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Universal reference state in a driven homogeneous granular gas
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We study the dynamics of a homogeneous granular gas heated by a stochastic thermostat, in the low density
limit. It is found that, before reaching the stationary regime, the system quickly “forgets” the initial condition and
then evolves through a universal state that does not only depend on the dimensionless velocity, but also on the
instantaneous temperature, suitably renormalized by its steady state value. We find excellent agreement between
the theoretical predictions at the Boltzmann equation level for the one-particle distribution function and the direct
Monte Carlo simulations. We conclude that at variance with the homogeneous cooling phenomenology, the
velocity statistics should not be envisioned as a single-parameter, but as a two-parameter scaling form, keeping
track of the distance to stationarity.
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I. INTRODUCTION

A granular gas may be viewed as a collection of macro-
scopic particles undergoing dissipative collisions. This very
ingredient—inelasticity—gives rise to a rich phenomenol-
ogy [1–4], the understanding of which requires statistical
mechanics tools: Kinetic theory has proven to be powerful at
microscopic and mesoscopic levels of description, while at a
macroscopic scale, hydrodynamic equations have been derived
[2] and put to the test. Yet, the relevance and consistency of a
hydrodynamic framework, which is a central question, is still
elusive [5–7].

Due to collisional dissipation, the granular temperature,
defined as the variance of velocity fluctuations, decays mono-
tonically in time in an isolated granular system [8]. In the
fast-flow regime, it has been shown numerically that for a wide
class of initial conditions, the system reaches a homogeneous
state in which all the time dependence of the one-particle
distribution function is encoded in the temperature. This is the
so-called homogeneous cooling state (HCS) which has been
widely studied in the literature [9,10]. In such a homogeneous
situation, the dynamics involves two time scales: the kinetic or
fast scale—a few collisions per particle—in which the scaling
regime has not been reached yet and where the “microscopic”
excitations relax, and the following hydrodynamic or slow
scale in which the memory of initial conditions has been
lost, and the velocity distribution evolves through the granular
temperature [11]. Considering nonhomogeneous states, this
separation of time scales opens the possibility of a hydro-
dynamic or coarse-grained description in terms of the density,
velocity, and temperature field, and the HCS then plays the role
of the reference state when the Chapmann-Enskog method is
applied [12].

On the other hand, several studies and experiments in
granular matter deal with stationary states, which are reached
under the action of some energy driving, often realized by a
moving boundary, or by an interstitial medium that acts as a
thermostat, see, e.g., [13–15]. In all these cases, the energy
injected compensates for the energy lost in collisions. From a

theoretical point of view, a minimalistic approach is to consider
the system as driven by some random energy source, which can
be implemented in different ways [16]. For the hard particle
model, one of the most used homogeneous heating method
is the so-called stochastic thermostat, which consists of a
white noise force acting on each grain [10,17–27]. In the low
density limit, the distribution function of the homogeneous
state has been characterized [10]. Hydrodynamic equations
have been derived via the Chapmann-Enskog expansion [21],
and fluctuating hydrodynamics have been put forward in order
to understand the large scale structure found in the stationary
state [18], or fluctuations of global quantities [25]. We stress
that in all the studies pertaining to the hydrodynamics of
a system heated by the stochastic thermostat [18,21], the
stationary state played the role of “reference” state, as the
HCS happens to be in the undriven case. It was therefore
assumed that a one parameter scaling holds for the velocity
probability distribution. The objective in this paper is to
analyze this point critically in the homogeneous case at the
level of the Boltzmann equation. We will study, for arbitrary
initial conditions, the type of state the system evolves into
in a kinetic time scale. Surprisingly, we find that a universal
state is reached in a kinetic scale—universal in the sense that
it is independent of the initial conditions—but that depends
on the quotient between the instantaneous temperature and its
stationary value.

The outline is as follows. Section II opens with a definition
of the model and a summary of relevant previously known
results. The key question addressed lies in the scaling form
of the velocity distribution close to the steady state. Does it
depend only on the suitably reduced velocity variable, as is
the case in the HCS, or is another parameter relevant, that
would encode the distance to stationarity? We will argue in
Sec. II A that a single parameter scaling form is inconsistent.
We shall then show in Secs. II B and II C that a consistent two
parameter scaling form can be identified. Its properties will
be characterized by complementary numerical and analytical
tools. Conclusions and perspectives will finally be discussed
in Sec. III.
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II. SCALING FORM OF THE VELOCITY DISTRIBUTION
FUNCTION

The system of interest is a dilute gas of N smooth
inelastic hard particles of mass m and diameter σ , which
collide inelastically with a coefficient of normal restitution
α independent of the relative velocity [3]. If at time t there is a
binary encounter between particles i and j , having velocities
Vi(t) and Vj (t), respectively, the postcollisional velocities
V′

i(t) and V′
j (t) are

V′
i = Vi − 1 + α

2
(σ̂ · Vij )σ̂ ,

(1)

