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Abstract. In this paper we investigate the way of improving the perfor-
mance of a Named Entity Extraction (NEE) system by applying machine
learning techniques and corpus transformation. The main resources used
in our experiments are the publicly available tagger TnT and a corpus
of Spanish texts in which named entities occurrences are tagged with
BIO tags. We split the NEE task into two subtasks 1) Named Entity
Recognition (NER) that involves the identification of the group of words
that make up the name of an entity and 2) Named Entity Classification
(NEC) that determines the category of a named entity. We have focused
our work on the improvement of the NER task, generating four differ-
ent taggers with the same training corpus and combining them using a
stacking scheme. We improve the baseline of the NER task (Fβ=1 value
of 81.84) up to a value of 88.37. When a NEC module is added to the
NER system the performance of the whole NEE task is also improved.
A value of 70.47 is achieved from a baseline of 66.07.

1 Introduction

Named Entity Extraction involves the identification of words that make up the
name of an entity, and the classification of this name into a set of categories. For
example, in the following text, the words “Juan Antonio Samaranch” are the
name of a person, the word “COI” is an organization name, “Ŕıo de Janeiro” is
the name of a place and, finally, “Juegos Oĺımpicos” is an event name:

El presidente del COI, Juan Antonio Samaranch, se sumó hoy a las
alabanzas vertidas por otros dirigentes deportivos en Rı́o de Janeiro
sobre la capacidad de esta ciudad para acoger unos Juegos Oĺımpicos.
In order to implement a system that extracts name entities from plain text we 

have to meet with two different problems, the recognition of a named entity and 
its classification. Named Entity Recognition (NER) is the identification of the 
word sequence that forms the name of an entity, and Named Entity Classification 
(NEC) is the subtask in charge of deciding which is the category assigned to a 
previously recognized entity.
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There are systems that perform both subtasks at once. Other systems, how-
ever, make use of two independent subsystems to carry out each subtask sequen-
tially. The second architecture allows us to choose the most suitable technique to
each subtask. Named entity recognition is a typical grouping task (or chunking)
while choosing its category is a classification problem. In practice, it has been
shown [3] that the division into two separate subtasks is a very good option.

Our approach to the NEE problem is based on the separate architecture. In
the development of the NER module we have followed the next steps:

– To eliminate from the corpus the information relating to the categories, leav-
ing only the information about the identification of named entity boundaries.

– To apply three transformations to the recognition corpus. Thus we have
different views of the same information which enable the tagger to learn in
different ways.

– To train TnT with the four corpora available for the NER task (the original
and the results of the three transformations).

– To combine the results of the four taggers in order to obtain a consensual
opinion. This combination has been carried out applying a stacking scheme,
where the results of the different models are used to generate a training
database employed in a second stage of learning.

The NEC module has been implemented by a classifier induced from a train-
ing database. The database is obtained calculating a feature vector for each
entity in the training corpus. The NEC classifier and the classifier used in the
stacking scheme have been built with algorithms of the weka package [14].

Experiments show that the three transformations improve the results of the
NER task, and that system combination achieves better results than the best of
the participant models in isolation. This improvement in the NER task repels
positively in the performance of the NEE task. When a NEC module is applied
to the previously recognized entities, an improvement of more than four points
is achieved with respect to the baseline defined for the NEE task.

The organization of the rest of the paper is as follows. The second section
presents the resources, measures and baselines used in our experiments. In sec-
tion three we show how to improve the NER subtask applying corpus transfor-
mations. In section four we describe how to combine the results of the four NER
systems with a stacking scheme. Section five presents the NEC module and the
results of its use in conjunction with the best NER system. Finally, in section
six we draw the final conclusions and point out some future work.

2 Resources and Baselines

In this section we describe the main resources used in our experiments, and the
baselines we have employed to measure the improvements achieved.

2.1 The Corpus and the Tagger

This corpus provides a wide set of named entity examples in Spanish. It was
used in the NER task of CoNLL-02 [12]. The files are:



– Training corpus with 264715 tokens and 18794 entities
– Test corpus with 52923 tokens and 4315 entities

BIO notation is used to denote the limits of a named entity. The initial word
of a named entity is tagged with a B tag, and the rest of words of a named
entity are tagged with I tags. Words outside an entity are denoted with an
O tag. There are four categories in the corpus taxonomy: PER (people), LOC
(places), ORG (organizations) and MISC (rest of entities), so the complete set
of tags is {B-LOC, I-LOC, B-PER, I-PER, B-ORG, I-ORG, B-MISC, I-MISC,
O}.

