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Abstract. Within the EUROfusion MST1 Work Package, a series of experiments
has been conducted on AUG and TCV devices to disentangle the role of plasma
fueling and plasma shape for the onset of small ELM regimes. On both devices, small
ELM regimes with high confinement are achieved if and only if two conditions are
fulfilled at the same time. Firstly, the plasma density at the separatrix must be large
enough (ne,sep/nG ∼ 0.3), leading to a pressure profile flattening at the separatrix,
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which stabilizes type-I ELMs. Secondly, the magnetic configuration has to be close
to a Double Null (DN), leading to a reduction of the magnetic shear in the extreme
vicinity of the separatrix. As a consequence, its stabilizing effect on ballooning modes
is weakened.

Submitted to: Nucl. Fusion
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1. Introduction

To achieve its goals, ITER has to operate in the H-mode confinement regime, specified

within the ITER baseline scenario (IBS) [1] for which the key parameters are shown in

Fig. 1. Such scenario with good confinement is expected to be accompanied with large

type-I ELMs. Therefore, if unmitigated, the resulting peak heat fluxes will exceed

the material limits of � 10MW.m−2 in ITER size devices and even more so in a

demonstration fusion power plant (DEMO). An attractive solution to overcome this

limitation is to operate in the H-mode confinement regime with small ELMs such as

type-II or grassy ELMs [2, 3, 4, 5, 6], for which the good confinement is maintained

w.r.t. to the type-I regime.

Historically, a distinction has been made between type-II and grassy ELMs: On the

one hand, type-II ELMs are observed when increasing the plasma density, edge safety

factor and triangularity, moving the plasma close to a double-null (DN) configuration.

In addition, the onset of type-II ELMs is accompanied by a broadband fluctuation in

the range of 30-50 kHz, observed in the magnetics, microwave reflectometry and electron

cyclotron emission diagnostic up to the pedestal top (0.7 < ρpol < 0.95). On the other

hand, the grassy ELM regime was found on JT-60U with increased triangularity and

high edge safety factor, but at low collisionality, close to ITER-relevant values. And

no signature of broadband turbulence has been reported for this ELM regime. The

distinction between type-II and grassy ELMs is highlighted in Fig.1 where the typical

values of the IBS key parameters are shown.

Nevertheless, it is not clear if the IBS parameters are the key parameters to fulfill

to achieve a small ELM regime or if there exist other key ingredients in addition to

q95 and δ in common between type-II and grassy ELM regimes. It is also of great

importance to further assess if a small ELM regime would be achieved in ITER under

certain circumstances.

This paper summarizes the results of a series of experiments, conducted in AUG

and in TCV to disentangle the role of plasma fueling, plasma triangularity and closeness

to the DN configuration for the onset of a small ELM regime, either type-II or grassy

(hereafter, the distinction is dropped on purpose). The necessity of a large density at

the separatrix is demonstrated in Section 2, while in Section 3, the crucial role of the

plasma shape is reported. A physical interpretation, suggesting a prominent role of the

magnetic shear is given in Section 4 followed by concluding remarks and outlook (Sec.5).

2. Small ELM regimes and plasma density at the separatrix

2.1. Pellet fueling versus gas fueling in AUG plasmas

In AUG #34462, a small ELM regime is reached at t=3.0 s with strong gas fueling and a

plasma shape close to a DN configuration (Fig. 2). The closeness to a DN configuration

is monitored by the parameter ∆sep, the distance, at the outboard midplane, between

the separatrix and the flux surface through the secondary X-pt (∆#34462
sep = 7 mm).
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At t=4.0 s, while the plasma shape is unchanged, the gas fueling is replaced by pellet

injection into the plasma core, maintaining the averaged plasma density. It is observed

that the small ELMs are suppressed and the type-I ELMs are fully restored, as clearly

seen on the divertor shunt current measurement.

Figure 3 shows the electron density and electron temperature profiles, from the

Thomson scattering diagnostics, for both ELMy phases: small in red and type-I in

black. Profiles have been shifted such that Te,sep = 100 eV (see Sec. 4). The core fuelling

with pellets has almost no effect on the temperature profiles (both Te and Ti). For the

plasma density, the core profile is unchanged up to the pedestal top with fG,ped � 0.85.

