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Inhomogeneous cooling state of a strongly confined granular gas at low density
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The inhomogeneous cooling state describing the hydrodynamic behavior of a freely evolving granular gas
strongly confined between two parallel plates is studied, using a Boltzmann kinetic equation derived recently.
By extending the idea of the homogeneous cooling state, we propose a scaling distribution in which all the time
dependence occurs through the granular temperature of the system, while there is a dependence on the distance to
the confining walls through the density. It is obtained that the velocity distribution is not isotropic, and it has two
different granular temperature parameters associated to the motion perpendicular and parallel to the confining
plates, respectively, although their cooling rates are the same. Moreover, when approaching the inhomogeneous
cooling state, energy is sometimes transferred from degrees of freedom with lower granular temperature to those
with a higher one, contrary to what happens in molecular systems. The cooling rate and the two partial granular
temperatures are calculated by means of a Gaussian approximation. The theoretical predictions are compared
with molecular dynamics simulation results and a good agreement is found.
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I. INTRODUCTION

Granular gases are systems composed of macroscopic par-
ticles which do not conserve kinetic energy when they collide
[1]. As a consequence of the energy dissipation, they are
intrinsically nonequilibrium systems and have a very rich and
peculiar phenomenology [2], so they can be considered as a
proving ground for nonequilibrium statistical mechanics. In
particular, a monolayer of spherical macroscopic particles is
perhaps the simplest experimental system exhibiting a variety
of phenomena, including non-Maxwellian velocity distribu-
tions, phase transitions with a rather complex phase diagram,
long-lived fluctuations, and other nontrivial nonequilibrium
effects [3–7]. Most of these behaviors look quite similar
to others observed in normal, molecular fluids and that are
successfully described by hydrodynamics. The analysis of
granular gases via kinetic theory has been an active field
of research in the last two decades, and it has been shown
that many features of granular systems can be explained
by means of a fluid of hard spheres with smooth inelastic
collisions. An important objective of the studies has been
the derivation of hydrodynamic-like equations, with explicit
expressions for the corresponding transport coefficients. Once
a given kinetic equation has been formulated (e.g., extensions
of the Boltzmann equation for a low density gas or of the
revised Enskog equation for hard spheres at higher density),
the usual Chapman-Enskog method has been adapted to the
case of inelastic collisions [8,9]. The key ingredient of the
method is the search of a “normal” solution of the kinetic
equation, i.e., a solution in which all the space and time
dependence occurs through the hydrodynamic fields charac-
terizing the macroscopic description of the fluid. In practice,
this requires to consider an expansion around some reference
state. For elastic collisions, this state is the local equilibrium
Maxwellian, while for inelastic collisions the reference state

is the local homogenous cooling state (HCS), with a time-
dependent granular temperature, a consequence of the energy
loss in collisions. Moreover, the velocity distribution of the
HCS deviates significantly from a Maxwellian [10–12].

The above research program has been carried out up to
now for bulk systems, i.e., focusing in regions far away from
the boundaries of the system. The effect of the physical
boundaries occurs only through the boundary conditions for
the kinetic equations and also for the macroscopic, hydrody-
namic equations. The objective here is the search of a similar
reference state for the case of a strongly confined granular gas
with slit geometry. When the system is under extreme confine-
ment, this constraint shows up not only through the boundary
conditions, but also affects the form of the kinetic equation
itself and hence of the macroscopic evolution equations.

The starting point of the present analysis will be the
extension to inelastic particles of a Boltzmann-like kinetic
equation formulated recently for a system of elastic hard
spheres confined between two infinite parallel plates at rest
[13,14]. For this case, it was shown that the equilibrium
velocity distribution is a Maxwellian, with a uniform tem-
perature, while there is a nonuniform density profile along
the direction perpendicular to the plates confining the system.
The modifications introduced by the inelasticity produce rel-
evant qualitative differences when comparing with the elastic
case. In the context of hydrodynamics and normal solution,
the distribution function of the inelastic confined system is
defined such that all the time dependence occurs through the
local granular temperature of the system, while the density
depends on the distance to the walls. For this reason, this state
will be referred to as the inhomogeneous cooling state (ICS)
of the strongly confined system. If one considers the partial
granular temperature parameters associated to the motion
parallel and perpendicular to the plates, they are different. The
combination of strong confinement and inelasticity renders
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the velocity distribution of the system anisotropic. When
valuing this feature, it must be kept in mind that no external
energy is being injected into the system when it is in the ICS,
but it is freely evolving. Consequently, the symmetry breaking
in velocity space is induced by the inelasticity of the collisions
between particles combined with the confinement.

The remainder of this paper is organized as follows. In
Sec. II the Boltzmann equation for a strongly confined gas of
hard spheres [13,14] is shortly reviewed and extended to the
case of smooth inelastic particles. Also, the inhomogeneous
cooling state (ICS) is introduced and the condition of isotropic
cooling rate is deduced. In Sec. III, it is shown that the density
profile is not uniform along the direction perpendicular to the
plates, obtaining an expression for it. This is similar to what
happens in the equilibrium state of a strongly confined elastic
gas, but the shape of the profile depends on the inelasticity
of collisions. Approximate expressions for the cooling rates
in the directions parallel and perpendicular to the plates are
obtained in Sec. IV and, from them, an expression for the
constant granular temperature ratio in the ICS follows. The
result is expected to apply for not too strong inelasticity and
for a separation of the two plates close to the diameter of the
hard spheres. The theoretical predictions are compared with
molecular dynamics simulation data in Sec. VI. A good agree-
ment is found for both, the density profile and the granular
temperature ratio. The final section of the paper contains a
short summary and also a discussion of the possibility that
the energy goes from the “cooler” degrees of freedom to the
“hotter” ones in the process of approaching the ICS. Some
details of the calculations are presented in the Appendices.

II. BOLTZMANN EQUATION AND INHOMOGENEOUS
COOLING STATE

The system we consider is an ensemble of N smooth inelas-
tic hard spheres of mass m and diameter σ , confined between
two horizontal parallel hard plates separated at distance h,
smaller than two particle diameters, σ < h < 2σ . Inelasticity
of collisions between particles is characterized by a constant,
velocity-independent, coefficient of normal restitution α, in
the range 0 < α � 1. It is assumed that in the low-density
limit, the one-particle distribution function, f (r, v, t ), for the
density of particles at position r, with velocity v at time t , is
well described by the Boltzmann-like kinetic equation

∂ f

∂t
+ v · ∂ f

∂r
= J[r, v| f ]. (1)

The collision term J[r, v| f ] for the scattering of two particles
is

J[r, v| f ] ≡ σ

∫
dv1

∫ 2π

0
dϕ

∫ h−σ/2

σ/2
dz1 |g · σ̂|

×[
�(g · σ̂ )α−2b−1

σ − �(−g · σ̂ )
]

