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Ab initio group model potentials including electron correlation effects
Norge Cruz Hernández and Javier Fdez. Sanza)
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~Received 3 February 2000; accepted 7 July 2000!

A method for determination ofab initio group model potentials, with the intention of describing the
effects of a whole molecule or a chemical group within a density functional theory framework, is
reported. The one-electron part of the Kohn–Sham equations is modified by incorporation of a
Coulomb operator, which accounts for the classical electron interaction arising from the group.
Exchange and correlation effects are introduced by a suitable modification of the
exchange-correlation functionals. The strong orthogonality condition, usually required by the theory
of separability of many electron systems, is written in terms of first order reduced density matrices.
In order to check the method a group model potential for H2O ~environment! was obtained and
employed in the calculation of HF̄H2O and H2O¯H2O complexes using several functionals.
Equilibrium intergroup distances and binding energies are compared with all-electron calculations.
© 2000 American Institute of Physics.@S0021-9606~00!30337-3#

I. INTRODUCTION

A winning approximation in quantum chemistry, espe-
cially helpful in reducing the huge computational effort usu-
ally involved, is the classification of electrons of a given
system as active or inactive.1–4 The inactive electrons may
be assumed to behave as spectators and therefore can be
frozen. This idea has been successfully exploited to describe
the behavior of atoms or ions to model environment effects
in cluster embedded calculations,5,6,7 as well as for the deter-
mination of effective potentials for fragments that could be
employed as saturator groups. In this sense, effective poten-
tials for NH3,

8 SiH3,
9 COOH,10 and cyclopentadienyl

ligand11 have been reported.
On the other hand, some efforts have been devoted to

replace a complete molecule, or chemical group, in calcula-
tions in which the environment is described through an em-
bedding type technique. Along this line, in 1993 Mejı´as and
Sanz12 reported on the determination ofab initio group
model potentials~GMPs! for the HF molecule, together with
some applications. Later, Franket al.13 reported on the fea-
sibility of representing spectator molecules through effective
potentials generated by a semiempirical NDDO calculation.
Quite recently, Dayet al.14 came up with a method to obtain
what they called an ‘‘effective fragment potential’’ which
makes use of a distributed multipole expansion, and which
allowed them to replace water molecules by an effective po-
tential, with excellent results.15 More recently we have de-
veloped polycenter compact model potentials in which the
short-range contribution was expanded as a spectral repre-
sentation. Also, we reported an algorithm to solve the prob-
lem associated with rotation of the model potential.16

A straightforward way to improve group model poten-
tials would involve the incorporation of the electron correla-
tion effects between active and frozen electrons. On a gen-

eral basis, this contribution could in principle be
incorporated into the density functional theory~DFT! ~Refs.
17, 18! framework through a modification of the exchange-
correlation term. This topic has been considered for atomic
cores in several works19,20,21and, in this context, one of the
most widely pseudopotentials used in solid-state calculations
is the so-called ‘‘ultrasoft pseudopotential’’~UPP! of
Vanderbilt.22

As to the representation beyond atomic cores, Abaren-
kov et al.23 reported a method in which the wave function of
a small cluster of Li2Mg was computed by incorporating the
exchange-correlation interaction with a neighboring group in
an iterative way. More recently Carteret al.24 presented a
new embedding technique that combines periodic-DFT
methods and explicit electron-correlation procedures.

Ground-state properties of chemical groups have also
been studied by means of the ‘‘freeze-and-thaw’’ cycle of
Kohn–Sham equations with constrained electron density
~KSCED! as proposed by Wesolowski and Weber.25 In this
approach, the electron density of each fragment is kept fro-
zen while the interaction energy is calculated using terms
derived from DFT, and, in addition to the exchange correla-
tion functional, the analytical form of the approximate ki-
netic energy functional is needed. Examples like the water
dimer, HF–HF, HCl–HCl or HCN–HF may be found as
applications to the study of the hydrogen bond.26

