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Rheological effects in the linear response and spontaneous fluctuations of a sheared granular gas
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The decay of a small homogeneous perturbation in the temperature of a dilute granular gas in the steady
uniform shear flow state is investigated. Using kinetic theory based on the inelastic Boltzmann equation, a closed
equation for the decay of the perturbation is derived. The equation involves the generalized shear viscosity of
the gas in the time-dependent shear flow state, and therefore, it predicts relevant rheological effects beyond the
quasielastic limit. Good agreement is found when comparing the theory with molecular dynamics simulation
results. Moreover, the Onsager postulate on the regression of fluctuations is fulfilled.
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I. INTRODUCTION

The study of the linear response of an equilibrium system
to a small perturbation, either in the hydrodynamic fields or in
an external field, is a formally exact method of nonequilibrium
statistical mechanics, that has led to a significant advance in
the theory of simple atomic liquids [1]. Nevertheless, little is
known with the same degree of generality and exactness about
the linear response of fluids that are in nonequilibrium steady
states. Granular gases provide an appropriate context in which
to address this as well as many other general questions about
irreversibility [2,3]. This is because granular gases are intrinsic
nonequilibrium systems but also because they exhibit steady
states that are macroscopically simple as compared with those
of molecular fluids.

The objective of this paper is to provide a case in which the
theory can be developed in a controlled way and to compare
its predictions with molecular dynamics (MD) simulations.
The linear response of a dilute granular gas in a reference
homogeneous steady state with a constant shear rate is studied
for arbitrary values of the latter. Although this state cannot be
implemented in real experiments, it has the advantage of being
easily obtained by means of particle simulation methods. The
considered perturbation is homogenous and affects the internal
energy, or granular temperature, of the system but not the
macroscopic velocity field. Rheological effects are known to
be relevant in the reference state when the shear rate, measured
in units of the inverse of the average time between collisions,
is finite [4–6]. These effects manifest themselves in the strong
dependence of the components of the pressure tensor on the
shear rate, beyond the proportionality relation assumed by the
Navier-Stokes approximation. A question addressed here is
how this rheology translates into the linear response of the
system to the perturbation.

A key ingredient in the linear response theory for molecular
fluids is the Onsager postulate [7], asserting that the average
regression of thermal fluctuations in equilibrium follows the
macroscopic linear law of relaxation. This property is now
quite well understood [1], but little is known about its validity
in far from equilibrium states. This issue will be investigated
here for a granular gas under steady shear flow.

The remainder of this paper is organized as follows. In
Sec. II, the equations characterizing a dilute granular gas under
uniform shear flow are presented, and the existence of a steady
solution is indicated. A small homogeneous perturbation in the

temperature of the steady state is considered, and the linear
equation describing its time evolution is derived. The scaling
verified by the distribution function of the system is indicated,
and its consequences on several macroscopic properties of
the relaxing system are discussed. This leads to a formal
equation for the decay in the temperature. This equation is
transformed into a closed hydrodynamic form in Sec. III, by
employing known properties of the reference state. Then, the
theoretical prediction is compared with molecular dynamics
results, and a good agreement is obtained, although some
systematic discrepancy shows up for very strong inelasticity.
Moreover, it is shown that the linear perturbation decays with
the same rate as the temperature time-correlation function
in the reference state, i.e., the Onsager postulate is verified.
Finally, Sec. IV is used to present a short summary of the
results obtained in the paper.

II. DECAY OF A TEMPERATURE PERTURBATION

The focus here is on the decay of a small homogeneous
perturbation in the temperature in a granular gas in the steady
uniform shear flow (USF) state. Although explicit calculations
will be restricted to the low density limit, their extension to
higher densities may be possible. Consider first a granular gas
in the time-dependent USF state. At the macroscopic level,
this state is characterized by a uniform number density n,
a time-dependent uniform granular temperature T (t), and a
constant velocity field u with linear profile [4,5,8,9],

ui(r) =
∑

j

aij rj , aij ≡ aδixδjy, (1)

where δij is the Kronecker δ function and a is the constant shear
rate. For this state, the mass conservation is identically verified,
the conservation of momentum requires that the xy component
of the pressure tensor Pxy is uniform, and the energy balance
equation reads [5]