× f (r1, v1, t ) f (r, v, t ), (2)

where r ≡ {x, y, z}, r1 ≡ {x, y, z1}, g ≡ v1 − v, and � is the
Heaviside step function. The z axis has been taken perpen-
dicular to the hard plates, with its origin located at one of
them, and the positive direction pointing inside the system.
Moreover, σ̂ is a unit vector along the line of the two col-

liding particles at contact. With the coordinate system we
are using, in which θ and ϕ are the polar and azimuthal
angles, respectively, σ̂ = {sin θ sin ϕ, sin θ cos ϕ, cos θ}, with
cos θ = (z1 − z)/σ . Finally, the operator b−1

σ changes all the
velocities v and v1 to its right into their precollisional values
v∗ and v∗

1, respectively. For a system with the same geometry,
but composed of elastic hard spheres, the Boltzmann equation
has been derived using arguments similar to those employed to
obtain the usual Boltzmann equation for unconfined systems
[13]. The arguments can be directly extended to the present
case of inelastic hard spheres [15]. The only and fundamental
difference is that for smooth inelastic collisions the precolli-
sional velocities are given by

v∗ ≡ b−1
σ v = v + 1 + α

2α
(g · σ̂ )̂σ, (3)

v∗
1 ≡ b−1

σ v1 = v1 − 1 + α

2α
(g · σ̂ )̂σ. (4)

The kinetic Eq. (1) has to be solved with the appropriated
boundary conditions, e.g., elastic walls, thermal walls, and so
on. A useful identity, for an arbitrary function χ (v) is∫

dv χ (v)J[r, v| f ]

= σ

∫
dv

∫
dv1

∫ 2π

0
dϕ

∫ h−σ/2

σ/2
dz1 |g · σ̂|�(−g · σ̂)

× f (r1, v1, t ) f (r, v, t )(bσ − 1)χ (v), (5)

where bσ is the operator for direct collisions,

v′ ≡ bσv = v + 1 + α

2
(g · σ̂ )̂σ, (6)

v′
1 ≡ bσv1 = v1 − 1 + α

2
(g · σ̂ )̂σ. (7)

Equation (5) implies∫ h−σ/2

σ/2
dz

∫
dv χ (v)J[r, v| f ]

= σ

2

∫
dv

∫
dv1

∫ 2π

0
dϕ

∫ h−σ/2

σ/2
dz

×
∫ h−σ/2

σ/2
dz1 |g · σ̂|�(−g · σ̂ )

× f (r1, v1, t ) f (r, v, t )(bσ − 1)[χ (v) + χ (v1)]. (8)

Macroscopic fields are introduced in the usual way: local
number density, n(r, t ), local velocity flow, u(r, t ), and local
granular temperature, T (r, t ), are defined by

n(r, t ) ≡
∫

dv f (r, v, t ), (9)

n(r, t )u(r, t ) ≡
∫

dv v f (r, v, t ), (10)

3

2
n(r, t )T (r, t ) ≡ 1

2

∫
dv m[v − u(r, t )]2 f (r, v, t ), (11)

respectively. In the following, it will be convenient to consider
also partial granular temperatures associated to the z direction,
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Tz(r, t ), and to the velocity vector parallel to the plates, i.e.,
perpendicular to the z axis, T=(r, t ). They are defined as

n(r, t )Tz(r, t ) ≡
∫

dv m[vz − uz(r, t )]2 f (r, v, t ), (12)

n(r, t )T=(r, t ) ≡ 1

2

∫
dv m{[(vx − ux(r, t )]2

+ [(vy − uy(r, t )]2} f (r, v, t ). (13)

It is

T (r, t ) = Tz(r, t ) + 2T=(r, t )

3
. (14)

On the basis of the studies of bulk systems of inelastic hard
spheres [10–12] and of the results for quasi-two-dimensional
systems of elastic spheres [14,16], it is assumed that there is
a special normal solution of the kinetic equation for which
all the time dependence of the distribution function occurs
through the granular temperature and all the space dependence
takes place through the dependence of the number density on
the z coordinate. Moreover, there is no macroscopic velocity
flow. More specifically, it is assumed that there are solutions
of the form

f0(z, v, t ) = n(z)v−3
0 (t )φ(c=, cz ), (15)

where

v0(t ) ≡
[

2T (t )

m

]1/2

(16)

is a local thermal velocity defined in terms of the temperature
T (t ),

c ≡ v

v0(t )
, (17)

and c= is the two-dimensional vector defined by the compo-
nents of v in the plane parallel to the hard walls. It is worth
stressing that the distribution function is not assumed to be
isotropic, although by symmetry considerations it does not
depend on the direction of c= or the sign of cz; i.e., it is a
function of |c=| and |cz|. For the same reason, the density field
is assumed to be symmetric around the plane z = h/2, i.e.,

n(z) = n(h − z), (18)

σ/2 < z < h − σ/2. The above state can be viewed as an
extension of the homogeneous cooling state of freely evolving
bulk granular systems [10–12] to strongly confined ones, and
it will be referred to as the inhomogeneous cooling state (ICS).
Its distribution function verifies the boundary conditions cor-
responding to elastic walls at rest, namely [13],

�(vz ) f0(z, v, t )δ

(
z − σ

2

)
= �(vz ) f0(z, v(w), t )δ

(
z − σ

2

)
,

(19)

�(−vz ) f0(z, v, t )δ

(
z − h + σ

2

)
= �(−vz ) f0(z, v(w), t )δ

(
z − h + σ

2

)
, (20)

with

v(w) = v − 2vẑez, (21)

and êz being the unit vector in the positive direction of the z
axis. These relations express the conservation of the flux of
particles at the walls. The dimensionless velocity distribution
function φ in Eq. (15) must verify the conditions∫

dc φ(c=, cz ) = 1, (22)∫
dc cφ(c=, cz ) = 0, (23)∫

dc c2φ(c=, cz ) = 3

2
, (24)

that follow directly from the definition of the macroscopic
fields, Eqs. (9)–(11). In terms of φ, the partial granular tem-
peratures are given by

Tz(t ) = 2T (t )
∫

dc c2
z φ(c=, cz ), (25)

T=(t ) = T (t )
∫

dc c2
=φ(c=, cz ). (26)

It follows that the two partial temperatures are proportional
to each other and their ratio is a constant, independent from
time t ,

Tz(t )

T=(t )
= γ = const. (27)

One possibility is that the two partial temperatures, and the
global one, are equal, as it is the case for a system of elastic
hard spheres strongly confined at equilibrium [13,14]. How-
ever, this cannot be assumed a priori and the proportionality
constant γ must be determined from the solution of the
kinetic equation. Actually, it will be found below that, if the
inhomogeneous cooling state as defined by Eq. (15) exits, then
the two partial temperatures, Tz and T=, must be different. A
similar behavior is found in the homogeneous cooling state of
a granular mixture for the partial temperatures of the species
[17], being responsible of relevant macroscopic effects, as
segregation [18]. From Eqs. (14) and (27) one gets