The main goal of this paper is to model the effects of a
chemical group, or the environment in cluster embedded cal-
culation, but now within the one-particle Kohn–Sham self-
consistent field~SCF-KS! framework. The starting point is
the electronic separability principle proposed by McWeeny1

and Huzinaga2–4 but involving, in this case, the first-order
reduced density matrices of the separable systems. Using the
Kohn–Sham orbitals such conditions lead to an operator
similar to the Vanderbilt22 and Phillips–Kleinman27 pseudo-
potentials. The Coulomb interaction between electrons of a
given group was handled by fitting the electronic density to a
set of auxiliary Gaussian functions,28 according to one of the
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strategies of Dunlapet al.29 The article is arranged as fol-
lows. The theoretical frame is briefly overviewed in Sec. II.
A new separability condition in terms of group density ma-
trices is proposed and the way to incorporate the exchange-
correlation effect coming from the environment is presented.
In Sec. III some test calculations concerning the H2O model
potential are reported. Finally the main conclusions are sum-
marized in Sec. IV.

II. THEORETICAL ASPECTS

In the density functional theory, the SCF Kohn–Sham
~SCF-KS! equations17 have to be solved,

$2 1
2 ¹21Vc~r !1mxc~r!%c i

KS~r !5« ic I
KS~r !. ~1!

The term2 1
2 ¹2 is the kinetic energy operator,Vc(r )

represents the electrostatic~or Coulomb! potential, and
mxc(r) introduces the exchange and correlation contribution,
which, in general, may be written as

mxc~r!5
]Exc~r!

]r
, ~2!

whereExc(r) is the so-called exchange and correlation func-
tional. In local density approximation~LDA ! or in the gen-
eralized gradient approximation~GGA!, it is generally writ-
ten as

Exc~r!5E f xc~r,¹r!d3r . ~3!

The total electron densityr in Eq. ~1! is related to the
first-order density matrix for anN particles system in the
form

r~r !5E G~x,x8!ds, ~4!

where the spin–orbital notationx5(rs) is used and the
first-order reduced density matrix is defined as30

G~x,x8!5NE E ¯E F* ~x,x1 ,x2 ,...,xN21!

3F~x8,x1 ,x2 ,...,xN21!dx1dx2¯dxN21 ,

~5!

F(x1 ,x2 ,..,xN) being the electronic wave function.
The necessary and sufficient condition for the reduced

density matrix to beN-representable18 can be expressed as

Ĝ5(
i

ni uw i&^w i u ~6!

with w i being the spin–orbitals and 0<ni<1. Choosingni

50,1 in Eq.~5!, the total electron density may be spanned on
a set of spinless single-particle orbitals, each one occupied
with two electrons,

r~r !5(
occ

uc i~r !u2. ~7!

Let us now assume a system constituted by two mol-
ecules or chemical groups,A andB, weakly interacting, with
FA and FB being the wave functions. According to the

building block principle of McWeeny and Huzinaga, the to-
tal electronic wave functionF can be written as

F5MÂ~FAFB!, ~8!

whereM is a normalization factor andÂ is the intergroup
antisymetrizer operator. For mathematical convenience in the
derivation of ab initio model potentials, the group wave
functions are selected so as to be strongly orthogonal,1 i.e.,

E FA* ~x,i , j ,...!FB~x,k,l ,...!dx50. ~9!

In order to keep the same condition in terms of electron
density. Eq.~9! is multiplied by

FA~2,i , j ,...!FB* ~3,k,l ,...!

and integrated with respect toi , j ,..,k,l ,... . Bearing in mind
the form of the reduced density matrix, Eq.~9! becomes

E dxGB~3,x!GA~x,2!50. ~10!

Since in Eq.~9!, it is possible to writeA in place ofB
andB place ofA, then the strong orthogonality condition~9!
in terms of reduced density matrices may be written as

ĜAĜB5ĜBĜA50. ~11!

If this condition is fulfilled, the problem of finding the local
properties of the group of interest~cluster, Aor B!, in the
presence of a spectator group~environment, Bor A! can be
set up using the DFT formalism.

According to the definition of the density matrix given in
Eq. ~6!, the strong orthogonality condition~11! is satisfied if

^c i ,clus
KS uc j ,env

KS &50. ~12!

