
An aerial robot path follower based on the
’Carrot chasing’ algorithm ?

Hector Perez-Leon, Jose Joaquin Acevedo, Jose A. Millan-Romera, Alejandro
Castillejo-Calle, Ivan Maza, and Anibal Ollero

Robotics, Vision and Control Group, University of Seville, Avda. de los
Descubrimientos s/n, 41092, Sevilla, Spain

{hectorperez,jacevedo,jmromera,acastillejo,imaza,aollero}@us.es

Abstract. This paper presents a three-dimensional path follower imple-
mentation for an aerial robot based on the carrot-chasing algorithm. The
main objective was to improve the performance of the position controller
of the PX4 autopilot when following a list of waypoints. This autopilot is
widely used in the aerial robotics community, but we needed to improve
its performance for navigation in cluttered environments. Different simu-
lations have been carried out under the ROS (Robotic Operating System)
environment for the comparison between the position controller of the
PX4 and the proposed path follower. In addition, we have implemented
different modes to generate the path from the input list of waypoints
that are also analyzed in our simulation environment.
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1 Introduction

The use of aerial robots for different applications, such as surveillance [1, 2],
wildfire tracking [3, 4], transportation [5] and bridge inspection [6, 7] has been
increased significantly during the last years. A common requirement for all these
applications is the precise, robust and efficient autonomous tracking of predefined
paths by the aerial robots.

The path following problem for aerial robots is well studied in the literature,
and there are different control based or geometric methods. Carrot-chasing [8],
pure pursuit [9], vector field [10] and line-of-sight (LOS) [11] methods are some
common geometric algorithms.

Sujit et al. [12] compared path following algorithms for straight lines and
loiter paths that are easy to implement, take less implementation time and are
robust to disturbances. The authors proved that the carrot-chasing algorithms
have the worst performance due to wind disturbances and vector field algorithms
are more accurate than the other two dimensional path following algorithms. To
fix this issue, Nunez et al. [13] took into account the wind gusts as they play a
key role in small prototypes.
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Xavier et al. [14] compared three dimensional path following algorithms for
loiter paths with and without wind disturbances. The authors demonstrated
that vector field algorithms have largest errors than carrot-chasing and pure
line-of-sight (PLOS) [15] methods.

In this paper, a three dimensional path follower implementation based on the
carrot-chasing algorithm is presented. It can be used without any configuration
or based on a list of parameters and increases the performance of the position
controller of the PX4 autopilot when following a list of waypoints. It has been
integrated with the UAV Abstraction Layer 1 (UAL) [16] previously developed
by our research group within the ROS-MAGNA framework [17].

The rest of the paper is organized as follows. Section 4 defines the system
architecture, which frames the proposed system. The path following problem is
stated in Sect. 2 and Sect. 3 describes the proposed solution. Finally, validation
results are presented in Sect. 5 and conclusions in Sect. 6 close the paper.

2 Problem Statement

This paper poses the path following problem for velocity-controlled aerial robots.
An aerial robot Q, which current position is defined by p(t) ∈ R3 at any time t,
has to track a path Γ of length L, defined by a curve γ(λ) ∈ R3 with λ ∈ [0, L].

Let us assume that Q is holonomic and velocity-controlled, being its velocity
defined as v(t) at any time t. Then, the aerial robot motion is controlled via

velocity commands, such that dp(t)
dt = v(t). On the other hand, v(t) is bounded

by vmax, such that |v(t)| ≤ vmax at any time t.
The objective is to implement a control system to generate velocity com-

mands in order to track the path, minimizing the minimum normal distance
between the actual trajectory travelled by Q and the path Γ , which is given by

J =
1

T

∫ T

0

min
λ<L
|p(t)− γ(λ)|, (1)

where T is the time taken to complete the task.

3 Proposed Approach

The proposed system has two main components: the path generator and the path
follower. The user can interact with both components or just with the follower,
which is the default way to use the proposed framework (see Fig. 1).

3.1 Path Generator

The path generator is in charge of generating a path Γ based on the ordered
list of waypoints WPl received. The generated path is a much more dense list of

1 https://github.com/grvcTeam/grvc-ual
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Fig. 1. The path follower design allows to use it by simply entering the desired path
and the current position of the aerial robot. It also provides more configuration options
to suit the user needs. The generator is called by the follower and runs once to generate
a discrete curve.

waypoints, which can be approximated to the continuous curve γ(λ) described in
Sect. 2. It has three modes (m) to generate a new path interpolating the initial
list of waypoints, related to the type of curve used for the interpolation. Each
mode has advantages and disadvantages, as it will be shown in Sect. 5, and the
users should select the one that better fits their needs.

3.2 Path Follower

Initially, the path follower receives the desired path Γ defined as a list of way-
points WPl and may receive three parameters: the look-ahead distance d (1.0 m
by default), the cruising speed vc (1.0 m/s by default) and the generator mode
m (0 by default, see Sect. 5 to find more details about the modes). Parameter
default values are conservative, but setting these values properly is crucial to
obtain a good performance, depending on the desired path.