Tz(t ) = 3γ

γ + 2
T (t ), T=(t ) = 3

γ + 2
T (t ). (28)

Evolution equations for the two partial granular temperatures
in the ICS are derived from the Boltzmann Eq. (1), by using
the expression for the distribution function given in Eq. (15),

∂Tz(t )

∂t
= −ζzTz(t ),

∂T=(t )

∂t
= −ζ=T=(t ). (29)

The cooling rates (fractional energy changes per unit of time)
have the form

ζz = v0(t )

σ
ζ ∗

z , ζ= = v0(t )

σ
ζ ∗
=, (30)

with the dimensionless cooling rates given by

ζ ∗
z = −2(γ + 2)

3γ

∫
dc c2

z J∗[z∗, c|φ], (31)

ζ ∗
= = −γ + 2

3

∫
dc c2

=J∗[z∗, c|φ]. (32)
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In the above expressions, J∗[z∗, c|φ] is the dimensionless
collision term

J∗[z∗, c|φ] =
∫

dc1

∫ 2π

0
dϕ

∫ h/σ−1/2

1/2
dz∗

1 |c10 · σ̂|n∗(z∗
1 )

× [
�(c10 · σ̂ )α−2b−1

σ − �(−c10 · σ̂)
]

×φ(c1=, c1z )φ(c=, cz ), (33)

where c10 ≡ c1 − c and

z∗ ≡ z/σ, n∗(z∗) ≡ n(z)σ 3. (34)

Of course, the action of the operator b−1
σ over a function of

c and c1 is still given by Eqs. (3) and (4), but replacing the
original velocities v by the scaled ones c.

Note that, as a consequence of the form of the distribution
function of the ICS, the dimensionless cooling rates turn out
to be constant, independent of both z and t . Time derivative
of Eq. (27) leads to the relevant consequence that the cooling
rates defined by Eqs. (29) are equal:

ζz(t ) = ζ=(t ) = ζ (t ). (35)

Moreover, from Eq. (14),

∂T (t )

∂t
= −ζ (t )T (t ). (36)

To identify the function φ(c=, cz ), Eq. (15) is substituted into
the kinetic Eq. (1), and reduced variables z∗ and c are used.
Then the equation becomes

ζ ∗

2

∂

∂c
· [cφ(c=, cz )] + ∂ ln n∗(z∗)

∂z∗ czφ(c=, cz ) = J∗[z∗, c|φ],

(37)

with ζ ∗ = σζ/v0(t ). In summary, the distribution function of
the assumed ICS is given by the solution of the dimensionless
kinetic Eq. (37), with the cooling rate given by either Eq. (31)
or Eq. (32), and the value of γ being determined by Eq. (35)

or, equivalently,

γ ≡ Tz(t )

T=(t )
= 2

∫
dc c2

z J∗[z∗, c|φ]∫
dc c2=J∗[z∗, c|φ]

. (38)

Consistency requires that γ , as given by this expression, be
time and position-independent. This is a strong theoretical
prediction, following from the existence itself of the ICS. Both
Eqs. (37) and (38) must be solved self-consistently for the
function φ(c=, cz ) and the temperature ratio γ .

III. DENSITY PROFILE

In this section, an expression for the density profile n(z)
of the ICS will be obtained. By construction, n(z) does not
depend on time, but it happens to depend on the temperature
ratio γ , that must be determined self-consistently, as discussed
in the previous section. Velocity integration of the kinetic
Eq. (37) does not provide any relevant physical information,
since all the terms vanish identically. However, multiplication
of the equation by cz and latter integration over c gives

∂ ln n∗(z∗)

∂z∗ = π (1 + α)

γ

∫ h/σ−1/2

1/2
dz∗

1

× [z∗ − z∗
1 + (z∗ − z∗

1 )3(γ − 1)]n∗(z∗
1 ). (39)

Details of the calculations are given in Appendix A. Multipli-
cation of the kinetic equation by c= before velocity integration
leads to trivial identities. In the equilibrium elastic limit, α =
γ = 1, Eq. (39) reduces to

∂ ln n∗(z∗)

∂z∗ = 2π

∫ h/σ−1/2

1/2
dz∗

1 (z∗ − z∗
1 )n∗(z1), (40)

that agrees with the result reported in Ref. [14]. It is worth
stressing that Eq. (39) has been derived without assuming any
specific form for the velocity distribution φ, by using only its
assumed symmetry properties. However, the equation is not
closed, since it contains the temperature ratio γ , that has to
be obtained from elsewhere. By introducing the variable η1 =
z∗

1 − h/2σ , and exploiting the symmetry of the density profile,
n∗(η1) = n∗(−η1), Eq. (39) can be expressed in the equivalent
form

∂ ln n∗(z∗)

∂z∗ = π (1 + α)Nσ 2

γ A

[
z∗ − h

2σ
+

(
z∗ − h

2σ

)3

(γ − 1)

]
+ 3π (1 + α)

γ

(
z∗ − h

2σ

)
(γ − 1)

∫ h/2σ−1/2

−h/2σ+1/2
dη1 η2

1n∗(η1),

(41)

where A is the area of each of the two parallel plates confining
the granular gas. This is a linear integrodifferential equation,
that can be solved by means of numerical methods. Neverthe-
less, for the system geometry we are considering, it is∣∣∣∣z∗ − h

2σ

∣∣∣∣ <
h

2σ
− 1

2
<

1

2
, (42)

going to zero as h approaches σ . Moreover, γ is expected to
be of the order of unity, something that will be confirmed
below. As a consequence, a good approximation to Eq. (39)

is expected to be

∂ ln n∗(z∗)

∂z∗ = π (1 + α)Nσ 2

γ A

(
z∗ − h

2σ

)
. (43)

The accuracy will improve as α and h approaches unity and
σ , respectively. The solution of this last equation is

n∗(z∗) = Nσ 2

Ab
exp

[
a

(
z∗ − h

2σ

)2
]
, (44)
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with

a ≡ π (1 + α)Nσ 2

2γ A
, (45)

b =
(π

a

)1/2
erfi

[√
a

2

(
h

σ
− 1

)]
. (46)

Here erfi(y) is the imaginary error function defined as

erfi(y) ≡ π−1/2
∫ y

−y
dy′ ey′2

. (47)

The inhomogeneity of the density field in the direction perpen-
dicular to the plates is a direct consequence of the confinement
of the system, although the specific shape of the profile, for
a given value of the width h, depends on the inelasticity of
collisions. Actually, the only change in Eq. (44) when going
to the elastic equilibrium limit is in the value of a, Eq. (45),
that becomes a = πNσ 2/A in that limit.

