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Abstract. We will prove that normal complex contact metric manifolds that are Bochner
flat must have constant holomorphic sectional curvature 4 and be Kähler. If they are also

complete and simply connected, they must be isometric to the odd-dimensional complex

projective space CP 2n+1(4) with the Fubini-Study metric. On the other hand, it is not
possible for normal complex contact metric manifolds to be conformally flat.

1. Introduction

Complex contact manifolds were first introduced by Kobayashi in [6]. However, they were
not as widely studied as real contact manifolds until recently, when more examples have been
published. Ishihara and Konishi introduced in [4] a concept of normality, which forced the
structure to be Kählerian and did not include some natural examples like the complex Heisenberg
group. This led Korkmaz to define a weaker version of normality in [7], which included these
examples as well as the odd-dimensional complex projective spaces and is the notion of normality
that we use here.

In Hermitian geometry, the Bochner tensor plays the role of the Weyl conformal curvature
tensor in real Riemannian geometry. Thus it is natural to study how normal complex contact
metric manifolds are affected by Bochner flatness, i.e. the vanishing of the Bochner conformal
tensor of an Hermitian manifold as defined by Tricerri and Vanhecke in [8]. We will prove in
Section 3 that this condition means that the manifold must have constant holomorphic sectional
curvature 4 and be Kähler. Moreover, if they are also complete and simply connected, they must
be isometric to the odd-dimensional complex projective space. In contrast we show in Section
4 that there are no conformally flat normal complex contact metric manifolds.

2. Preliminaries

We will first recall the basic concepts and results on complex contact metric manifolds that
we will use throughout this paper. For more background, see [2] or [7] as a general reference.

A complex manifold M with dimCM = 2n+ 1 and complex structure J is a complex contact
manifold if there exists an open covering U = {Oα} of M , such that:

(1) On each Oα, there is a holomorphic 1-form ωα with ωα ∧ (dωα)n 6= 0 everywhere,
(2) If Oα ∩ Oβ 6= 0, then there is a non-vanishing holomorphic function λαβ in Oα ∩ Oβ

such that

ωα = λαβωβ in Oα ∩ Oβ .
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On each Oα, we define Hα = {X ∈ TOα / ωα(X) = 0}. Since the functions λαβ ’s
are nonvanishing, Hα = Hβ on Oα ∩ Oβ , so H = ∪Hα is a well-defined, holomorphic,
non-integrable subbundle on M , called the horizontal subbundle.

From now on, we will suppress the subindexes if Oα is understood.
A complex contact manifold M admits a complex almost contact metric structure, i.e. local

real 1-forms u, v = uJ , (1, 1)-tensors G,H = GJ , unit vector fields U and V = −JU and a
Hermitian metric g such that

H2 = G2 = −Id+ u⊗ U + v ⊗ V,
g(GX,Y ) = −g(X,GY ), g(U,X) = u(X),

GJ = −JG, GU = 0, u(U) = 1,

and on the overlaps, the above tensors transform as

u′ = au− bv, v′ = bu+ av,

G′ = aG− bH, H ′ = bG+ aH,

for some functions a, b defined on the overlaps with a2 + b2 = 1. As a result of the above
formulas, on a complex almost contact metric manifold M , the following identities also hold
(see [4]):

HG = −GH = J + u⊗ V − v ⊗ U,
JH = −HJ = G, g(HX,Y ) = −g(X,HY ),

GV = HU = HV = 0, uG = vG = uH = vH = 0,

JV = U, g(U, V ) = 0.

Moreover, given a complex contact manifold, the complex almost contact metric structure can be
chosen such that du(X,Y ) = g(X,GY )+(σ∧v)(X,Y ) and dv(X,Y ) = g(X,HY )−(σ∧u)(X,Y )
for some 1-form σ; see [3] or [5]. In this case we say that M has a complex contact metric
structure.

On a complex contact metric manifold M , we can write TM = H⊕V, where V is the vertical
subbundle on M , locally spanned by U and V = −JU , and is usually assumed to be integrable.
In this case σ(X) = g(∇XU, V ). From now on, we will work with a complex contact metric
manifold M with structure tensors (u, v, U, V,G,H, g) and complex structure J . The following
identities are established in [7]:

∇UG = σ(U)H, ∇VH = −σ(V )G,

dσ(U,X) = v(X)dσ(U, V ), dσ(V,X) = −u(X)dσ(U, V ).