A much more dense list of waypoints is required to apply the path following
method efficiently. Hence, it uses the path generator to get a discrete curve γ(λ)
from the ordered list of waypoints WPl, based on the generator mode m. Then,
continuously, it receives the aerial robot pose p(t) and generates the velocity
commands v(t), based on the method described below.

Path Following Method The proposed path following method is based on
the ’Carrot chasing’ algorithm and illustrated in the Fig. 2. The method runs as
follows:
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Fig. 2. Top view of the three dimensional path follower based on the carrot-chasing
algorithm without taking into account the orientation error.

1. Obtain the λp argument as

λp(t) = argmin
λ∈[0,L]

|p(t)− γ(λ)|, (2)

which minimizes the distance from the aerial robot position to the path.
2. Add the look ahead distance and get the target virtual pose in the path as

pt(t) = γ(λp(t) + d). (3)

3. Calculate the velocity command, based on the cruising speed, as

v(t) = vc
pt(t)− p(t)

|pt(t)− p(t)|
(4)

to reach the target virtual pose.

The developed method includes two modes: following the path without chang-
ing yaw or aiming at the virtual point.

4 Software Implementation Details

The work described in this paper has been integrated with the UAL, which tries
to abstract the user-programmer from the platform’s autopilot, defining a com-
mon interface with a collection of the most used information and functionalities
of an aerial robot. In particular, the developments presented in this paper are
based on the release 2.2. of UAL and the Kinetic version of ROS 2 [18]. The
proposed system receives a list of waypoints, generates a path using this list,
and calculates which velocity vector should use UAL as reference to reach these
waypoints.

The software architecture is split into four main layers, as depicted in Fig. 3.
In the upper half is the proposed path follower, which has been packaged as a

2 https://www.ros.org/
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Fig. 3. The different layers of the software architecture make the system modular.
Different autopilots and simulators can be used due to the advantages of using the
UAL.

node in the widespread ROS to facilitate experimentation and integration, and
is built on top of UAL. The lower half of the software architecture is composed
by the autopilots, simulators, and communication drivers. The UAL provides a
back-end that works with MAVROS 3 which is in charge of providing a com-
munication driver to ROS for various autopilots that uses MAVLink [19] as
communication protocol. MAVROS is the ROS adaptation of MAVLink proto-
col. The simulator used in these developments is based on the PX4 Software In
The Loop (SITL) [20] development which is the official SITL environment for the
Pixhawk autopilot [21]. UAL has implemented another back-end which works
using the ROS SDK that DJI provides to communicate with DJI protocols.

4.1 Software User Interface

The system is written in C++, allowing a high performance, and offers a double
interface in its current implementation:

– C++: the user may have access to all the functionalities of the framework
creating an object in his code. Any ROS topic, service or action is not re-
quired to run this interface.

– ROS: The framework may work using ROS communications (topics, services
and actions) if the user prefers to work with another programming language
like Python. It publishes continuously its output and responds to service
calls.

As this framework aims to improve behaviour using velocity control, it is
recommended to use the C++ class interface to avoid communications delays
present on ROS communications. The path follower is the main module in the
system and the user can interact just with it to have a successful path following.
The class generator is called automatically by the follower to simplify the inter-
face with the user. However, if the framework is used from the ROS interface, the

3 https://wiki.ros.org/mavros
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generator will be a fully completely independent node even though the interface
will be the same.

Table 1. Double user interface implemented. UAL provides the possibility of manage
multiple aerial robots, for that reason, each one has a namespace (ns) and a path
follower associated.

C++ ROS

Path preparePath(path, mode Service preparePath
look ahead, cruising speed)

Void updatePose(pose) Service updatePose
Void updatePath(pose) Service updatePath
Velocity getVelocity() Topic /[ns]/velocity

The interface is simple, the user can set everything up just with the pre-
parePath method. To read the velocity that the aerial robot must use at that
instant the user can read the output of the method getVelocity. Before reading
the velocity, the user should give the aerial robot pose to the follower using up-
datePose in order to calculate correctly the velocity. The method updatePath
can be used to change the path during the flight. It will not affect the behavior
of the path following because it calculates the velocity referenced to the pose
given of that instant.

The proposed framework is under continuously development and publicly
available in a stable version along with examples and a guide of how to use it.
It can be found in the GitHub repository 4 under the MIT License.

5 Validation Results

This section presents different simulations results using the proposed system. As
UAL integrates the robot simulator Gazebo [22], the developed path follower
may be tested easily in simulation using different aerial robot models. All the
simulations presented here have been performed based on the same aerial robot
model, a simulated autopilot based on the PX4 firmware and assuming a max-
imum speed of 1.0 m/s. The path follower has used the maximum speed of the
aerial robot model as cruising speed. UAL allows to provide sequentially a list
of waypoints to the PX4 position controller (using the UAL method setPose).
Thus, these simulations compare the proposed system based on the developed
solution with the original position controller.

First, the behavior of both systems are compared for a straight path at the
same altitude. Fig. 4a, Fig. 4b and Table 2 show a better performance using the
path follower rather than the system based on the position controller.