The total reduced density matrix in a separable system may
be written as

Ĝall5Ĝclus1Ĝenv, ~13!

and the electron density,

r~r !5rclus~r !1renv~r !, ~14!

where the electron densitiesrclus(r ) andrenv(r ) are normal-
ized to the number of electrons of thecluster(Nclus) and the
environment(Nenv), respectively.

Under these conditions, the cluster energy in the pres-
ence of the environment~the effective energyEclus

eff ) is

Eclus
eff ~rclus!

5E0~rclus,nclus!

1Eint~rclus⇔renv,rclus⇔nenv,nclus⇔renv,nclus⇔nenv!.

~15!

The first term on the right-hand side of Eq.~15! is the iso-
lated cluster energy, excluding all components depending on
the environment. The second term is the interaction of elec-
tron density in clusterrclus, with electrons and nuclei of the
environmentrenv andnenv, respectively. This last term also
includes the interaction between the cluster nuclei,nclus, and
the environment negative and positive charges, which can be
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added at the end of the electronic energy calculation. Notice
that following Eq.~7! the cluster electron densityrclus can be
written as

rclus~r !5(
occ

uC i ,clus
KS ~r !u2. ~16!

Application of the variational principle to Eq.~15!, to-
gether with the condition~12! leads to the set of SCF-KS-
like equations

$2 1
2 ¹21Vc

clus1Veff~r !1mxc
eff~rclus,renv!%c t,clus

KS ~r !

5« ic i ,clus
KS ~r !. ~17!

In this equation the third and fourth terms represent the in-
teraction between the cluster and the environment, repre-
sented through a group model potential~KS-GMP!. Analyz-
ing these contributions, one of the central points in the
present work, the third term expands as

Veff~r !52(
i

nucl.
env. zi

ur 2Ri u
1E renv~r 8!

ur 2r 8u
d3r 82 P̂env, ~18!

where the summation represents the interaction between the
cluster electrons and the environment nuclei, while the inte-
gral accounts for the electron–electron interaction between
the two groups. In the present work, such an interaction has
been simulated by fitting the charge density of the spectator
group to a set of coefficient and Gaussian functions. The
algorithm used has been one of those proposed by Dunlap
et al.29 whose main point is to find the set of coefficients that
minimizes the functional

D5E Dr~1!Dr~2!

r 12
dr1dr2 ~19a!

with

Dr~r !5renv
exact~r !2renv~r !. ~19b!

The set of Gaussian functions used here was taken from Ref.
28. Finally P̂env is a weighted projection operator over the
occupied orbitals of the spectator group that allows for re-
striction of the variational space to the cluster space reflect-
ing the condition given by Eq.~11!,

P̂env5a(
occ

ucocc,env
KS &«occ,env

KS ^cocc,env
KS u, ~20!

where the sum runs over the occupied molecular orbitals of
the environment with eigenvalues«occ,env

KS . The projector fac-
tor a is set to 2.31

Concerning the fourth term of Eq.~17!, the operator
mxc

eff(rclus,renv) arises from the exchange-correlation compo-
nent of the interaction between the two groups. It can be
written as

mxc
eff5

]Exc,clus
eff ~rclus!

]rclus
5mxc~rclus1renv!, ~21!

whereExc,clus
eff (rclus) is the effective exchange-correlation en-

ergy for the cluster

Exc,clus
eff ~rclus!5Exc~rclus1renv!2Exc~renv! ~22!

If a fraction of the exact Hartree–Fock exchange is used,
or in a simple Hartree–Fock calculation, the exchange opera-
tor can be simulated using a nondiagonal spectral
representation.5

Equations ~21! and ~22! introduce the exchange and
electron correlation contribution between cluster and the sur-
rounding system in a DFT framework. These two equations
are similar to those proposed by Vanderbilt22 in the UPP
formulation in order to include the correlation between core
and valence electrons, although in our case the determination
of the Veff(r) does not need the use of a cutoff radius. To
build Veff(r) we only need to know an approximate density
and the occupied orbitals of the surrounding system, what-
ever the functional used in the cluster group is. Moreover, in
contrast with the KSCED,25,26 in our method it is not neces-
sary to use an approximated kinetic energy functional, and
the inclusion of the weighted projection operatorP̂env con-
fers a nonlocal component toVeff(r) as in the UPP approach.