∂T (t)

∂t
= − 2a

nd
Pxy(t) − ζ (t)T (t). (2)

Here, d is the dimension 2 or 3 of the system, and ζ (t) is the
cooling rate due to the energy dissipation in collisions. The
above relation admits a steady form

2a

nd
Pxy,s = −ζsTs. (3)
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Equations (2) and (3) are exact consequences of the balance
equations, but they become meaningful only after some
constitutive relations for Pxy and ζ (t) are given. These relations
express the cooling rate and the pressure tensor as functionals
of the hydrodynamic fields, n, u, and T . The particular case
of a low density granular gas composed of smooth inelastic
hard spheres (d = 3) or disks (d = 2) of mass m and diameter
σ will be considered. For states that are homogeneous in the
Lagrangian frame of reference for the velocity field given in
Eq. (1), the one-particle distribution of the gas f (V ,t), where
V (r) = v − u(r) is the peculiar velocity of the particle, obeys
the inelastic Boltzmann equation,(

∂

∂t
− aVy

∂

∂Vx

)
f (V ,t) = J [V |f (t)], (4)

where J [V |f (t)] is the Boltzmann collision operator for
smooth inelastic hard spheres or disks [10]. The shear stress
Pxy and the cooling rate ζ (t) in Eq. (2) are functionals of the
one-particle distribution function,

Pxy(t) = m

∫
dV VxVyf (V ,t), (5)

ζ (t) = (1 − α2)π (d−1)/2mσd−1

4�
(

d+3
2

)
nT (t)d

×
∫

dV 1

∫
dV 2 V 3

12f (V 1,t)f (V 2,t), (6)

with V 12 ≡ V 1 − V 2. A sufficient condition for the existence
of constitutive relations and, hence, of a hydrodynamic
description, is that the distribution function of the system be
of the kind named normal [11,12], and meaning that all the
time dependences in it occur through the temperature, i.e., it
has the form

f (V ,t) = n[v0(t)]−dχ (c,a∗), (7)

where

v0(t) ≡
[

2T (t)

m

]1/2

(8)

is a thermal velocity,

c ≡ V
v0(t)

, (9)

and

a∗ ≡ aλ

v0(t)
, (10)

with λ ≡ (nσd−1)−1 being a quantity proportional to the mean
free path of the gas. The distribution function of the steady
USF state is obtained by particularizing the above expression
for the steady temperature, namely,

χ (c,a∗) → χ (c,a∗
s ), (11)

a∗
s ≡ aλ

v0,s

, v0,s ≡
(

2Ts

m

)1/2

. (12)

The idea that, for a wide class of initial conditions, the
steady USF state is reached after a short initial transient
period through a hydrodynamic evolution of the system has
been already used. In particular, the way in which the normal

solution is approached has been investigated [13,14]. Suppose
that the system is in the steady USF state, and then it is
submitted at t = 0 to an instantaneous and homogeneous small
perturbation of the temperature (or internal energy), keeping
constant the value of the shear rate a. It is assumed that the
subsequent time evolution of the temperature is described by
hydrodynamics so that it obeys the linearization of Eq. (2)
around the steady USF state. Such a linearization reads

∂δT (t)

∂t
= − 2a

nd
δPxy(t) − Tsδζ (t) − ζsδT (t), (13)

where δT (t) ≡ T (t) − Ts and δPxy and δζ are the linear
deviations of the shear stress and the cooling rate, respectively,
from their steady values. In the hydrodynamic regime, Eq. (5)
can be rewritten as

Pxy(t) = 1
2nmv2

0(t)P ∗
xy(a∗), (14)

with the reduced shear stress defined as

P ∗
xy(a∗) ≡ 2

∫
dc cxcyχ (c,a∗). (15)