The pressure gradient in the pedestal is almost unchanged. Conversely, the scrape-

off layer (SOL) profile is strongly affected by the change in the fueling method: while

the profile is broad with fG,sep � 0.3 for strong gas fueling case (small), it becomes

narrower for the pellet fueling case and the separatrix density is reduced by a factor of

2 (4× 1019 → 2× 1019 m−3). This is further confirmed with the estimate of the fall-off

lengths in the near SOL: with gas fueling, λne
is increased by more than a factor of 2

and λpe increases by 33%. A reduced pressure gradient around the separatrix means

that the pedestal width is shrunk which in turn increases the stability of type-I ELMs.

Further details on this scenario can be found in Ref. [7].

It has been observed on MAST [8] that the filamentary transport at the foot of the

pedestal is significantly changed from type-I to type-II. Also, for AUG #34462, a change

in the turbulent transport is revealed from Doppler Back Scattering measurements just

inside the separatrix (ρpol ∼0.99). Figure 4 shows a 500 µs long time series of DBS

signals (real part) measured within both phases. For the small ELM regime (DN and

gas fueling, red), the DBS signal shows large bursts in amplitude. These bursts, in the

range of 40-80 kHz, are much more frequent than in between type-I ELMs later in the

discharge (close to DN and pellet fueling, black) [9]. Further investigations are needed to

clarify the change in the turbulent transport between both ELM regimes but it suggests

a correlation with the filamentary transport in the scrape-off layer close to the H-mode

density limit [10].

2.2. Gas fueling scan in ELMy H-mode in TCV

A reliable scenario for type-I ELMy H-mode in TCV is obtained with the following

parameters: Lower Single Null, Ip = 140 kA, BT = 1.4 T, κ = 1.5, δ=0.38, ∆sep = 24

mm, q95=4.5, PNBI = 1 MW (PL−H ∼0.7 MW at ne,av = 3 × 1019m−3). This scenario

is illustrated in Fig. 5 for TCV #57103 (black traces). Even though the gas fueling is

negligible, the plasma density is maintained constant by sufficient wall recycling from the

carbon wall. The ELMs are monitored with a photodiode measuring the Dα radiation

along a vertical line-of-sight. The pedestal profiles are obtained from a recently upgraded

Thomson scattering system [11] then fitted with a modified hyperbolic tangent function

[12] and shifted such that Te,sep = 50 eV (see Sec. 4). This scenario has been used to

investigate the effect of gas fueling and impurity seeding on the pedestal structure and
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the energy confinement [13, 14].

As seen from the ASDEX-Upgrade experiment reported above, a key ingredient to

achieve a small ELM regime is to operate at sufficiently large density at the separatrix

(fG,sep∼ 0.3) which can be controlled via gas fueling. A mix of type-I and small ELM has

been realized in TCV. Indeed, starting from the reference type-I ELM regime, a scan in

deuterium fueling has been performed on a shot to shot basis [13, 14]. A summary of

TCV #57105 for the largest fueling rate is given in Fig. 5 (red traces). As the D2 flow

increases, the following observations can be made (Table 1):

(i) The type-I ELM frequency decreases by a factor of 2 while the relative loss energy

∆W/W remains around 11%;

(ii) The baseline level of the Dα signal increases which might indicate an elevation of

the recycling level.

(iii) Small ELMs, in between type-I, are becoming more and more frequent. Their

typical frequency is about 2.5 kHz.

A consequence of the reduced type-I ELM frequency is that the plasma density is not

controlled anymore and it increases with time, eventually leading to a back transition

into L-mode. The lost energy associated with each small ELM is below 1% which

corresponds to the diagnostic resolution. In addition, no clear trend is found between

the pedestal pressure height variations and the changes in the plasma stored energy

when the fueling rate is varied [13]. The density growth at the pedestal is less rapid

than the separatrix density elevation. As a consequence the ratio ne,sep/ne,ped increases

by a factor 2 from 0.25 to 0.5 (Fig. 6(a)). Despite the fact that the wall recycling is

increased, no significant carbon accumulation in the plasma core is observed leading to

a reduced fraction of core radiation with gas fueling.

An outward shift of the density pedestal, together with a reduction of the pedestal

widths, are observed with increased fueling (Fig. 6(b)). Both effects are leading to

a reduction of the peeling-ballooning stability for type-I ELMs. In addition, for this

scenario with low shaping, no evidence of a high density front at the high field side [15]

is reported so far from TCV, conversely to AUG. This might be due to the TCV open

divertor geometry and will be reassessed once the TCV divertor is closed with baffles

[16].