The NER task does not need the category information, so we have simplified
the tag set removing the category information from the tags. Figure 1 shows a
fragment of the original corpus, and its simplified version used in the NER task.

Word Tag
El O
presidente O
del O
COI B-ORG
, O
Juan B-PER
Antonio I-PER
Samaranch I-PER
, O
se O
sumó O
... ...

Word Tag
El O
presidente O
del O
COI B
, O
Juan B
Antonio I
Samaranch I
, O
se O
sumó O
... ...

Fig. 1. Original Corpus and Corpus Tagged Only for the Recognition Subtask

We have choosen the tagger TnT as basis for developing the NER systems
presented in this paper. TnT [1] is one of the most widely used re-trainable
tagger in NLP tasks. It is based upon second order Markov Models, consisting
of word emission probabilities and tag transition probabilities computed from
trigrams of tags.

2.2 Measures and Baselines

The measures used in our experiments are, precision, recall and the overall mea-
sure Fβ=1. These measures were originally used for Information Retrieval eval-
uation purposes, but they have been adapted to many NLP tasks.

Precision is computed according to the number of correctly recognized enti-
ties, and recall is defined as the proportion of the actual entities that the system
has been able to recognize:

Precision =
correctly extracted entities

extracted entities



Recall =
correctly extracted entities

actual entities
Finally, Fβ=1 combines recall and precision in a single measure, giving to

both the same relevance:

Fβ=1 =
2 Precision Recall

Precision + Recall

We will trust in Fβ=1 measure for analyzing the results of our experiments. It
is a good performance indicator of a system and it is usually used as comparison
criterion. Table 1 shows the results obtained when TnT is trained with the
original corpus (NEE baseline) and with its simplified version used in the NER
subtask (NER baseline), we will adopt these results as the baselines for further
experiments in this paper.

Table 1. Baselines. NEE and NER Results with TnT

Precision Recall Fβ=1

NEE baseline 66.28% 65.85% 66.07
NER baseline 81.40% 82.28% 81.84

The NER baseline is much higher than the NEE baseline because the NER
problem is simpler than the whole NEE task. In this paper we will take the
approach of improving the NER subtask to build an NEE system (adding a
NEC module) that improves the NEE baseline.

3 Improving NER Task Through Corpus Transformation

It seems logical to think that if we have more information before taking a deci-
sion we have more possibilities of choosing the best option. For this reason we
have increased the number of models as a way of improving the performance of
the NER task. There are two obvious ways of building new models: using new
training corpora or training other taggers with the same corpus. We have tried a
different approach, defining three transformations that give us three additional
versions of the training corpus. Transformations can be defined to simplify the
original corpus or to add new information to it. If we simplify the corpus, we
reduce the number of possible examples and the sparse data problem will be
smoothed. On the other hand if we enrich the corpus, the model can use new
information to identify new examples not recognized by the original model.

3.1 Vocabulary Reduction

This transformation discards most of the information given by words in the
corpus, emphasizing the most useful features for the recognition. We employ a
technique similar to that used in [10] replacing the words in the corpus with
tokens that contain relevant information for recognition. The goals pursued are:



– To stand out certain typographic features of words, like capitalization, that
can help in deciding if a word is part of a named entity or not.

– To give more relevance to words that can help in the identification of a
named entity.

– To group several words of the vocabulary into a single entry.

Apart from typographic information there are other features that can be
useful in the identification of entities, for example non-capitalized words that
frequently appear before, after or inside named entities. We call them trigger
words and they are of great help in the identification of entity boundaries.

Both pieces of information, trigger words and typographic clues, are extracted
from the original corpus through the application of the following rules:

– Each word is replaced by a representative token, for example, starts cap
for words that start with capital letters, lower for words that are written in
lower case letter, all cap if the whole word is upper case, etc. These word
patterns are identified using a small set of regular expressions.

– Not all words are replaced with its corresponding token, trigger words remain
as they appear in the original corpus. The list of trigger words is computed
automatically counting the words that most frequently appear around or
inside an entity.

Figure 2 shows the result of applying these rules to the corpus fragment of
Figure 1. Vocabulary reduction leads to an improvement in the performance of
the NER subtask. The results of the experiment TnT-V are presented in Table
2, we can see that TnT improves from 81.84 to 83.63.