In real contact geometry, Sasakian manifolds play an important role. As an analogue of
Sasakian manifolds, in complex contact geometry we also have the concept of normality. We
will use the definition that Korkmaz gave in [7], instead of the stronger notion which Ishihara
and Konishi introduced in [4].

A complex contact metric manifold M is normal if it satisfies the next two conditions:

(1) S(X,Y ) = T (X,Y ) = 0 for all X,Y in H, and
(2) S(U,X) = T (V,X) = 0 for all X,
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where S and T are (1, 2)-tensors on M defined as follows

S(X,Y ) = [G,G](X,Y ) + 2v(Y )HX − 2v(X)HY + 2g(X,GY )U − 2g(X,HY )V

− σ(GX)HY + σ(GY )HX + σ(X)GHY − σ(Y )GHX,

T (X,Y ) = [H,H](X,Y ) + 2u(Y )GX − 2u(X)GY + 2g(X,HY )V − 2g(X,GY )U

+ σ(HX)GY − σ(HY )GX − σ(X)HGY + σ(Y )HGX.

We recall that

[G,G](X,Y ) = (∇GXG)Y − (∇GYG)X −G(∇XG)Y +G(∇YG)X

is the Nijenhuis torsion of G. It was also proved in [7] that:

Proposition 2.0.1. Let M be a complex contact metric manifold. Then M is normal if and
only if

g((∇XG)Y,Z) = σ(X)g(HY,Z) + v(X)dσ(GZ,GY )− 2v(X)g(HGY,Z)(1)

− u(Y )g(X,Z)− v(Y )g(JX,Z) + u(Z)g(X,Y )− v(Z)g(X, JY ),

g((∇XH)Y,Z) = −σ(X)g(GY,Z)− u(X)dσ(HZ,HY ) + 2u(X)g(HGY,Z)(2)

+ u(Y )g(JX,Z)− v(Y )g(X,Z) + u(Z)g(X, JY ) + v(Z)g(X,Y ).

As a result of this proposition, on a normal complex contact metric manifold the covariant
derivative of J satisfies:

(3) g((∇XJ)Y,Z) = u(X)(Ω(Z,GY )− 2g(HY,Z)) + v(X)(Ω(Z,HY ) + 2g(GY,Z)).

Also on a normal complex contact metric manifold we have:

∇XU = −GX + σ(X)V, ∇XV = −HX − σ(X)U,(4)

dσ(GX,GY ) = dσ(HX,HY ) = dσ(Y,X)− 2u ∧ v(Y,X)dσ(U, V ).(5)

Let M be a normal complex contact metric manifold. For any horizontal vector field X, the
plane section generated by X and Y = aGX + bHX, where a2 + b2 = 1, is called a GH-section
and we define the GH-sectional curvature GHa,b(X) as the curvature of the GH-section, i.e.
GHa,b(X) = K(X, aGX + bHX), where K(X,Y ) is the sectional curvature of the plane section
spanned by X and Y .

If the GH-sectional curvature GHa,b(X) is independent of the choice of a and b, then we will
denote it by GH(X). If it is also independent of the choice of the GH-section at each point,
then the holomorphic sectional curvature is

(6) K(X,JX) = GH(X) + 3,

see Proposition 5.2 of [7].
The odd-dimensional complex projective spaces CP 2n+1 with the standard Fubini-Study

metric g of constant holomorphic curvature 4 are examples of normal complex contact metric
manifold and have constant GH-sectional curvature 1 (see [7]).

The following result of Korkmaz [7] will be important for our work.

Theorem 2.1. Let M be a normal complex contact metric manifold with constant GH-sectional
curvature +1 and dσ(U, V ) = −2. Then M is Kähler and has constant holomorphic curvature
+4. If, in addition, M in complete and simply connected, then M is isometric to the complex
projective space CP 2n+1 with the Fubini-Study metric.

Our conventions for the curvature tensor are

R(X,Y )Z = ∇X∇Y Z −∇Y∇X −∇[X,Y ]Z, R(X,Y, Z,W ) = g(R(X,Y )Z,W ).
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A number of basic curvature properties of normal complex contact metric manifolds were
given in [7] and we note the following for our use

(7) R(U, V, V, U) = −2dσ(U, V ).

For a horizontal vector field X we have

(8) R(X,U)U = X, R(X,V )V = X,

(9) R(X,U)V = σ(U)GX + (∇UH)X − JX,

R(X, JX, JX,X) +R(X,GX,GX,X) +R(X,HX,HX,X)

= −6g(X,X)(dσ(JX,X) + g(X,X)).(10)

For horizontal vector fields X and Y

R(X, JX, JY, Y ) = R(X,Y, Y,X) +R(X, JY, JY,X)(11)

+4(g(X,GY )dσ(X,HY )− g(X,HY )dσ(X,GY ) + 2g(X,GY )2 + 2g(X,HY )2).