Finally, since no broadband turbulence has been observed on the magnetic probes,

it cannot be concluded that these small ELMs are type-II. Nevertheless, a similar fueling

scan for plasmas at higher triangularity, discussed in Ref. [13], also shows a transition

to a mixed ELM regime, with, in this case, a signature of turbulence in the frequency

range [20-40] kHz on the magnetics.
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3. Small ELM regime accessibility with plasma shaping

3.1. Small ELM regime for plasma with high triangularity in TCV

Type-II and/or grassy ELMs are usually observed at large plasma triangularity

[17, 4, 18, 5]. A small ELM regime with controlled plasma density has been achieved in

TCV. Two discharges (LSN, Ip=170 kA, BT=1.4 T) have been performed with the exact

same parameters except the upper triangularity which changes from δu=0.1 (#61057,

δ = 0.4, ∆sep=24 mm) to δu=0.32 (#61056, δ = 0.54, ∆sep= 3 mm) as shown in Fig. 7.

Both plasmas are heated with 1MW of NBI plus 0.75 MW of X3 ECRH. The

same constant D2 flow (3.8 mbar.L/s) has been imposed at the L-H transition giving

fG,ped � 0.35. For the medium triangularity discharge, the ELMs are large type-I ELMs

(fELM = 100 Hz, ∆W/W ∼10%) while for the high triangularity discharge, type-I ELMs

are fully suppressed and replaced by small high frequency ELMs for which ∆W/W <1%.

Later in the discharge, the fuelling was increased by a factor of 8, resulting for

the high triangularity case, to an increase of the plasma density up to an H-mode

density limit disruption. For the medium triangularity shape, the type-I ELM frequency

decreases so the density increases and a back-transition to L-mode is observed.

Although, at low fueling rate, the plasma confinement usually improves when the

triangularity is increased [18], here, the stored energy is the same for both triangularities

and the density is perfectly well controlled in both situations. In Fig. 8, the

temperature and density pedestal profiles are plotted. They are remarkably similar

for both discharges even though the kinetic profiles are selected in the [75%-90%] phase

of the type-I ELM cycle while they are time averaged for the small ELM case. As a

consequence, the pedestal pressure is only increased by less than 5% for the large δ case.

Some plasma and pedestal parameters are compared in Table 2.

An expected benefit of the small ELM regime is a reduction of the peak heat

loads at the targets. For both plasmas, a preliminary analysis of the heat loads at the

outer strike point has been performed from infrared measurements [19]. Figure 9 shows

the perpendicular heat flux along the outer target as a function of time. Compared

to the type-I regime, the peak heat flux is reduced by a factor of about 10 with

the small ELM regime, reaching similar levels as the inter-type-I ELM periods. In

addition, compared to the value evaluated in between type-I ELMs, the time averaged

heat flux decay length λq for the small ELM case is about 20% larger (6.5 mm vs 5.5

mm) and can be seen as a possible indication of an enhanced cross-field transport in

the SOL. However, the uncertainty on the heat transmission for co-deposited surface

layers (αsl = 160 kWm−2 K−1 here), in particular for graphite tiles [20] requires further

detailed analysis and will be addressed in future work.

3.2. Effect of closeness to double-null on the small ELM regime in AUG

In AUG, the role of the SOL density has been revisited [7]. Indeed, it turns out that a

large separatrix density (fG,sep ∼ 0.3) is not a sufficient condition to achieve the small
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ELM regime. This has been demonstrated in AUG #34483 (Fig. 10). A small ELM

regime is obtained with a constant large gas fueling, in a shape close to DN (∆sep=7-9

mm). After t= 4.0 s, the plasma is progressively shifted down, relaxing the closeness to

DN (∆sep=14 mm) at almost constant triangularity δ and elongation κ. As the plasma

is moved down, type-I ELMs are progressively restored, leading to a mix of ELM types.

As for the TCV case discussed earlier, it is observed that the pedestal profiles are almost

unchanged for both phases. Not only the pedestal top profiles are unchanged, but also

the SOL profiles remain unaffected by the transition from small ELM to a mix of small

and type-I ELMs.

4. Physical interpretation

The experimental results from AUG and TCV are consistent within each other and can

be summarized as follows: a small ELM regime at high confinement can be achieved if

and only if two conditions are fulfilled at the same time: the separatrix density is large

enough: fG,sep ≥ 0.35 and the plasma shape is close to a double-null configuration. In

the following, the physical implications are discussed, starting with the pedestal stability

analysis.