Then, a simple calculation gives

δPxy(t) = 2Pxy,s

δv0(t)

v0,s

− 1

2
nmv2

0,sa
∗
s

(
∂P ∗

xy(a∗)

∂a∗

)
a∗=a∗

s

× δv0(t)

v0,s

. (16)

It is convenient to introduce a generalized shear viscosity
η∗(a∗) through

P ∗
xy(a∗) = −η∗(a∗)a∗. (17)

In the Navier-Stokes (NS) approximation, η∗ does not depend
on a∗ by definition. Its dependence outside that limit is referred
to as the rheological effects on the viscosity of the system.
Setting Eq. (17) into Eq. (16) yields

δPxy(t) = 1

2

[
Pxy,s + 1

2
nmv2

0,sa
∗2
s

(
∂η∗(a∗)

∂a∗

)
a∗=a∗

s

]
δT (t)

Ts

,

(18)

where it has been used that

δv0(t)

v0,s

= 1

2

δT (t)

Ts

. (19)

Next, the second term on the right hand side of Eq. (13) will
be considered. Substitution of the scaled form of the normal
solution Eq. (7) into Eq. (6) yields

ζ (t) = v0(t)

λ
ζ ∗(a∗), (20)

with the dimensionless cooling rate ζ ∗ given by

ζ ∗(a∗) = (1 − α2)π (d−1)/2

2�
(

d+3
2

)
d

∫
dc1

∫
dc2c

3
12χ (c1,a

∗)χ (c2,a
∗).

(21)
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Therefore,

δζ (t) = v0,s

2λ

[
ζ ∗(a∗

s ) − a∗
s

(
∂ζ ∗(a∗)

∂a∗

)
a∗=a∗

s

]
δT (t)

Ts

. (22)

Now, Eqs. (18) and (22) will be substituted into Eq. (13). A
dimensionless representation will be employed. The relative
deviation in the temperature,

θ (t) ≡ δT (t)

Ts

(23)

is introduced as well as a dimensionless time scale s defined
by

s ≡ v0,s

λ
t. (24)

Time s is proportional to the average number of collisions
per particle in the time interval between 0 and t . In this way,
Eq. (13) takes the form

∂θ (s)

∂s
= −

[
ζ ∗(a∗

s ) + a∗3
s

d

(
∂η∗(a∗)

∂a∗

)
a∗=a∗

s

− a∗
s

2

(
∂ζ ∗(a∗)

∂a∗

)
a∗=a∗

s

]
θ (s). (25)

Upon deriving this equation, the steady relationship given in
Eq. (3) has been taken into account. It follows that a small
homogeneous perturbation in the temperature of a granular
gas under steady uniform shear flow decays exponentially in
time,

θ (s) = e−γ sθ (0), (26)

with the relaxation rate,

γ = ζ ∗(a∗
s ) + a∗3

s

d

(
∂η∗(a∗)

∂a∗

)
a∗=a∗

s

− a∗
s

2

(
∂ζ ∗(a∗)

∂a∗

)
a∗=a∗

s

.

(27)

Note that, because of the constant linear relation between the
dimensionless time scale s and the original one t , the decay of
the perturbation in the latter scale is also exponential.

III. MOLECULAR DYNAMICS SIMULATIONS

Equation (26) follows directly, without any additional
approximation, from the hypothesis that the linear relaxation
of the system after the perturbation is described by a normal
distribution having the scaling form (7). But, to actually
compute the decay rate γ , the dependence of both the cooling
rate and the shear viscosity on the shear rate are needed.
This would require knowing the explicit form of the scaled
distribution χ (c,a∗). In the NS approximation, the shear
viscosity is independent of the shear rate as already mentioned,
and for a dilute granular gas [15,16], the dependence of the
cooling rate on the shear rate has been shown to be negligible
in the linear approximation. Therefore, for NS order, the rate γ

can be accurately approximated by the reduced cooling rate ζ ∗
0

computed to zeroth order in the gradients, i.e., the one of the
homogeneous cooling states particularized for the density and
temperature of the steady USF state. An accurate expression

for this property is [10,17]