4 https://github.com/hecperleo/upat follower/tree/robot19
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On the other hand, both systems are compared for a straight path varying the
altitude. The results illustrated in Fig. 4c and Fig. 4d show the main problem of
the method based on the position controller. As the simulated aerial robot model
has different maximum velocities and accelerations on different axes, the aerial
robot behavior is different on each axis. Table 2 presents significantly differences
stating the proposed framework as a better solution to follow a list of waypoints
in three dimensional space.
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Fig. 4. Comparison between the path follower and the PX4 position controller going
through two separate waypoints at same (a, b) and different (c, d) altitude. (a, c)
Behavior of the comparison in a three dimensional view. (b, d) Detailed view of the
values of the normal distance through the path.

Also, the behaviors of both systems to track more complex paths have been
simulated, see Fig. 5a. The results show how the proposed path follower solution
works better than setting waypoints using PX4 position controller, see Table 3.

With respect to the path generator node and the generator mode, previous
simulations have been performed using the generator mode 0, which uses linear
interpolation between waypoints. Although this configuration improves the be-
havior with respect to the original position controller, it still has some problems.
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Table 2. Results of the normal distance of the path follower and the PX4 position
controller going through two separate waypoints at same and different altitude.

Same altitude Different altitude

Normal distance (m) PX4 Follower PX4 Follower

Mean 0.347 0.019 5.757 0.028
Maximum 0.802 0.076 10.733 0.124
Minimum 0.012 0.001 0.086 0.002
Variance 0.074 0.000 9.356 0.000

Standard deviation 0.271 0.008 3.059 0.018
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Fig. 5. Comparison between the path follower and the PX4 position controller following
a list of waypoints. (a) Behavior of the comparison in a three dimensional view. (b)
Detailed view of the values of the normal distance through the path.

For example, the results show a maximum value of the normal distance of 0.454
meters, which coincides with the peaks shown in Fig. 5b, because the inertia of
the aerial robot prevents from changing the course quickly.

If generator mode 2 is used, the generated path is more curve-shaped with
smoothed corners based on cubic splines. Also, if a less curve-shaped path with
smoothed corners is needed, generator mode 1 can be used, see 6a and 6c. The
difference between these two modes is that mode 1 has a joint between each pair
of waypoints so the three dimensional interpolation results on a less curve-shaped
path. The results show better behavior by having a smoother path without
abrupt course changes, because it reduces the peaks and the mean values of the
normal distance, see Fig. 6b, Fig. 6d and Table 3.

Several videos of these simulations are publicly available on web page 5. For
each simulation, a video is provided with the configuration of the proposed path
follower and the visualization using RViz 6 (ROS visualization). Extra videos,

5 https://grvc.us.es/robot19path
6 https://wiki.ros.org/rviz
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Fig. 6. Path follower using the generator mode 1 and 2. (a, c) Behavior of the path
follower in a three dimensional view. (b, d) Detailed view of the values of the normal
distance through the path.

Table 3. Comparative of the behavior of the path follower using different generator
modes. Mode 0 uses lineal interpolation. Mode 1 and 2 use cubic interpolation.

Mode 0 Mode 1 Mode 2

Normal distance (m) PX4 Follower Follower Follower

Mean 0.323 0.088 0.086 0.064
Maximum 0.728 0.454 0.399 0.238
Minimum 0.010 0.000 0.002 0.002
Variance 0.015 0.015 0.009 0.001

Standard deviation 0.186 0.122 0.095 0.038

showing behavior of the aerial robot when too large or short look ahead distances
are configured, are also provided.
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6 Conclusions

This paper presents a path follower which improves the performance of the po-
sition controller of the PX4 autopilot when following a list of waypoints. It can
be used without any configuration or based a list of parameters: look ahead dis-
tance, cruising speed, and the mode of the generator. Trying different values on
simulation several times is recommended before going to fly in the real world
because these values directly depend on the input desired path.

The proposed path follower and the PX4 position controller have been com-
pared. The path follower presented better behavior than the original controller
on every case, but the difference is larger if the waypoint list had variations on
altitude. The solution has been compared with different modes, showing different
advantages and disadvantages of each one.

The obtained results shows that at higher speeds the aerial robot may oscil-
late about the path if a short look ahead distance is settled. On the other hand, if
the user sets a large look ahead distance the aerial robot will cut corners because
the aerial robot tries to turn towards each new virtual point.

The presented path follower may be placed between a path planner and
the UAL. The resulting waypoints of the path planner should be sent to the
presented framework instead of directly to UAL to increase significantly the
whole performance with respect to the waypoints tracking precision.
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20. Meier, L., Honegger, D., Pollefeys, M.: PX4: A node-based multithreaded open
source robotics framework for deeply embedded platforms. In: Proceedings - IEEE
International Conference on Robotics and Automation (2015)

21. Meier, L., Tanskanen, P., Fraundorfer, F., Pollefeys, M.: Pixhawk: A system for
autonomous flight using onboard computer vision. In: 2011 IEEE International
Conference on Robotics and Automation. pp. 2992–2997. IEEE (2011)

22. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source
multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (IEEE Cat. No.04CH37566). vol. 3, pp. 2149–2154
vol.3 (Sep 2004)