V′
j = Vj + 1 + α

2
(σ̂ · Vij )σ̂ ,

where Vij ≡ Vi − Vj is the relative velocity and σ̂ is the unit
vector pointing from the center of particle j to the center of
particle i at contact. Between collisions, the system is heated
uniformly by a white noise acting independently on each
grain [10,18,20–22,24,25] so that the one-particle velocity
distribution f (r,v,t) then obeys the Boltzmann-Fokker-Planck
equation [10,28]. For a homogeneous system this equation
reads

∂

∂t
f (v1,t) = σd−1

∫
dv2T̄0(v1,v2)f (v1,t)f (v2,t)

+ ξ 2
0

2

∂2

∂v2
1

f (v1,t), (2)

where d is the dimension of space, ξ0 measures the noise
strength, and T̄0 is the binary collision operator

T̄0(v1,v2) =
∫

dσ̂�(v12 · σ̂ )(v12 · σ̂ )
(
α−2b−1

σ − 1
)
. (3)

Here we have introduced the operator b−1
σ which replaces the

velocities v1 and v2 by the precollisional ones v∗
1 and v∗

2 given
by

v∗
1 = v1 − 1 + α

2α
(σ̂ · v12)σ̂ ,

(4)

v∗
2 = v2 + 1 + α

2α
(σ̂ · v12)σ̂ .

A. One-parameter scaling or beyond?

It is an observation from numerical simulations that for
a wide class of initial conditions the system reaches a
stationary state [10,18,20]. Assuming that total momentum
is zero, i.e.,

∫
dvvf (v,0) = 0, the state is characterized by an

isotropic stationary distribution fs(v). Let us define the scaled
distribution function χs by

fs(v) = n

vd
s

χs(c), c = v
vs

, (5)

where n is the density, vs ≡ √
2Ts/m is the thermal velocity,

and Ts is the stationary temperature, defined as d
2 nTs =∫

dv 1
2mv2fs(v). As χs is rather close to a Maxwellian

distribution, a reasonable strategy is to perform an expansion
in Sonine polynomials [29]. In the so-called first Sonine
approximation, the steady state function then reads [10]

χs(c) ≈ χM (c)
[
1 + as

2S2(c2)
]
, (6)

where χM is the Maxwellian distribution with unit temperature,
S2(c2) = d(d+2)

8 − d+2
2 c2 + 1

2c4 is the second Sonine polyno-
mial, and as

2 is the kurtosis of the distribution. Within this
approximation, the distribution function can be calculated,
with the result [10]

as
2(α) = 16(1 − α)(1 − 2α2)

73 + 56d − 24dα − 105α + 30(1 − α)α2
, (7)

and a stationary temperature

Ts = m

[
d�(d/2)ξ 2

o

2π
d−1

2 (1 − α2)nσd−1

]2/3

. (8)

Now, let us consider an initial condition with a tempera-
ture that differs appreciably from the stationary temperature
(we also assume that total momentum is zero, its precise value
being immaterial). It is clear that the system will reach the
stationary state in a hydrodynamic scale. The ensuing question
is two pronged. First of all, is the dynamics compatible with
a universal scaling form—once the memory of the initial
condition is lost—that would provide a consistent solution
to the Boltzmann equation, or is memory only washed out
strictly speaking at the steady state point? Second, assuming
such a scaling regime exists in some vicinity of the steady state,
what is the minimal number of parameters required for its de-
scription? By analogy with unforced (HCS) phenomenology,
a single parameter scaling might be anticipated:

f (v,t) = n

vd
0 (t)

χs(c), (9)

where c ≡ v/v0(t) and v0(t) ≡ √
2T (t)/m is defined from the

instantaneous temperature dnT (t) = ∫
dvmv2f (v,t). We note

that this scaling property holds for the Gaussian thermostat
as well [19], where the particles are accelerated between
collisions by a force proportional to its own velocity [30].
Moreover, in the stochastic thermostat case, the one parameter
scaling (9) was implicitly assumed, and it seemed to be yield
reasonable predictions at least close to the stationary state
(see [18,21]). Nevertheless, when the form Eq. (9) is inserted
in the Boltzmann equation, Eq. (2), we obtain

ξ 2
0

2v3
0(t)

∂2

∂c2
1

χs(c1) + 1

v2
0(t)

dv0(t)

dt

∂

∂c1
· [c1χs(c1)]

= −nσd−1
∫

dc2T̄0(c1,c2)χs(c1)χs(c2), (10)

which is inconsistent: The left hand side depends on time
while the right hand side does not. We conclude that such
a solution should be ruled out, except when stationarity is
reached and v0 = vs . The hope is to capture the postkinetic
time dependence of f (v,t), through a more involved functional
form, that would be free of the above inconsistency.

As is customary, we shall seek for a normal solution [29],
which in the present homogeneous case means that f (v,t)
should only depend on time via the instantaneous granular
temperature T (t). In conjunction with dimensional analysis,
this leads to a function that should only depend on c and
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T (t)/Ts = v2
0/v

2
s , which we write as

f (v,t) = n

vd
0 (t)

χ (c,β) with β ≡ vs

v0(t)
(11)

and again c = v/v0(t). Note that we have assumed isotropy,
χ depending on c = |c| and not on the full vector c, but this
assumption can be easily relaxed. Note also that equivalent
expressions can of course be chosen, such as χ̃(v/vs,β).