The definition of Bochner tensor of an almost Hermitian manifold was given by Tricerri and
Vanhecke in [8]. Define (0, 4)-tensors π1, π2 and L3R by:

π1(X,Y, Z,W ) = g(X,Z)g(Y,W )− g(Y, Z)g(X,W ),

π2(X,Y, Z,W ) = 2g(JX, Y )g(JZ,W ) + g(JX,Z)g(JY,W )− g(JY, Z)g(JX,W ),

L3R(X,Y, Z,W ) = R(JX, JY, JZ, JW ).

Given a (0, 2)-tensor S, we denote by ϕ(S) and ψ(S):

ϕ(S)(X,Y, Z,W ) = g(X,Z)S(Y,Z) + g(Y,W )S(X,Z)

− g(X,W )S(Y, Z)− g(Y, Z)S(X,W ),

ψ(S)(X,Y, Z,W ) = 2g(X, JY )S(Z, JW ) + 2g(Z, JW )S(X, JY )

+ g(X, JZ)S(Y, JW ) + g(Y, JW )S(X,JZ)

− g(X, JW )S(Y, JZ)− g(Y, JZ)S(X, JW ).

Given an Hermitian manifold of complex dimension 2n+ 1 (which the complex contact metric
manifolds are in particular), the Bochner conformal tensor is defined as

B = R+

(
1

8(n+ 1)
ψ(ρ∗) +

1

8n
ϕ(ρ)

)
(R− L3R)

+
1

16(2n+ 3)
(ϕ+ ψ)(ρ+ 3ρ∗)(R+ L3R) +

1

16(2n− 1)
(3ϕ− ψ)(ρ− ρ∗)(R+ L3R)

− 1

32(n+ 1)(2n+ 3)
(τ + 3τ∗)(π1 + π2)− 1

32n(2n− 1)
(τ − τ∗)(3π1 − π2),

where ρ(R), ρ∗(R) are the Ricci tensor and Ricci ∗-tensor associated to the curvature tensor
R, which are defined for an arbitrary orthonormal basis {ei} by:

ρ(X,Y ) =
∑
i

R(X, ei, ei, Y ), ρ∗(X,Y ) =
∑
i

R(X, ei, Jei, JY ),

and τ , τ∗ are their associated scalar curvature and ∗-scalar curvature respectively.
An almost Hermitian manifold is said to be Bochner flat if B is identically zero. The com-

plex projective spaces CP 2n+1(4) mentioned before are Bochner flat because they have constant
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holomorphic curvature (Theorem 6 of [9]). We will also recall the definition of the Weyl confor-
mal tensor. Given a Riemannian manifold M of real dimension m, the Weyl conformal tensor
is defined by

W (X,Y )Z = R(X,Y )Z +
τ

(m− 1)(m− 2)
(g(Y,Z)X − g(X,Z)Y )(12)

+
1

m− 2
(g(X,Z)QY − g(Y, Z)QX + ρ(X,Z)Y − ρ(Y,Z)X),

for X,Y, Z vector fields on M .
A Riemannian manifold M is said to be conformally flat if it is locally conformally related

to the Euclidian metric. The following characterizations are well known. If m > 3, M is
conformally flat if and only if W = 0. If m = 3, the Weyl conformal tensor is identically zero
and the manifold is conformally flat if and only if the Schouten tensor is a Codazzi tensor (see
e.g. [1] for a discussion).

3. Normal complex contact metric manifolds which are Bochner flat

On an almost Hermitian manifold we have the following relation between the Ricci tensor
and ∗-Ricci tensor, [10] (p. 195)

(13) ∇t∇jJ ti −∇j∇tJ ti = (ρjt − ρ∗jt)J ti.

Also in [10] (p. 195) one has the result that on a semi-Kähler manifold (i.e., Ω is coclosed),

(14) τ − τ∗ = (∇hJji)(∇jJih).

In the following, we will always assume {E1, . . . , E4n+2} to be an orthonormal basis of M such
that E4n+1 = U and E4n+2 = V .

Lemma 3.1. On a normal complex contact metric manifold τ = τ∗.