The evaluation of Eq.~22! and the part of the SCF-KS
equation related to Eq.~21! was solved using the grid of
points generated by the cluster system as if it were isolated.32

These algorithms were implemented in theHONDO

program.33 The integrals in the atomic basis were evaluated
using the King, Dupuis, and Rys34,35 and Gauss–Hermite
quadratures. For integrals concerning Eqs.~19! and~20!, the
recursive formulas of Obara and Saika were used.36

III. NUMERICAL EXAMPLES

We report in this section a few numerical applications of
the procedure developed above. Among other aspects, the
suitability of the KS-GMPs to simulate a water molecule in
the computation of the~H2O!2 dimer and the HF–H2O com-
plex is explored. More extensive examples in which the
method is tested in surface chemistry calculations will be
reported in a forthcoming work. For the present we have
centered our attention on the use of a wide variety of func-
tionals commonly used in DFT calculations. For the ex-
change we have selected that of Slater,37 ~SLT! as well as
that proposed by Becke,38 ~B88!. For the correlation part we
employed the functional of Lee–Yang–Parr39 ~LYP!, which
added to SLT or B88 gives two different exchange-
correlation functionals: SLYP and BLYP. The widely used
hybrid three parameter functional B3LYP has also been
considered.40

To set up the procedure, a first single calculation of the
isolated water molecule was carried out using each of these
functionals and from the KS molecular orbitals the KS-GMP
was determined. These KS-GMPs were then incorporated
into the DFT calculations of the active group (H2O or HF!
and the interaction energy was estimated at several distances.
The resulting profiles were compared with those arising from
reference DFT all electron~AE! calculations carried out on
the supermolecules HF̄H2O and H2O¯H2O. All the cal-
culations were performed using the standard TZP basis set.

Results for the HF̄ H2O and H2O¯H2O complexes are
reported in Tables I and II, respectively. Starting with the
HF¯H2O system we can see that the equilibrium intermo-
lecular distance estimated with the KS-GMP agrees reason-
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ably with those obtained from AE calculations. With the ex-
ception of SLT based functionals, the KS-GMP distances are
found to be larger than the AE ones, the errors ranging be-
tween 0.9% and 6.9%. The KS-GMP binding energies com-
puted at the optimized intermolecular distances appear to be
significantly lower than the AE ones; however, it should be
noted that the AE binding energies are overestimated be-
cause of the basis set superposition error~BSSE!. Since the
KS-GMP are free of BSSE, we corrected the AE energies
using the well-known counterpoise method of Boys and
Bernaldi.41 These corrected energies are also reported in the
table underEcor entry. As can be seen, the agreement is
clearly improved, with deviations between 3% and 20%. The
observed general trend is an underestimation of the binding
energies reflecting the fact that the model potential is frozen
and, therefore, no repolarization of the electron distribution
is allowed. Also, because no basis set is present in the GMP,
the electron density and, therefore, the intergroup region are
not properly described. An additional approximation intro-
duced in the KS-GMP calculations arises from the way of
computing the energy and integrals related to Eq.~21, 22!,
where only the grid generated by the cluster is used. Finally,
in Fig. 1, the profile energies obtained from KS-GMP and
AE calculations are plotted. It shows that beyond the numeri-
cal reasonable agreement, the shape of these curves appears
to be quite satisfactory, with smooth behavior and a suitable
description of the equilibrium region.

Results obtained for the H2O¯H2O dimer are reported
in Table II and Fig. 2. Both intergroup and binding energies
are found to follow the trends already mentioned above. The
equilibrium distances appear to be overestimated~10%–
14%! again with the exception of the SLT functionals, while

the binding energies are underestimated with respect to the
BSSE corrected AE ones. The energy profiles also show a
suitable behavior, and as in the HF̄H2O case, the curva-
tures are found to be lower according to the underestimation
of the group–group interaction.