IV. APPROXIMATE EXPRESSIONS FOR THE COOLING
RATES AND THE TEMPERATURE RATIO

To determine the time-dependent temperature fields, the
equations for the ICS have to be solved. This is because
velocity moments of order larger than two appear in the
temperature equations and those moments depend on the form
of the velocity distribution. The usual method to solve kinetic
equations consists in expanding the distribution function in
a complete set of orthogonal polynomials with a Gaussian
measure. The coefficients of the expansion are related with the
moments of the velocity distribution and are determined self-
consistently by introducing the polynomial representation into
the kinetic equation, multiplying by the appropriated velocity
polynomial and integrating over the velocity. In practice, a
finite, small number of polynomials is considered. In most of
the cases, Sonine polynomials are used, so that the leading
term in the expansion is a Gaussian, chosen such that it is
normalized to unity and provides the exact value of the second
moment, i.e., the granular temperature in our case. Here, the
lowest order approximation will be employed to compute the
cooling rates. Then, inside the velocity integrals in the right-
hand side of Eqs. (31) and (32), the dimensionless velocity
distribution is approximated by

φ(c=, cz ) ≈ φ=(c=)φz(cz ), (48)

φ=(c=) = γ + 2

3π
e− γ+2

3 c2
= , (49)

φz(cz ) =
(

γ + 2

3πγ

)1/2

e− γ+2
3γ

c2
z . (50)

The above estimate involves two different approximations.
First, correlations between the z component of the velocity
and the velocity components in the parallel plane are ne-
glected. Second, the marginal velocity distributions of both
vz and v= are approximated by Gaussians. This estimate is
suggested by the fact that it is exact in the equilibrium elastic
limit [14], and it is known to be a very good approximation
for a nonconfined system of inelastic rough spheres, where
the approximation is made for the translational and rotational
velocities [10]. It must be stressed that the approximation

introduced refers only to the calculation of velocity integrals
giving the cooling rates and not to the expression of the
velocity distributions themselves. From Eq. (32), using the
dimensionless form of the property given in Eq. (5), it is found

ζ ∗
= = −γ + 2

3

∫
dc

∫
dc1

∫ 2π

0
dϕ

×
∫ h/σ−1/2

1/2
dz∗

1 (c′2
= − c2

=))|c10 · σ̂|

×n∗(z∗
1 )�(−c10 · σ̂)φ(c1=, c1z )φ(c=, cz ). (51)

By introducing the center of mass velocity,

G ≡ c + c1

2
, (52)

and employing the collision rules, Eqs. (6) and (7), the above
expression can be rewritten as

ζ ∗
= = −γ + 2

3

∫
dc

∫
dc1

∫ 2π

0
dϕ

∫ h/σ−1/2

1/2
dz∗

1

×
[

(1 + α)2

4
(c10 · σ̂)2σ 2

= − 1 + α

2
(c10 · σ̂)(c10,= · σ=)

+ (1 + α)(c10 · σ̂)(G= · σ=)

]
|c10 · σ̂|

× n∗(z∗
1 )�(−c10 · σ̂ )φ(c1=, c1z )φ(c=, cz ). (53)

Notice that σ= is not a unit vector in the plane z = constant,
but σ= = σ̂= sin θ , with σ̂= being the unit vector. Now we
make the change of variables c=, c1= → c1=, c1 and also
ϕ → ϕ + π . The latter change is equivalent to σ= → −σ=,
while σ̂z remains the same. Then, taking into account that
φ(c1=, cz )φ(c=, c1z ) = φ(c=, cz )φ(c1=, c1z ), because of the
approximation introduced for the velocity distribution func-
tion, Eq. (48), it is easily seen that Eq. (53) reduces to

ζ ∗
= = γ + 2

3

∫
dc

∫
dc1

∫ 2π

0
dϕ

∫ h/σ−1/2

1/2
dz∗

1

×
[

1 − α2

4
| c10 · σ̂|3 + (1 + α)2

4
|c10 · σ̂|3σ̂ 2

z

+ 1 + α

2
|c10 · σ̂|2c10zσ̂z

]
× n∗(z∗

1 )�(−c10 · σ̂)φ(c1=, c1z )φ(c=, cz ). (54)

The exact evaluation of the integrals on the right-hand side
seems to be a rather complicated task. To derive manage-
able analytical expressions, some kind of expansion has
been considered. Details of the calculations are given in
Appendix B. Here we only mention the useful relation

�(−c10 · σ̂ ) = �(−c10= · σ=) − �(c10 · σ̂ )�(−c10= · σ=)

+�(−c10 · σ̂)�(c10= · σ=). (55)

The result is

ζ ∗
= =

[
3π

2(γ + 2)

]1/2

(1 + α)

{
(1−α)

[
B0[z∗|n∗]−3

2
B2[z∗|n∗]

]
+

[
1 + α − (1 + 3α)γ

2

]
B2[z∗|n∗]

}
+ O(B4[z∗|n∗]),

(56)
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where

Bν[z∗|n∗] ≡
∫ h/σ−1/2

1/2
dz∗

1 n∗(z∗
1 )(z∗ − z∗

1 )ν . (57)

In particular, it is B0 ≡ Nσ 2/A. In a similar way, for the cool-
ing rate of the partial temperature associated to the velocity
component perpendicular to the walls one gets

ζ ∗
z = (6π )1/2(1+α)

(γ + 2)1/2

(
2 − 1 + α

γ

)
B2[z∗|n∗] + O(B4[z∗|n∗]).

(58)

Although the above expressions for the partial cooling rates
can be written in a more compact way, Eqs. (56) and (58)
permit us to clearly identify the physical meaning of the
the several contributions. The term proportional to 1 − α in
the expression of ζ ∗

= represents the rate of loss of energy
associated to the horizontal motion, as a consequence of
the horizontal motion itself. Its contribution to the cooling
rate ζ= only depends on the horizontal temperature T= that
characterizes the collision frequency. This term vanishes in
the elastic limit. The other term in the expression of ζ ∗

= is
nonzero in general, as it describes the transfer of energy
from the horizontal degrees of freedom to the vertical one,
which occurs for both elastic and inelastic collisions. How-
ever, the equation for the rate of variation of the vertical
temperature Tz, does not contain a dissipative contribution
associated to the motion of the particles perpendicular to the
walls. This is due to the peculiar geometry of the system. More
precisely, this contribution would show up when considering
contributions involving higher order functionals Bν[z∗|n∗]. To
the order being considered, all the variations of the kinetic
energy in the z direction are due to the interchange with the
energy carried out by the motion in the horizontal plane. More
about this issue will be said in the final section of the paper.
In the limiting case of elastic collisions (α = 1), it is ζ ∗

z Tz =
−2ζ ∗

=T=, that expresses the kinetic energy conservation in
collisions. More precisely the relation reflects that the rate of
change of the energy lost (gained) by the vertical degree of
freedom is equal to the rate of change of the energy gained
(lost) by the horizontal motion.