Proof. First note that from (3) we easily have that

(15)

4n+2∑
i=1

g((∇EiJ)Ei, Z) = 0

and hence that a normal complex contact metric manifold is semi-Kähler. Now rewrite (3.2) as

τ − τ∗ =

4n+2∑
h,i,j=1

g((∇Eh
J)Ej , Ei)g((∇Ej

J)Ei, Eh),

which vanishes by virtue of (3). �

Theorem 3.2. If a normal complex contact metric manifold M is Bochner flat, then it has
constant holomorphic sectional curvature 4 and is Kähler. If, in addition, M is complete and
simply connected, then it is isometric to the odd-dimensional complex projective space CP 2n+1(4)
with the Fubini-Study metric.

Proof. By virtue of Theorem 2.1 it is enough to prove that M has constant GH-curvature 1 and
satisfies dσ(U, V ) = −2.

We first compute ρ(U,U) and ρ∗(U,U). We have from formulas (7) and (8) that

ρ(U,U) =

4n+2∑
i=1

R(U,Ei, Ei, U) =
4n∑
i=1

R(Ei, U, UEi) +R(U, V, V, U)

= 4n− 2dσ(U, V ).(16)
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Analogously, we can calculate
ρ(V, V ) = 4n− 2dσ(U, V ).

Now recalling that JU = −V and using equations (9), (2) and (5) (in that order), we obtain

ρ∗(U,U) =

4n+2∑
i=1

R(U,Ei, JEi, JU) = −
4n+2∑
i=1

R(Ei, U, V, JEi)

= −
4n∑
i=1

g(σ(U)Gei + (∇UH)Ei − JEi, JEi) +R(U, V, V, U)

=

4n∑
i=1

(g(dσ(Ei, JEi)− 2 + 1)− 2dσ(U, V )

= −4n− 2dσ(U, V ) +

4n∑
i=1

dσ(Ei, JEi).(17)

Analogously, we also have

ρ∗(V, V ) = −4n− 2dσ(U, V ) +

4n∑
i=1

dσ(Ei, JEi).

As we have seen the structure is semi-Kähler so we only have the first term on the left hand
side of (13) which we write in the form

∑4n+2
i=1 g((∇Ei

∇XJ)Ei, Y ). Setting X = Y = U there
is no contribution for Ei = U or Ei = V and we have

4n+2∑
i=1

g((∇Ei
∇UJ)Ei, U) =

4n∑
i=1

g(∇Ei
((∇UJ)Ei)− (∇UJ)∇Ei

Ei, U),

which using (3) and (4) vanishes. Therefore ρ(U,U) = ρ∗(U,U) and using equations (16) and
(17) we have

(18)

4n∑
i=1

dσ(Ei, JEi) = 8n

and in turn

(19) ρ(U,U) = ρ(V, V ) = ρ∗(U,U) = ρ∗(V, V ) = 4n− 2dσ(U, V ).

Turning to the Bochner tensor, we first have

B(U, V, V, U) = R(U, V, V, U) +
τ + 3τ∗

8(n+ 1)(2n+ 3)
(20)

+
1

2(2n+ 3)

(
− ρ(V, V )− ρ(U,U)− 3ρ∗(V, V )− 3ρ∗(U,U)

)
.(21)

Now with B = 0, (7), (19) and τ = τ∗, we have

(22) (4n− 2)dσ(U, V ) = −16n+
τ

2(n+ 1)
.

As B(X,U,U,X) = 0 for every X unit and horizontal vector field, using the fact that
ρ∗(JX, JX) = ρ∗(X,X) we deduce:

0 = 6(2n− 1) + 2(2n− 1)dσ(U, V ) +
2n− 1

4(n+ 1)
τ(23)

− 8n2 + 8n− 3

4n
ρ(X,X)− 3

4n
ρ(JX, JX) + 3ρ∗(X,X).
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By the first Bianchi Identity and formulas (2) and (9), we know that

4n∑
i=1

R(X, JX,JEi, Ei) = −
4n∑
i=1

R(X, JEi, Ei, JX)−
4n∑
i=1

R(X,Ei, JX, JEi)

= 2

4n+2∑
i=1

R(X,Ei, JEi, JX) + 2R(X,U, V, JX)− 2R(X,V, U, JX)

= 2ρ∗(X,X) + 4− 4dσ(X, JX).(24)

Using (11) we can also prove that

4n∑
i=1

R(X, JX, JEi, Ei) = 2ρ(X,X)− 4

+ 4

4n+2∑
i=1

(g(X,GEi)dσ(X,HEi)− g(X,HEi)dσ(X,GEi)) + 16

= 2ρ(X,X) + 12− 8dσ(X, JX).(25)

Comparing equations (24) and (25), we have

ρ∗(X,X) = ρ(X,X)− 2dσ(X, JX) + 4

and

ρ(JX, JX) = ρ(X,X).