3.2 Change of Tag Set

This transformation does not affect to words but to tags. The basic idea is
to replace the original BIO notation with a more expressive one that includes
information about the words that usually end a named entity. The new tag
set has five tags, the three original (although two of them change slightly their
semantic) plus two new tags:

– B, that denotes the beginning of a named entity with more than one word.
– BE, that is assigned to a single-word named entity.
– I, that is assigned to words that are inside of a multiple-word name entity,

except to the last word.
– E, assigned to the last word of a multiple-word named entity.
– O, that preserves its original meaning: words outside a named entity.

The new tag set gives more relevance to the position of a word, forcing the
tagger to learn which words appear more frequently at the beginning, at the end
or inside a named entity. Figure 2 shows the result of applying this new tag set to
the corpus fragment of Figure 1. Changing the tag set also leads to better results
in the NER task than those obtained with the original corpus. The results of
the experiment TnT-N are showed in Table 2. In this case, TnT improves from
81.84 to 84.59, the best result of the three transformations studied.



3.3 Addition of Part-of-Speech Information

Unlike previous corpus transformations, in this case we will make use of external
knowledge to add new information to the original corpus. Each word will be
replaced with a compound tag that integrates two pieces of information:

– The result of Applying the First Transformation (Vocabulary Reduction).
– The part of speech (POS) tag of the word.

In order to obtain the POS tag of a word we have trained TnT with the
tagged corpus CLiC-TALP [4]. This corpus is a one hundred thousand word
collection of samples of written language, it includes extracts from newspapers,
journals, academic books and novels. Figure 2 shows the result of the application
of this transformation to the corpus fragment of Figure 1. Adding part of speech
information also implies an improvement in the performance of TnT in the NER
task. Table 2 presents the results of the experiment TnT-P, in this case TnT
reaches an Fβ=1 measure of 83.12.

Word Tag
El O
presidente O
del O
all cap B

, O
starts cap B
starts cap I
starts cap I

, O
se O
lower O

... ...
a) Vocabulary

reduction.

Word Tag
El O
presidente O
del O
COI BE
, O
Juan B
Antonio I
Samaranch E
, O
se O
sumó O
... ...

b) Change of
tag set.

Word Tag
El det O
presidente noun O
del prep O
all cap noun B

, punt O
starts cap noun B
starts cap noun I
starts cap noun I

, punt O
se pron O
lower verb O

... ...
c) Addition of POS

information.

Fig. 2. Result of Applying Transformations to the Corpus Fragment Showed in Figure 1

4 Improving the NER Task Through System
Combination

The three transformations studied cause an improvement in the performance of
the NER task. But we still have room for improvement if instead of applying
the transformations separately we make them work together. A superficial anal-
ysis of the texts tagged by each model shows that not all the models make the
same mistakes. There are some “very difficult” examples that are not recognized
by any model, but many of the mistakes can be corrected taking into account
the tag proposed by other models. System combination is not a new approach in



NLP tasks, it has been used in several problems like part of speech tagging [6],
word sense disambiguation [8], parsing [7] and noun phrase identification [11].

4.1 Stacking

Stacking consists in applying machine learning techniques for combining the
results of different models. The main idea is to build a combining system that
learns the way in which each model is right or makes a mistake. In this way, the
final decision is taken according to a pattern of correct and wrong answers.

We need a training database to be able of learning the way in which every
model is right or wrong. Each register in the training database includes all the
tags proposed by the participant models for a given word and the actual tag. In
order to enrich the training database we have included in the registers the tags
of the two previous and the two following words, this way we take into account
not only the information associated to a word but also information about its
context. We make the database independent of the training and test corpus
using an additional corpus of 51533 words to generate the registers. Figure 3
presents an extract of the generated database. For each model there are five tags
that correspond, respectively, to the two previous words, the word in question
and the two following words. The last tag of each register is the actual tag of
the word represented by the register.

