the need for taking into account the asymptotic behav- 
ior of these series in order to achieve good convergence. 
From [17, eqs. (6) to (1711 we can see that [Lij(n)l 
exponentially converges to a diagonal matrix whose ele- 
ments are 

i k , k ( n  +w)  = € o ( E l + E , + l ) l n l = G ~ : ( n  + w ) ,  

k = l , . . *  , M  (A41 

where i and i + 1 refer to the dielectric layers adjacent to 
the kth interface 

For the basis functions in (5),  the Fourier series appear- 
ing when the method in [18] is applied has the following 
form: 

where J p , q ,  Bessel functions of the first kind of order 
p ,q ,  are the Fourier transforms of the basis functions in 
(5). 

The convergence of S is not satisfactory. However, if 
we consider the asymptotic behavior of A(n)  when 
n - CO, namely A,(n), we can rewrite (A9  as 

m m 

S =  C [ ~ ( n ) - ~ , ( n ) ] +  C AAn)  ( ~ 6 )  
n =  -m n =  -m 

where 

cos (nu  - p.rr/2- ~ / 4 )  cos( nb - q r / 2 -  ~ / 4 )  

n2 
A,( n )  = C 

with 

C = 2/ [ .rr( ab) 1 '2~o(  E: + E:' ' ) I  . 
Now, after some manipulations, the second term in (A6) is expressed as a combination of trigonometric series. One 

of these series can be expressed in closed form; the other is reduced to an equivalent one converging in a few terms by 
means of the residue technique. In our programs we have used 

T 2  x ( 2 7 - x )  
, 0 < X < 2 T  

6 4 n = l  

l - log(x)+x2 ( -+- 7: 1:4i0)], 

4 9 sinh[m.rr(.rr-x)/2] 
7 m,odd m2sinh(m.rr2/2) 

[l- tanh(n)] - - 

sin(nx) c ------"( -(2.rr-x) l - l o g ( 2 ~ - x ) + ( 2 . r r - x ) 2  
n = l  n2 

{ n = l  

x < 0.5 

, ( 2 7 - X )  < O S  

0.5 < x < ( 2 ~  -0.5) 

(eight digits being correct in the worst case using these expressions). 
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(b) 
Structures defining the elementary spectral functions needed to 

compte  the global matrix Green’s function: (a) definition of 2 J n )  7 
c ? ~ / Y ;  (b) definition of ~ t , l ~ i ( n ) = C ? l / ~ ~ i .  The quantities C?* and V,  
are the Fourier transforms of the free surface charge density and the 
potential distribution. 

Fig. 6. 
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