For the AUG and TCV plasmas discussed in Section 3, the pedestal stability is

analyzed using CLISTE and MISHKA codes for AUG [15] and CHEASE and KINX

for TCV plasmas [21], respectively. The experimental Te and ne profiles are fitted

with a modified hyperbolic tangent function [12]. Since the equilibrium reconstruction

has uncertainties and the absolute pedestal position cannot be determined within an

accuracy of ∼5 mm, the profile location relative to the separatrix is assigned based

on power flow [22]. From the two-point model [23], a typical value for the separatrix

temperature is Te,sep= 100 eV for AUG [24], while one finds Te,sep= 50 eV for TCV. In

addition, because of the steep gradients in the pedestal, an uncertainty of 10-20% in

Te,sep doesn’t impact on the pedestal location significantly. So, the temperature profiles

are shifted in order to match these values at the separatrix and the density profiles are

shifted by the same amount. The j−α stability diagrams are shown in Fig.11. Here, j is

the current density and α is the normalized pedestal pressure gradient. As expected, for

the type-I ELMy cases (low shaping), the experimental pedestal pressure and current are

close to the peeling-ballooning stability boundary. When plasmas are strongly shaped

towards DN and small ELMs achieved, the intermediate-n peeling-ballooning boundary

expands considerably. Nevertheless, the experimental pedestals are still close to this

boundary, meaning that the pressure gradient and possibly, the edge current density are

increased in both devices when a small ELM regime is achieved.

In addition to the dependence on the separatrix density, the onset of a small ELM

regime depends on the closeness to the DN configuration. For both devices, a magnetic

equilibrium, taking into account the pedestal bootstrap current self-consistently has

been computed for type-I and small ELM regimes. The CLISTE code for AUG and the

CHEASE code [25] for TCV cases are used, respectively. Figure 12 shows the resulting
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magnetic shear profile which has been flux surface averaged. It turns out that when the

closeness to DN is relaxed, the magnetic shear in the immediate vicinity of the separatrix

is larger than for the configuration close to DN. It is also known that ballooning modes

with high toroidal mode numbers and driven by the local pressure gradient can be

destabilized by a reduced magnetic shear [26, 27]. Therefore, we are conjecturing that

small ELMs might be ballooning modes driven unstable in the vicinity of the separatrix.

Such modes have high toroidal mode numbers and are therefore radially narrow, driven

by the local pressure gradient and stabilized by magnetic shear.

The experimental results from AUG and TCV presented in this paper are in line

with our current understanding about the physical mechanism which drives small (either

type-II or grassy) ELMs. It can be summarized as follows:

• With strong plasma shaping (short ∆sep and/or high δ), ballooning modes, driven

by the pressure gradient are destabilized in the immediate vicinity of the separatrix

where the magnetic shear is locally reduced.

• With strong plasma fueling, large separatrix densities can be achieved and the

turbulent transport due to ballooning modes, which increases with density [28],

can be large at the separatrix.

• This transport flattens the pressure profile around the separatrix, such that the

remaining pedestal width, which determines the stability of the peeling-ballooning

modes, becomes narrower. This has a stabilizing influence on type-I ELMs.

5. Conclusions and outlook

This paper reports on joint experiments conducted on AUG and TCV devices in order

to assess the effect of plasma fueling and plasma shape on the onset of small ELM

regimes (either type-II or grassy). We have clarified the key role of two parameters: the

separatrix density and the magnetic shear in the immediate vicinity of the separatrix.

In summary, for the onset of a small ELM regime:

• The plasma density at the separatrix must be large enough (ne,sep/nG ≥ 0.3) to

drive a large ballooning transport and therefore to flatten the pressure profile near

the separatrix, which, finally, stabilizes type-I ELMs.

• The plasma triangularity has to be large enough (δ ≥ 0.4), which in practice,

results in a magnetic configuration close to a Double Null (DN), parametrized with

∆sep. This leads to a reduction of the magnetic shear in the extreme vicinity of the

separatrix. As a consequence, its stabilizing effect on ballooning modes is weakened.

These critical parameters are reported in Table 3 and compared to the ITER

expected values [29, 30]. In this paper, it has been demonstrated that the onset of

a small ELM regime strongly depends on the separatrix conditions. Therefore, it is

important to realize that not only the ITER plasma shape but also the separatrix

parameters fG,sep and ν�,sep can be matched in nowadays tokamaks. So, a small ELM
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regime with good confinement might be achievable in ITER. Nevertheless, since it is

known that the ITER pedestal collisionality cannot be matched in present machines, a

better physical understanding regarding the onset of a small ELM regime is needed to

gain confidence on a possible extrapolation to ITER and beyond.