Let us notice that, an apparent inconsistency shows up
at this point. The assumption that the ICS does exist with
the one-particle distribution function having the scaled form
given by Eq. (15), led us to the conclusion that γ must be
independent of both z and t , and also that

ζ ∗
= = ζ ∗

z , (59)

[see Eqs. (27) and (35)]. However, when Eqs. (56) and (58)
are substituted into the above equation to identify γ as a
function of α, σ , and h, it is trivially seen that γ turns out
to depend on z through B2, if terms of order B4 and beyond
are neglected. Nevertheless, this fact does not imply by itself
that the assumption on the existence of the ICS is wrong.
Expressions in Eqs. (56) and (58) have been obtained by
introducing the distribution function Eq. (48) and by expand-
ing in the functionals Bν[z∗|n∗], that are not orthogonal with
regards to z∗. Also, the expansion is not directly related with
an expansion in powers of z∗. To overcome this difficulty, the
functional B2[z∗|n∗] that appears in Eqs. (56) and (58), will be

approximated by

B2[z∗|n∗] → B2 = Nσ 4

(h − σ )2A

∫ h/σ−1/2

1/2
dz∗

×
∫ h/σ−1/2

1/2
dz∗

1 (z∗ − z∗
1 )2 = N (h − σ )2

6A
;

(60)

i.e., the local density has been substituted by the average
density. It is worth insisting on the idea under this estimate.
The expectation is that when all the expansion in the Bν func-
tionals is considered, the z dependence on the local density is
canceled out by the power expansion in (z∗ − z∗

1 ). In any case,
the accuracy of this approximation, and the existence itself of
the ICS must be verified by comparing the derived theoretical
predictions with simulation (molecular dynamics) results.

Substitution of Eqs. (56) and (58) into Eq. (59), keeping
only terms up to B2, and employing the approximation given
in Eq. (60), leads to an equation for the temperature ratio γ

whose physical (positive) solution reads

γ = d (α)

e(α)

{
1 + sgn (d (α))

[
1 + c(α)

d (α)2

]1/2
}

, (61)

where

d (α) ≡ 2(1 − α)B0 + (5α − 9)B2, (62)

e(α) ≡ 2(1 + 3α)B2, (63)

c(α) ≡ 16(1 + α)(1 + 3α)B
2
2, (64)

and sgn(x) is the sign function; i.e.,

sgn(x) =
⎧⎨⎩1 if x > 0

0 if x = 0
−1 if x < 0

. (65)

In the elastic limit, α = 1, Eq. (61) reduces to γ = 1, as
required by equilibrium statistical mechanics. Also, both cool-
ing rates, ζ ∗

= and ζ ∗
z , given by Eqs. (56) and (58), respectively,

vanish, indicating that at equilibrium both (equal) partial
temperatures remain constant. Beyond the elastic limit, the
approximation given by Eq. (61) is expected to hold for ε ≡
(h − σ )/σ � 1, a condition that follows from the expressions
of B0 and B2. As already mentioned, this result implies that
in the ICS the two partial granular temperatures associated
to the vertical and horizontal motions, must be different and,
although both decrease monotonically in time, their ratio
remains constant.

V. MOLECULAR DYNAMICS SIMULATIONS

To investigate the accuracy of the theoretical predictions
derived in the previous sections, molecular dynamics (MD)
simulations of systems of inelastic hard spheres have been
performed. The two confining plates are squares and periodic
boundary conditions have been used in the directions parallel
to them. In all cases, it was found that the density profile
along the direction perpendicular to the plates and also the
temperature ratio Tz(t )/T=(t ) reached, after a transient time
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/σ

0

0.5

1

1.5

2

T
z/T

=

FIG. 1. Evolution of the temperature ratio Tz(t )/T=(t ) for a
confined system of N = 500 inelastic hard spheres The average
dimensionless density of the system is such that Nσ 2/A = 0.019,
where N is the number of particles, A is the area of each of the
confining plates, and σ is the diameter of the particles. The separation
of the plates is h = 1.5σ and the coefficient of normal restitution is
α = 0.95. Time is measured in the dimensionless units indicated in
the label, where T (0) is the initial granular temperature.

period, steady values, although showing the typical oscilla-
tions due to statistical uncertainties. To properly value this
behavior it is worth highlighting that the constancy of the
temperature ratio is a necessary and sufficient condition for
the equality of the cooling rates associated to the two tem-
perature parameters. The stationary values of the temperature
ratio γ and the density profile n(z) reported in the following
have been averaged over time, once the system is in the ICS.
Since the expression for the density profile, Eq. (44), contains
the granular temperature ratio γ , we report first the results
for this latter quantity, whose theoretical prediction is given
by Eq. (61). In the simulations, we never found a dependence
of the granular temperatures, Tz and T=, on the distance to
the two plates, consistently with the assumed existence of the
ICS. An example of the way in which the temperature ratio
relaxes to its stationary value, is given in Fig. 1. The initial
velocity distribution was an isotropic Gaussian with granular
temperature T (0).

Figure 2 displays the steady values γ of the temperature
ratio as a function of the coefficient of normal restitution
α for a system of N = 500 particles. The distance between
the two plates is h = 1.5σ (ε = 0.5) and their area A is
such that Nσ 2/A = 0.019. Although the value of ε is not
very small, the agreement between the theoretical prediction
(dashed line) and the simulation results (symbols) is quite
satisfactory. Notice that the value of the granular temperature
ratio γ changes by a factor of the order of 5 along the range
of values of the coefficient of normal restitution considered,
namely, 0.6 � α < 1.

Similar results have been found for other values of the
parameters defining the state of the system. As expected, the
accuracy of the theoretical prediction with the simulation data
decreases as the density increases and also as the distance
h between the two plates approaches the limiting value 2σ ,

0.6 0.7 0.8 0.9 1
α

1

2

3

4

5

6

γ

FIG. 2. Time-independent granular temperature ratio, γ ≡
Tz(t )/T=(t ), for a confined system of inelastic hard spheres in the
ICS, as a function of the coefficient of normal restitution α. The sym-
bols are MD simulation results and the dashed line is the theoretical
prediction, given by Eq. (61). The average dimensionless density of
the system is such that Nσ 2/A = 0.019, where N is the number of
particles, A is the area of each of the confining plates, and σ is the
diameter of the particles. The separation of the plates is h = 1.5σ .

beyond which the kinetic equation analyzed here is no longer
valid. As an example of this behavior, Fig. 3 shows the
temperature ratio for the same system as in Fig. 2, but now
the separation between the plates is h = 1.9σ . It is observed
that the temperature ratio is now much smaller that in the
case reported in Fig. 2, and also that the relative discrepancy
between theory and simulation is larger.