Finally, we will comment on one of the differences be-
tween our KS-GMP and the KSCED method reported in Ref.
25. This difference concerns the use of the projection opera-
tor defined in Eq.~20!, which is not present in the KSCED
formalism. In order to show the importance of this term, a set
of calculations for the HF̄ H2O system was carried out but
now setting the projection factor ata50 in Eq. ~20!. The
profile energies thus obtained are reported in Fig. 3. As can
be seen, the absence of the projector gives rise to a com-
pletely attractive system whatever the functional is. This re-
sult shows the necessity of the presence of the projection
operator in our representation. The presence of such a pro-
jector comes directly from the strong orthogonality condition
as expressed in Eq.~11! in terms of the first-order density
matrices, and taking into account theN-representability con-
dition leads to Eq.~12!.

IV. CONCLUSIONS

In this work a method to obtain polycenter group model
potentials within a DFT framework is reported. The main
idea underlying this approach is to carry out the calculation
of an active subsystem~cluster! taking into account the in-
fluence of the surrounding groups~environment! through an
ab initio model potential, including electron correlation ef-
fects in the cluster–environment interaction. With this pur-

FIG. 1. Binding energy profiles for the H2O–HF complex from all-electron
and KS-GMP calculations.

TABLE I. Optimized intergroup distances~Å! and binding energies~kcal/
mol! obtained for the H2O–HF system from all electron and~KS-GMP!
calculations using SLT, B88, SLYP, BLYP, and B3LYP functionals. Devia-
tions in percent are between parentheses.

DFT
functional

d Binding energy

All electron KS-GMP All electron KS-GMP Ecor

SLT 1.690 1.573~6.9! 213.2 211.2 ~3.4! 211.6
B88 1.936 1.954~0.9! 26.6 24.7 ~14.5! 25.5
SLYP 1.594 1.540~3.4! 217.5 215.1 ~3.8! 215.7
BLYP 1.786 1.822~2! 29.6 26.8 ~18! 28.3
B3LYP 1.763 1.849~4.9! 210.1 27.2 ~20! 29.0

TABLE II. Optimized intergroup distances~Å! and binding energies
~kcal/mol! obtained for the H2O–H2O system from all electron and
~KS-GMP! calculations using SLT, B88, SLYP, BLYP, and B3LYP func-
tionals. Deviations in percent are between parentheses.

DFT
functional

d Binding energy

All electron KS-GMP All electron KS-GMP Ecor

SLT 1.839 1.785~2.9! 28.4 26.5 ~6.1! 26.9
B88 2.200 2.576~14.6! 23.2 21.9 ~24.9! 22.5
SLYP 1.719 1.708~0.6! 211.8 28.9 ~15.3! 210.5
BLYP 1.976 2.192~10.9! 25.3 23.5 ~22.2! 24.5
B3LYP 1.953 2.182~11.7! 25.7 23.8 ~22.4! 24.9
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pose in mind, two main modifications are introduced into the
KS equations. The first one accounts for the classical
electron–electron interaction between the cluster and the en-
vironment. Such an interaction involves a new term in the
one-electron part and is represented through a Coulomb op-
erator built up by fitting the electron density of the environ-
ment group to a set of Gaussian functions. The second modi-
fication involves an adequate correction to the exchange-
correlation operator, depending on the functional used. The
exchange-correlation effects are introduced into the KS
equations by means of a grid of points defined in the cluster

system. In order to preserve the strong orthogonality condi-
tion between group wave functions, as required by the build-
ing block principle, an equivalent restriction is proposed us-
ing the density matrix formalism. This allows for the
definition of a projection operator similar to that used in the
group model potential implementation at the Hartree–Fock
level.16

The whole procedure was implemented in an all-purpose
program ~HONDO!,33 permitting us to compute the cluster
electron density with several exchange-correlation function-
als ~SLT, B88, SLYP, BLYP, B3LYP! within the DFT
framework. In order to test the method a group model poten-
tial for H2O was determined and used in the calculations of
HF¯H2O and H2O¯H2O complexes. Compared to all-
electron DFT calculations, our results show a satisfactory
behavior of the water model potentials.
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