Using these two equations and (22), formula (23) simplifies to

(26) 0 = −2(2n− 3) +
2n+ 1

4(n+ 1)
τ − 6dσ(X, JX)− (2n− 1)ρ(X,X),

for every X unit and horizontal.
On the other hand, we can deduce from B(X,Y, Y,X) = 0, that

R(X, JX, JX,X) = ρ(X,X) + 2− τ

4(n+ 1)
,

R(X,Y, Y,X) = − 2

2n− 1
+

τ

8(n+ 1)(2n− 1)
,

for all X,Y are unit, horizontal vector fields such that X is orthogonal to Y and JY . The latter
equation gives an expression for the GH-curvature:

(27) GHa,b(X) = K(X, aGX + bGH) = − 2

2n− 1
+

τ

8(n+ 1)(2n− 1)
,

for every X unit and horizontal.
Therefore, equation (10) gives:

(28) 6dσ(X, JX) = ρ(X,X) +
4n− 6

2n− 1
+ 6− n− 1

2(n+ 1)(2n− 1)
τ.

Comparing (26) and (28) we get that

(29) ρ(X,X) = − 4n2 − 3

n(2n− 1)
+

4n2 + 2n− 3

8n(n+ 1)(2n− 1)
τ,

for every X unit and horizontal. This shows that ρ(X,X) is independent of the vector field X,
so dσ(X, JX) does not depend on X either because of (26) or (28). Thus from equation (18)
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we obtain that dσ(X,JX) = 2. Substituting in (28), we get another expression for ρ(X,X):

(30) ρ(X,X) = −2(2n+ 3)

2n− 1
+

2n+ 1

4(n+ 1)(2n− 1)
τ,

for every X unit and horizontal.
The formulas (29) and (30) must coincide, which means that τ = 8(n + 1)(2n + 1) (and

therefore ρ(X,X) = 4(n + 1)). Substituting the expression of the scalar curvature in (22) and
(27) we get that dσ(U, V ) = −2 and that the GH-sectional curvature is constant and equal to
1. The result now follows from Theorem 2.1. �

4. Non-existence of normal complex contact metric manifolds which are
conformally flat

Theorem 4.1. There exist no normal complex contact metric manifolds which are conformally
flat.

Proof. The proof is by contradiction. Suppose that M2n+1 is a normal complex contact metric
manifold which is also conformally flat. Then, as dimRM

2n+1 = 4n+ 2, we get by (12) that

R(X,Y, Z,W ) = − τ

4n(4n+ 1)
(g(Y, Z)g(X,W )− g(X,Z)g(Y,W ))(31)

− 1

4n
(g(X,Z)ρ(Y,W )− g(Y,Z)ρ(X,W ) + g(Y,W )ρ(X,Z)− g(X,W )ρ(Y, Z)),

for all vector fields X,Y, Z,W on M .
In particular, we have that

R(U, V, V, U) =
1

4n
(ρ(U,U) + ρ(V, V ))− τ

4n(4n+ 1)
,

and by virtue of equation (7) and the fact that

(32) ρ(U,U) = ρ(V, V ) = 2(2n− dσ(U, V )),

we obtain

dσ(U, V ) = − 2n

2n− 1
+

τ

4(2n− 1)(4n+ 1)
.

Substituting this into (32), we get that

(33) ρ(U,U) = ρ(V, V ) =
8n2

2n− 1
− τ

2(2n− 1)(4n+ 1)
.

On the other hand, we also have from (31) that, for every unit horizontal vector field X on
M :

R(X,U,U,X) =
1

4n
(ρ(X,X) + ρ(U,U))− τ

4n(4n+ 1)
.

Applying equations (8) and (33), we obtain that the Ricci tensor satisfies

(34) ρ(X,X) = − 4n

2n− 1
+

(4n− 1)τ

2(2n− 1)(4n+ 1)
,

for every X unit, horizontal vector field.
Finally, if we choose X,Y unit, mutually orthogonal horizontal vector fields in (31), and use

formula (34), we have that

R(X,Y, Y,X) = − 2

2n− 1
+

τ

2(2n− 1)(4n+ 1)
.

In particular, the holomorphic sectional curvature and the GH-sectional curvature of an arbi-
trary horizontal vector field X are equal and (6) yields 0 = 3, a contradiction. �
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