The accuracy of the predictions for the cooling rates of
the partial temperature parameters has also been investigated.
From Eqs. (28)–(30) it follows that

dT −1/2
z

dt
=

[
2(γ + 2)

3γ m

]1/2 ζ ∗
z

σ
. (66)

0.6 0.7 0.8 0.9 1
α

1

1.5

2

2.5

γ

FIG. 3. The same as in Fig. 2, but now the distance between the
two confining plates is h = 1.9σ .
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FIG. 4. MD results for the time evolution of the granular temper-
ature parameter associated to the motion perpendicular to the confin-
ing plates. Time is measured in the dimensionless units indicated in
the label, where T (0) is the initial granular temperature, m is the mass
of the hard spheres, and σ their diameter. The number of particles
used in the simulation is N = 500, the width of the system h = 1.5σ ,
and the average density such that Nσ 2/A = 0.019, with A being the
area of each of the plates.

Since the theory predicts that ζ ∗
z does not depend on time, its

value can be measured from the slope of the time evolution
of Tz(t )−1/2, once the temperature ratio is known. This is
illustrated in Fig. 4, where a linear profile is clearly identified.

The simulation results for ζ ∗
z obtained in the above way

are compared with the theoretical prediction given in Fig. 5,
where the reduced cooling rate is shown as a function of the
coefficient of normal restitution α. The symbols are the simu-
lation results and the dashed line is the theoretical prediction.

0.6 0.7 0.8 0.9 1
α

0

0.001

0.002

0.003

0.004

0.005

ζz
*

FIG. 5. The dimensionless cooling rate associated to the motion
perpendicular to the plates, ζ ∗

z , as a function of the coefficient of
normal restitution α, for a confined system of hard spheres The
number of particles used in the simulation is N = 500, the width of
the system h = 1.5σ , and the average density is such that Nσ 2/A =
0.019. The symbols are MD simulation results and the dashed line
the theoretical prediction given by Eq. (58).

-0.4 -0.2 0 0.2 0.4
z~

520

540

560

580

600

n*

FIG. 6. Dimensionless density profile n∗(z) = n(z)σ 3 in the di-
rection perpendicular to the plates in the ICS of a confined quasi-
two-dimensional fluid of hard spheres. The solid (black) line is the
theoretical prediction in the elastic limit α = 1, while the dashed
(red) line is for α = 0.9. The (black) circles and the (red) squares are
simulation data for α = 1 and α = 0.9, respectively. The separation
between the two plates is6h = 1.9σ , and the density is such that
N/A = 0.19σ−2.

The other values of the simulation parameters are N = 500,
h = 1.5σ , and Nσ 2/A = 0.019. It is seen that the agreement
can be considered as quite satisfactory. In particular, the
theory predicts the nonmonotonic behavior clearly identified
in the simulation results.

Next, let us consider the density profile along the direction
perpendicular to the plates. Consistent with the theory devel-
oped here, it is observed that, after a short transient period,
the density profile becomes time-independent, as predicted for
the ICS. In Fig. 6 the steady density profile is plotted as a
function of the scaled distance to the center, z̃ ≡ (z − h/2)/σ
for a system with h = 1.9σ and Nσ 2/A = 0.19. The average
density is in this case 10 times larger that in the system
considered in Figs. 1 and 2. The reason is that, for smaller
densities, the curvature of the density profile is rather small
and it is hard to identify due to the statistical uncertainties
of the simulation data. Also plotted, for reference, is the
equilibrium elastic profile (α = 1). It is seen that, in spite of
the relatively high density, there is a good agreement between
theory and simulation. In particular, the effect of inelasticity,
although small, can be clearly identified and the perturbation
with respect to the elastic case goes in the same direction in
both theory and isimulation. When using Eq. (44) to plot the
theoretical prediction for the density profile, the expression
derived for the temperature ratio, i.e., the prediction given by
Eq. (61), has been employed, so that no parameter has been
fitted.

VI. DISCUSSION

The aim of this paper is to study the inhomogeneous
cooling state (ICS) of a freely evolving granular gas strongly
confined between two parallel hard plates. The marginal dis-
tribution functions for the components of the velocity parallel
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and perpendicular to the plates have a scaling form with
the time dependence determined by the global local granular
temperature of the system, as required for a normal solution
and hence for an hydrodynamic description. A consequence of
this scaling is that the granular temperature parameters associ-
ated to the vertical and horizontal directions are proportional
to each other and then the cooling rates of all the granular
temperatures are the same. Moreover, this unique cooling rate
does not depend on position or time. To put the content of
this paper in a proper context, it must be emphasized that the
existence of the ICS has not been proven, but assumed. Its
justification lies on the comparison of the predicted properties
of the state with numerical simulations. In any case, the
accuracy of the prediction for the partial cooling rates and
the steady temperature ratio discussed here provide a strong
evidence of the existence of the ICS.

The eventual tendency of the freely evolving granular gas
toward a state (the ICS) in which the ratio of the granular
temperatures is constant, manifests itself in a quite particular
behavior of the partial temperatures. Consider a confined
granular gas that is not in the ICS, and assume that the
one-particle distribution function of the gas can be accurately
approximated by a gaussian with two different temperatures as
given in Eq. (48). This is expected to be true close to the ICS.
Then, the cooling rates are estimated by Eqs. (56) an (58),
respectively. Keeping only the lowest order approximation,
i.e., up to B2, it is seen that the cooling rate associated to
the motion perpendicular to the plates, ζ ∗

z , is positive when
γ > (1 + α)/2 or, equivalently,

Tz >
1 + α

2
T=. (67)

Taking into account that 0 < α � 1, it is seen that the above
condition is verified if Tz > T=, but also if

T= > Tz >
1 + α

2
T=. (68)

A positive ζz means that the temperature Tz is decreasing in
time. Therefore, it follows that when condition Eq. (68) is ful-
filled, energy is being transferred from the vertical degree of
freedom to the horizontal ones, although the partial granular
temperature of the former is lower than the temperature of the
later. However, ζ ∗

z is negative if

Tz <
1 + α

2
T= < T=, (69)

and in this case energy goes from the degrees of freedom with
a larger temperature to the degree with a smaller one, i.e.,
the usual behavior. Let us now analyze the behavior of the
temperature parameter associated to the horizontal motion,
T=. As discussed below Eqs. (56)–(58), the cooling rate
describing the energy interchanged by the horizontal motion
with the vertical one, up to order B2, is

ζ ∗(z)
= =

[
3π

2(γ + 2)

]1/2

(1 + α)

[
(1 + α) − (1 + 3α)γ

2

]
× B2[z∗|n∗]. (70)

Then, ζ ∗(z)
= > 0 is equivalent to

Tz < T= <
2(1 + α)

1 + 3α
T=. (71)

This can be accomplished both if Tz < T= or

2(1 + α)

1 + 3α
T= > Tz > T=. (72)

In the last case, energy is again being supplied by the degrees
of freedom with a lower granular temperature parameter to the
degree with a higher temperature. Proceeding in the same way,
it is seen that when the temperature associated to the motion
in the plane increases, the temperature associated to this mo-
tion is smaller than the vertical temperature, i.e., a “normal”
behavior. The above discussion is based on the approximated
expressions for the cooling rates given in Eqs. (56) and (58),
which are expected to provide an accurate description of the
time evolution of the temperature parameters toward the ICS,
in the system described by the Boltzmann Eq. (1).