As it has been seen, type-I and small ELMs can exist at the same time, suggesting

they are excited by different physical mechanisms. The underlying instabilities leading

to grassy or type-II ELMs have been hypothesized to be ballooning modes located close

to the separatrix, howerer further experiments devoted to a better understanding of the

pedestal and SOL turbulence and particle and heat transport are required. This will be

complemented by further development of theoretical models for small/no ELM regimes

and by nonlinear MHD simulations using global codes in order to gain confidence in

terms of their compatibility with ITER plasmas.

Finally, the effort to understand the physics of the small ELM regime will continue

under the EUROfusion umbrella with further experiments on AUG, TCV and MAST-U

in order to achieve small ELM regimes towards q95 = 3 [31] and ITER-relevant separatrix

collisionalities.
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Table 1. Summary of fueling scan of type-I ELMy H-mode in TCV with q95 = 4.5,
δ = 0.4, PNB = 1MW.

ΓD2 fELM
∆W
W

Te,ped WMHD Prad frad,core
(mbarL/s) (Hz) % (eV) (kJ) (kW) %

0 103±21 11±1 203±12 10±0.3 187±7 34±3
5 109±29 10±2 144±9 11±0.4 190±13 32±6
15 96±38 11±3 185±5 12±0.4 230±13 30±4
28 65±14 12±1 147±7 13±0.5 239±12 31±3

Table 2. Plasma and pedestal parameters comparing the type-I and small ELM
regimes at TCV. They have been averaged over the time window indicated by the
shaded area in Fig. 7

ELM regime q95 δ ∆sep ne,sep ν�,ped βpol fG,ped WMHD H98y2

(mm) (×1019m−3) (kJ)

type-I 4.7 0.38 24 0.9 2.66 1.13 0.34 11 1.0
small 4.7 0.54 3 0.8 1.95 1.13 0.32 11 0.95

Table 3. Plasma and pedestal parameters for small ELM regimes in AUG and
TCV, compared to parameters of the ITER baseline scenario assuming Te,ped=4 keV,
Te,sep=0.2 keV, ne,ped=0.7 ×1020 m−3 and ne,sep=0.3 ×1020 m−3.

q95 δ ∆sep ν�,ped ν�,sep fG,ped fG,sep

AUG (small ELM) 4.5 0.37 7 mm ∼1.4 ∼7 0.82 0.3
TCV (small ELM) 4.5 0.54 3 mm ∼2 ∼ 10 ∼0.35 ≥ 0.1

ITER 3 0.4 80 mm ≤0.1 ∼ 7 0.6-0.8 0.25

ν*ped
10

1-fGW,ped
0.8

1

q95

δ

βpol
8

3

0.6

2
5.5

grassy

type-II

1
3

0.5
0.2

0.1
0.2

ITER

1

Figure 1. Main pedestal top parameters defining the ITER baseline scenario (grey
line). The range of these parameters for grassy (pink) and type-II (green) ELMs are
also given. Reprint with permission from [6].
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Figure 2. Summary of AUG #34462. Details can be found in [7].
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Figure 4. AUG #34462: Real part of the Doppler Backscattering signal, measured at
ρpol = 0.99; (a) during 0.5 ms in the small ELMs phase (b) during 0.5 ms in between
type-I ELMs.
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Figure 5. Overview of TCV shots 57103 (ΓD2 = 0, H98y2 = 1.13) and 57105
(ΓD2 = 28mbar.L/s, H98y2 = 1.06) showing how type-I ELMs frequency is reduced
with strong fueling.
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Figure 6. Main results of the D2 fueling scan a) Pedestal density (black); separatrix
density (gray) and their ratio (red); b) Pedestal locations (black) and widths (red).
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Figure 7. Overview of TCV #61057 (δ = 0.4 ⇔ ∆sep = 24 mm, black) and #61056
(δ = 0.54 ⇔ ∆sep = 3 mm , red) showing how type-I ELMS are fully stabilized close
to a DN configuration.
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Figure 9. Outer target heat loads measured with IR thermography for a) TCV
#61057 (type-I ELMs); b) TCV #61056 (small ELMs); The black line in a) and b) is
the outer strike point locations according to the magnetic reconstruction; c) Peak heat
flux for type-I (black), small (red) and in between type-I ELMs (black; dashed).
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Figure 10. Summary of AUG #34483; a) Close look at the magnetic equilibrium
around the 2nd X-point xat t=3.5 s (red) and t=5.5 s (black); b) D2 fueling (blue)
and vertical position of the magnetic axis (purple); c) divertor shunt current showing
that type-I ELMs are progressively restaured when the closeness to DN is relaxed.
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