ζ ∗
0 ≈

√
2π (d−1)/2(1 − α2)

�(d/2)d

(
1 + 3c2

16

)
, (28)

c2(α) = 16(1 − α)(1 − 2α2)

9 + 24d + (8d − 41)α + 30α2 − 30α3
. (29)

In the steady USF state, the coefficient of normal restitution α

and the shear rate a∗ are not independent, but they are related
by Eq. (3). As a consequence, the restriction to small gradients
required by the NS approximation also implies limitation
to small inelasticity or to the quasielastic limit α → 1. The
analysis was consistently extended to the next order in a,
Burnett order, in Ref. [9]. The general case of arbitrary
shear rate (and inelasticity) has been studied by considering
a simple kinetic model in which the inelastic Boltzmann
collision operator is replaced by a single relaxation towards
the local equilibrium term plus another term describing the
energy dissipation due to the inelasticity of collisions [5,18].
Also, the Grad approximation to the Boltzmann equation has
been used [19]. Quite interestingly, all the above papers lead
to expressions for the generalized shear viscosity that are
hardly distinguishable over the complete interval 0 � α < 1
and that are in very good agreement [5,20] with simulation
results obtained by means of the direct Monte Carlo simulation
method [21]. Moreover, another general feature of all the
previously mentioned papers is that they do not lead to any
shear dependence of the cooling rate of the steady USF state.
Although we are not aware of any direct test for this theoretical
prediction by means of numerical simulations, the agreement
observed for the steady temperature provides a strong support
for it since the expression of Ts involves both the shear
viscosity and the cooling rate [see Eq. (3)].

An accurate expression for the generalized shear viscosity
of the time-dependent uniform shear flow state has been
obtained in Refs. [13,14]. In our notation, it reads

η∗(a∗) = (d + 2)�(d/2)

2
√

2π (d−1)/2β[1 + 2G(a∗)]2[2 + H (a∗)]
, (30)

where

G(a∗) = 2

3
sinh2

{
1

6
cosh−1

[
1 + 27

32dπd−1

×
(

(d + 2)�(d/2)a∗

β

)2]}
, (31)

H (a∗) =
[ (d+2)(1−α2)

4βd
− 2G(a∗)

]
[1 − 6G(a∗)]

[1 + 6G(a∗)]2
, (32)

β = 1 + α

2
. (33)

For the sake of completeness, the expression of the steady
reduced shear rate also is written down,

a∗
s = 4

√
2π (d−1)/2

(d + 2)�(d/2)

[
d(d + 2)(1 − α2)

8βd

]1/2

×
[
β + d + 2

4d
(1 − α2)

]
. (34)
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Finally, ∂ζ ∗(a∗)/∂a∗ will also be neglected in Eq. (27).
Again, this is consistent with the previous model papers. To
summarize, we approximate the expression for the rate of the
decay of the temperature perturbation in Eq. (27) by

γ ≈ ζ ∗
0 +

(
a∗3

d

∂η∗(a∗)

∂a∗

)
a∗=a∗

s

, (35)

with ζ ∗
0 given by Eq. (28) and the shear viscosity η∗(a∗) given

by Eq. (30). For d = 3, Eq. (35) is the same as obtained
by particularizing the expressions derived in Ref. [22] by
means of an extension of the Chapman-Enskog expansion
to inhomogeneous steady states [23], applied to the simple
relaxation kinetic model equation mentioned above.

In order to test the accuracy of Eqs. (26) and (35), we have
carried out event driven MD simulations [24] of a system of
N = 2000 hard disks using Lees-Edwards periodic boundary
conditions [25]. A square box was used, and the density of the
system was n = 0.02σ−2, which was low enough as to expect
the low density limit analysis to be accurate. The value of the
shear rate was, in all cases, a = 6.32 × 10−3[T (0)/m]1/2σ−1,
where T (0) is the initial temperature. Finally, the value of the
coefficient of normal restitution was varied in the simulations.