It is worth emphasizing that the apparent anomalous behav-
ior predicted in some cases for the direction of the energy flux
between different degrees of freedom has been described in
terms of granular temperatures, which by no means are equiv-
alent or even similar to the temperature concept used in ther-
modynamics, but they are just a measure of the local kinetic
energy of the macroscopic hard spheres. Consequently, that
behavior cannot be understood as violating any macroscopic
fundamental law for molecular systems and, in particular, the
key property of the thermodynamic temperature as defined by
Clausius that heat can never spontaneously flows from cold to
hot [19].

The analysis of the ICS presented here is the essential
first step needed for the derivation of hydrodynamic equations
for strongly confined systems of inelastic hard spheres. Only
after this macroscopic description has been worked out, it
will be possible to answer theoretically many questions re-
lated with the rich phenomenology exhibited by the system
and mentioned in the Introduction. For instance, it has been
shown recently that an effective hydrodynamic model that is
consistent with the ideas reported here in the quasielastic limit
predicts the existence of an instability leading to the formation
of a density cluster [20]. This result can be related with some
experimental findings in which the coexistence between a
liquidlike phase and a gaslike phase has been reported in a
system similar to the one considered in this paper, although
with a larger separation between the two plates [21,22]. It
is worth mentioning that the phenomenon of the coexistence
of two phases in a narrow vibrated granular gas has been
rather elusive, in the sense that several models proposed in
the literature were unable, in our opinion, to provide a fully
satisfactory explanation of it [23–26].
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APPENDIX A: EQUATION FOR THE DENSITY PROFILE

Here the calculations leading to integrodifferential equation for the density profile, Eq. (39), will be outlined. Multiplication
of Eq. (37) by ci and afterwards integration over c yields

δi,z
3γ

2(γ + 2)

∂ ln n∗(z∗)

∂z∗ =
∫

dc ciJ
∗[z∗, c|φ], (A1)

∫
dc ciJ

∗[z∗, c|φ] =
∫

dc
∫

dc1

∫ 2π

0
dϕ

∫ h/σ−1/2

1/2
dz∗

1 (c′
i − ci )|c10 · σ̂|n∗(z∗

1 ) �(−c10 · σ̂ )φ(c1=, c1z )φ(c=, cz ), (A2)

where the dimensionless form of the property given in Eq. (5) and the definition of the temperature ratio γ , have been used.
Interchanging c and c1, and taking into account momentum conservation in collisions, it is easily seen that∫

dc ciJ
∗[z∗, c|φ] = −1

2

∫
dc

∫
dc1

∫ 2π

0
dϕ

∫ h/σ−1/2

1/2
dz∗

1 (c′
i − ci )(c10 · σ̂)n∗(z∗

1 )φ(c1=, c1z )φ(c=, cz )

= −1 + α

4

∫
dc

∫
dc1

∫ 2π

0
dϕ

∫ h/σ−1/2

1/2
dz∗

1 (c10 · σ̂)2σ̂in
∗(z∗

1 )φ(c1=, c1z )φ(c=, cz )

= −1 + α

4

∫
dc

∫
dc1

∫ 2π

0
dϕ

∫ h/σ−1/2

1/2
dz∗

1

⎡⎣∑
j

(
c2

1 j + c2
j

)
σ̂ 2

j

⎤⎦σ̂i n∗(z∗
1 )φ(c1=, c1z )φ(c=, cz ). (A3)

The velocity integrals can be expressed as functions of the temperature ratio using Eqs. (25)–(28). The result is∫
dc ciJ

∗[z∗, c|φ] = −3(1 + α)

4(γ + 2)

∫ 2π

0
dϕ

∫ h/σ−1/2

1/2
dz∗

1

(
σ 2

= + γ σ̂ 2
z

)
n∗(z∗

1 )σ̂i, (A4)

with σ 2
= = 1 − σ̂ 2

z . Next the expression of σ̂ in terms of the angles ϕ and θ is introduced and the integral over ϕ is carried out to
get ∫

dc ciJ
∗[z∗, c|φ] = −δi,z

3π (1 + α)

2(2 + γ )

∫ h/σ−1/2

1/2
dz∗

1 [cos θ + (γ − 1) cos3 θ ]n∗(z∗
1 ). (A5)

Now, the relation cos θ = z∗
1 − z∗ is employed, and Eq. (39) is easily obtained from Eqs. (A1) and (A5).

APPENDIX B: CALCULATION OF THE COOLING RATE FOR THE HORIZONTAL TEMPERATURE T=

The derivation of Eq. (56) from Eq. (54) will be outlined in this Appendix. Each of the terms inside the square brackets on
the right-hand side of Eq. (54) will be analyzed separately. Consider first

ζ ∗(1)
= ≡ (γ + 2)(1 − α2)

12

∫
dc

∫
dc1

∫ 2π

0
dϕ

∫ h/σ−1/2

1/2
dz∗

1 |c10 · σ̂|3n∗(z∗
1 )�(−c10 · σ̂ )φ(c1=, c1z )φ(c=, cz ). (B1)

Now, the identity Eq. (55) is employed, taking into account that∫
dc

∫
dc1(c10 · σ̂)3�(c10 · σ̂ )�(−c10= · σ=)φ(c1=, c1z )φ(c=, cz )

= −
∫

dc
∫

dc1(c10 · σ̂)3�(−c10 · σ̂ )�(c10= · σ=)φ(c1=, c1z )φ(c=, cz ). (B2)

This allows us to rewrite Eq. (B1) as

ζ ∗(1)
= = − (γ + 2)

(
1 − α2

)
12

∫
dc

∫
dc1

∫ 2π

0
dϕ

∫ h/σ−1/2

1/2
dz∗

1 (c10 · σ̂ )3n∗(z∗
1 )

× [�(−c10= · σ) − 2�(−c10= · σ=)�(c10 · σ̂ )]φ(c1=, c1z )φ(c=, cz ). (B3)

Next, the expansion

(̂c10 · σ )3 = (c10= · σ=)3 + 3(c10= · σ=)2c10zσ̂z + 3c10= · σ=(c10zσ̂z )2 + (c10zσ̂z )3 (B4)
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is introduced into the right-hand side of the above equation. An straightforward calculation gives∫
dc