TnT TnT-V TnT-N TnT-P Tag
OOOOB OOOOB OOOOB OOOOB O
OOOBO OOOB I OOOBO OOOBO O
OOBOB OOB I I OOBOB OOBOB B
OBOBO OB I I O OBOBO OBOBO O
BOBOO B I I OO BOBOO BOBOO B
OBOOO I I OOO OBOOO OBOOO O

Fig. 3. Extract of the Generated Database

Apart from allowing the use of heterogeneous information, machine learning
has another important advantage over voting: it is possible to choose among a
great variety of schemes and techniques to find the most suitable one to each
problem. Bagging [2] is one of these schemes, it provides a good way of handling
the possible bias of the model towards some of the examples of the training
database. Bagging is based on the generation of several training data sets taking
as base a unique data set. Each new version is obtained by sampling with re-
placement the original database. Each new data set can be used to train a model
and the answers of all the models can be combined to obtain a joint answer. The
joint answer is usually obtained by voting. In the experiment TnT-Stack we have
applied a bagging scheme (using decision trees [9] as base classifier) to combine
the results given by TnT-V, TnT-N and TnT-P. Table 2 shows the results of



Table 2. Results of NER Experiments

Precision Recall Fβ=1

NER baseline 81.40% 82.28% 81.84
TnT-V 81.76% 85.59% 83.63
TnT-N 85.04% 84.15% 84.59
TnT-P 81.51% 84.79% 83.12
TnT-Stack 88.68% 88.05% 88.37

this experiment. With this system we obtain the best result (88.37), with an
improvement of 6.53 points with respect to the baseline for the NER subtask.
There are other authors that also propose stacking as a way of improve the
performance of NEE systems, for example [5] and [15]. In both cases they use
several taggers to obtain the different opinions combined through the stacking
scheme. In this sense, the main contribution of our work is the use of corpus
transformation to obtain the different models needed to apply stacking. This
way we have the variability necessary to apply system combination without
using several training corpora or several taggers.

5 The NEC Module

After the NER stage, we have a text in which possible entities have been iden-
tified without specifying the class they belong. At this point, the named entity
extractor is completed with a NEC module implemented by a classifier induced
from a training database. The database is obtained by calculating a feature vec-
tor for each entity in the training corpus. The features used to generate the
vectors are the following:

1. Orthographic: we check if an entity contains words that begin with capital
letters, or if they contain digits, Roman numbers, quotes, etc.

2. Length and Position: we use as feature the length in words of an entity, as
well as the relative position within the phrase.

3. Suffixes: frequent suffixes for each category are calculated from the training
corpus.

4. Contexts: relevant words for each category are calculated in a window of
three words around the entities found in the training corpus.

5. Content Words: for each category, the set of significant words is calculated
eliminating stop words and those in small letters from the examples of the
training corpus.

We have used a Support Vector Classifier [13] to implement this classification
task. With this method a binary classifier is defined through an hyperplane that
optimally divides the classes. Multi-class classifiers can be built combining binary
classifiers with a pairwise ensemble scheme. It has been shown that the optimal
hyperplane is determined by only a small fraction of the data points, the so-called



Table 3. Results of NEE Experiments

Precision Recall Fβ=1

NEE baseline 66.28% 65.85% 66.07
NEC alone 78.22% 78.22% 78.22
TnT-Stack-NEC 70.72% 70.22% 70.47

support vectors. The support vector classifier training algorithm is a procedure
to find these vectors.

Table 3 shows the standalone performance of the NEC module (assuming no
NER errors) and the results of its application to the best NER system studied
in this paper (experiment TnT-Stack-NEC). An improvement of more than four
points with respect to the baseline defined for the NEE is obtained.

6 Conclusions and Future Work

In this paper we have shown that the performance of a named entity extraction
system can be improved by applying a stacking scheme. We have split the NEE
task into two subtasks: recognition and classification. Our work has been focused
on demonstrating that the performance of the NER task can be improved by
combining different NER systems that have been obtained with only one tagger
(TnT) and one training corpus. The variability necessary to be able to apply
system combination has been achieved applying transformations to the training
corpus. The baseline for the NER task is improved from 81.84 to 88.37. This
performance is similar to state of the art recognizers, with comparable results
to those obtained by one of the best NER systems for Spanish texts [3].

As additional conclusion we have demonstrated that the improvement of
the NER task also entails an improvement in the complete extraction task. The
experiments demonstrate that the baseline defined for the NEE task is surpassed
with clarity, improving from 66.07 to 70.47.

Much future work remains. Recognition results are very good but the classi-
fication ones are still poor, we have implemented a very simple NEC module and
there are still room for improvement in this aspect including new features and
experimenting with new learning methods. We are also interested in applying the
ideas of this paper to the extraction of entities in specific domains. In this kind
of tasks the knowledge about the domain could be incorporated to the system
via new transformations. We also plan to take advantage of system combination
to help in the construction of annotated corpus, using the jointly assigned tag
as agreement criterion in co-training or active learning schemes.
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