Once the steady USF state was reached in the simula-
tions, the small temperature perturbation was implemented
as follows. The y component of the velocity of all the
particles was multiplied by the constant factor 1.2, i.e.,
the velocities were modified as vy → 1.2vy . Note that this
scaling of the velocity does not modify the macroscopic
velocity field, keeping, in particular, a vanishing average
value of its y component. Therefore, this perturbation belongs
to the class of perturbations considered in Sec. II. In the
simulations, an exponential decay in the temperature, after the
perturbation, was observed accordingly with the theoretical
result in Eq. (26). The single exponential shape of the decay
guarantees that the underlying equation for the relaxation is
linear and, hence, the validity of the linear approximation.
In addition, it has been checked that equivalent results are
obtained for smaller values of the perturbation of the velocity.
Then, by means of a numerical fitting, the decay rate γ was
measured. The comparison of the simulation results and the
theoretical prediction given in Eq. (35) is shown in Fig. 1.
A fairly good agreement is observed except for very strong
inelasticity (α very small). The discrepancy is probably due
to the system approaching the instability point of the steady
state [26]. To stress the relevance of the rheological effects on
the rate, the Navier-Stokes rate, given by the dimensionless
cooling rate ζ ∗

0 , has also been plotted.
An alternative way of measuring the decay rate γ follows

if the Onsager hypothesis on the regression of the equilibrium
fluctuations [7] is extended and is assumed to apply to the
internal energy of the steady USF state of a granular gas. Then,
the decay of the internal energy time-correlation function in
the steady state is also γ [27]. The values obtained in this way
have also been included in Fig. 1. They agree with the results
obtained from the decay in the initial perturbation, within the
statistical uncertainties, with some discrepancy in the very
inelastic limit. Again, this can be due to the proximity of the
instability of the steady state, which can affect, in a different
way, the time fluctuations and the linear response.

0.2 0.4 0.6 0.8 1
α

0

0.5

1

1.5

γ

FIG. 1. (Color online) Dimensionless decay rate γ of a small
homogeneous perturbation in the temperature of a dilute granular in
the steady uniform shear flow state as a function of the coefficient of
normal restitution α. The solid line is the theoretical prediction given
by Eq. (35), the dashed line is the dimensionless reduced shear rate ζ ∗

0 ,
the squares (black) are the MD simulation results from the decay of
an initial perturbation, and the circles (red) have been obtained from
the decay of the energy time-correlation function in the steady state.

IV. FINAL COMMENTS

In this paper, the decay of an infinitesimal homogeneous
perturbation in the temperature of a dilute granular gas in
the steady USF state has been investigated by using scaling
properties of the normal solution of the Boltzmann equation.
It has been shown that relevant rheological effects show up
beyond the quasielastic limit. They tend to slow down the
increase in the relaxation rate as the restitution coefficient
decreases. Moreover, the rheology in the energy decay is
associated with the shear rate dependence of the shear
viscosity, whereas, the dependence of the cooling rate, if it
exists, plays a negligible role. This confirms the results derived
previously on the basis of model kinetic equations.

Also, it has been verified that the energy time-correlation
function in the steady USF state decays with the same rate
as the energy perturbation, then obeying a hydrodynamic
description. This generalizes to a far from trivial situation,
the Osager hypothesis on the regression of equilibrium
fluctuations.

The natural question to be addressed in the near future
is whether the conclusions reached here also apply to global
properties of other systems in nonequilibrium steady states,
both in granular gases and in molecular fluids. If this were the
case, it would indicate the existence of some generalization
to nonequilibrium of the Onsager principle. This would be
consistent with the structure of the fluctuating Navier-Stokes
equations recently derived for dilute granular gases [28]. Also,
a few related papers concerning the validity of fluctuation-
dissipation relations in driven dilute granular gases have
already been carried out [29–31].
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[19] V. Garzó, Phys. Rev. E 66, 021308 (2002).
[20] A. Astillero and A. Santos, Phys. Rev. E 72, 031309 (2005).
[21] G. Bird, Molecular Gas Dynamics and the Direct Simulation of

Gas Flows (Clarendon, Oxford, 1994).
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