∫
dc1

∫ 2π

0
dϕ

∫ h/σ−1/2

1/2
dz∗

1 (c10 · σ̂)3n∗(z∗
1 )�(−c10= · σ=)φ(c1=, c1z )φ(c=, cz )

= −2(2π )1/2

(
3

γ + 2

)3/2 ∫ h/σ−1/2

1/2
dz∗

1 n∗(z∗
1 ) sin3 θ − 18

(
3π

2

)1/2
γ

(γ + 2)3/2

∫ h/σ−1/2

1/2
dz∗

1 n∗(z∗
1 ) sin θ cos2 θ. (B5)

The term on the right-hand side of Eq. (B3) containing the product of two Heaviside functions cannot be evaluated analytically,
at least in a simple way. Then, we formally expand,

�(c10 · σ̂) = �(c10= · σ= + c10zσ̂z ) = �(c10= · σ=) + δ(c10= · σ=)c10zσ̂z + 1
2δ′(c10= · σ=)c2

10zσ̂
2
z + · · · , (B6)

where δ′ is the derivative of the Dirac δ function. Then, it is easily seen that∫
dc

∫
dc1

∫ 2π

0
dϕ

∫ h/σ−1/2

1/2
dz∗

1 (c10 · σ )3n∗(z∗
1 )�(−c10= · σ=)�(c10 · σ̂)φ(c1=, c1z )φ(c=, cz ) = O(B4[z∗|n∗]). (B7)

Here the relation σ̂z = cos θ has been employed and Bν[z∗|n∗] is the functional defined in Eq. (57). By consistency, in the first
term on the right-hand side of Eq. (B5) the expansion sin3 θ = 1 − 3(cos2 θ )/2 + O(cos4 θ ) is considered and, similarly, in the
second term the relation sin θ = 1 + O(cos2 θ ) is used. In this way one gets

ζ ∗(1)
= =

[
3π

2(γ + 2)

]1/2

(1 − α2)

[
B0 + 3

2
(γ − 1)B2[z∗|n∗]

]
+ O(B4[z∗|n∗]). (B8)

The next contribution to ζ ∗
= as given in Eq. (54) to be analyzed is

ζ ∗(2)
= = − (γ + 2)(1 + α)2

12

∫
dc

∫
dc1

∫ 2π

0
dϕ

∫ h/σ−1/2

1/2
dz∗

1 (c10 · σ̂ )3σ̂ 2
z n∗(z∗

1 )�(−c10 · σ̂ )φ(c1=, c1z )φ(c=, cz )

= − (γ + 2)(1 + α)2

12

∫
dc

∫
dc1

∫ 2π

0
dϕ

∫ h/σ−1/2

1/2
dz∗

1 (c10= · σ=)3σ̂ 2
z n∗(z∗

1 )

×�(−c01= · σ=)φ(c1=, c1z )φ(c=, cz ) + O
(
B4[z∗|n∗]

)
. (B9)

In the last transformation use has been made of Eq. (55). It is now a simple task to show that

ζ ∗(2)
= =

[
3π

2(γ + 2)

]1/2

(1 + α)2B2[z∗|n∗] + O
(
B4[z∗|n∗]

)
. (B10)

The last contribution to ζ ∗
= in Eq. (54) is analyzed in a similar way,

ζ ∗(3)
= = (γ + 2)(1 + α)

6

∫
dc

∫
dc1

∫ 2π

0
dϕ

∫ h/σ−1/2

1/2
dz∗

1 (c10 · σ̂ )2c10zσ̂zn
∗(z∗

1 )�(−c10 · σ̂ )φ(c1=, c1z )φ(c=, cz )

= −
(

6π

γ + 2

)1/2

γ (1 + α)B2[z∗|n∗] + O(B4[z∗|n∗]). (B11)

By putting together all the above results and computing ζ ∗
= = ζ ∗(1)

= + ζ ∗(2)
= + ζ ∗(3)

= , Eq. (56) follows.

APPENDIX C: CALCULATION OF THE COOLING RATE FOR THE VERTICAL TEMPERATURE Tz

The calculation of ζz is similar to thet of ζ= discussed in the previous section. From Eq. (31), using the property Eq. (5) and
the collision rules Eqs. (6) and (7),

ζ ∗
z = −2(γ + 2)

3γ

∫
dc

∫
dc1

∫ 2π

0
dϕ

∫ h/σ−1/2

1/2
dz∗

1

(
c′2

z − c2
z

)|c10 · σ̂|n∗(z∗
1 )�(−c10 · σ̂)φ(c1=, c1z )φ(c=, cz )

= −2(γ + 2)

3γ

∫
dc

∫
dc1

∫ 2π

0
dϕ

∫ h/σ−1/2

1/2
dz∗

1

[
(1 + α)2

4
(c10 · σ̂ )2σ̂ 2

z − 1 + α

2
c10 · σ̂c10zσ̂z + (1 + α)c10 · σ̂Gzσ̂z

]
×|c10 · σ̂|n∗(z∗

1 )�(−c10 · σ̂ )φ(c1=, c1z )φ(c=, cz ). (C1)
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This is written in the abbreviated form

ζ ∗
z = ζ ∗(1)

z + ζ ∗(2)
z + ζ ∗(3)

z , (C2)

where each of the three terms corresponds to each of the three addends inside the square brackets on the right-hand side of
Eq. (C1), and so they can be easily identified by comparison. Below, each of the three terms is evaluated separately:

ζ ∗(1)
z = (γ + 2)(1 + α)2

6γ

∫
dc

∫
dc1

∫ 2π

0
dϕ

∫ h/σ−1/2

1/2
dz∗

1 (c10= · σ=)3σ̂ 2
z

×n∗(z∗
1 )�(−c10= · σ=)φ(c1=, c1z )φ(c=, cz ) + O(B4[z∗|n∗]). (C3)

The integrations over the velocities and the azimuthal angle are easily evaluated with the result

ζ ∗(1)
z = −

(
6π

γ + ‘2

)1/2 (1 + α)2

γ
B2[z∗|n∗] + O(B4[z∗|n∗]). (C4)

In a similar way,

ζ ∗(2)
z = 4(γ + 2)(1 + α)

3γ

∫
dc

∫
dc1

∫ 2π

0
dϕ

∫ h/σ−1/2

1/2
dz∗

1 c10=c2
10zσ̂

2
z n∗(z∗

1 )φ(c1=, c1z )φ(c=, cz ) + O(B4[z∗|n∗])

= 2

(
6π

γ + 2

)1/2

(1 + α)B2[z∗|n∗] + O(B4[z∗|n∗]). (C5)

Finally, it is

ζ ∗(3)
z = O(B4[z∗|n∗]). (C6)

Use of Eqs. (C4), (C5), and (C6) leads to Eq. (58).
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