If a state such as (11) holds, it represent a strong constraint
on the form of the velocity distribution. The corresponding
dynamics can be partitioned in a first rapid stage—that we do
not attempt to describe—where initial conditions matter, and
a subsequent universal relaxation toward stationarity, where
only the distance to the steady state is relevant, through the
dimensionless inverse typical velocity β = vs/v0(t).

B. Numerical simulations answer

To put the above scenario to the test, we have performed
direct Monte Carlo Simulations (DSMC) [31] of N = 1000
hard disks (d = 2) of unit mass and unit diameter, that collide
inelastically with the collision rule given by Eq. (1). The
thermostat is implemented following previous investigations
[18] and the results have been averaged over 105 trajecto-
ries. For a given value of the inelasticity, we thus solve
the time-dependent Boltzmann equation for different initial
conditions and analyze whether, after some kinetic transient,
all the time dependence of the distribution function goes
through the dimensionless parameter β. As it is difficult to
measure the complete distribution function with the desired
accuracy, we have worked with the cumulants of the scaled
distribution, χ (c,β). In terms of the velocity moments,
〈vl〉 ≡ 1

n

∫
dvvlf (v,t), we have measured the kurtosis of the

distribution

a2 = d

d + 2

〈v4〉
〈v2〉2

− 1, (12)

which is proportional to the fourth cumulant of χ (c,β) and the
quantity

a3 = − d2

(d + 2)(d + 4)

〈v6〉
〈v2〉3

+ 3d

d + 2

〈v4〉
〈v2〉2

− 2, (13)

which can be viewed as the reduced sixth cumulant. If our
scaling is correct, we expect that the cumulants quickly
collapse for different initial conditions, as a function of β.
In Fig. 1, we have plotted a2 and a3 versus β for α = 0.95.
The initial conditions are either Maxwellian distributions with
three different temperatures T0, significantly above the steady
state value Ts , or asymmetric distributions made up of three
possible velocities with different probabilities

f (vx,vy,t = 0) = 3
6δ(vx + 8D/3)δ(vy+8D/3)

+ 2
6δ(vx − 4D/3)δ(vy−4D/3)

+ 1
6δ(vx − 16D/3)δ(vy−16D/3). (14)

Here, the parameter D is chosen to match the initial desired
temperature (chosen the same as in the Gaussian initial con-
dition). All the quantities are measured every 250 collisions,
so that each four consecutive points in Fig. 1 correspond to a
time span of one collision per particle. It can be seen that, after
some transient, memory of the initial condition is forgotten, so
that the stationary distribution (β = 1) is reached following a
universal route. In Fig. 1, those data points associated to the
Gaussian initial distribution approach the scaling curve from
above (circles) while those for the initial asymmetric case
(14) approach the scaling curve from below (squares). A very
similar behavior can be seen in Fig. 2 for α = 0.8 and four
different initial temperatures, again such that T0 	 Ts , which
ensures that β < 1 (we have also probed the regime β > 1
obtained with T0 
 Ts , where similar conclusions hold; see,
e.g., Fig. 4 below). We have started either with a Maxwellian
distribution, as above, or with a distribution in which all
the velocities have the same probability density in a square
centered on v = 0 (referred to as the “flat” case). We emphasize
that the initial transient is fast: memory of the initial condition
is lost after at most three or four collisions per particle, a
phenomenon that cannot be appreciated from the figures.

Borrowing ideas from the extended self-similarity tech-
nique [32], we put to the test the possibility of an enhanced
universality by plotting a3 as a function of a2 (see Fig. 3). In
doing so, it appears that the universal part of the ai versus β

curve seen in Fig. 1 is not enhanced by the reparametrization
a3(a2): different initial conditions do not lead to a data collapse,

0 0.2 0.4 0.6 0.8 1
β

-0.03

-0.02

-0.01

0

a2

0 0.2 0.4 0.6 0.8 1
β

-0.01

-0.0075

-0.005

-0.0025

0

a3

FIG. 1. (Color online) Coefficients a2 and a3 from Monte Carlo simulations, for α = 0.95. We start with a Maxwellian (circles) or an
asymmetric (squares) distribution, and three initial temperatures: T0/Ts = 22,33,44. Note the vertical scale.
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-0.01
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FIG. 2. (Color online) Same as Fig 1, but for a more dissipative system with restitution coefficient α = 0.8. Here, the initial condition is
either Gaussian (circles, approaching the master curve from above), or flat (squares, see text, approaching the master curve from below). In
both cases, the initial temperatures are T0/Ts = 7.3,21.8,36.4,51.

beyond the interval −0.22 < a2 < −0.17 that was already
evidenced in Fig. 1. However, a given functional form (say
Maxwellian) leads to a unique path in the a3-a2 plane, which
is already a nontrivial point, and furthermore, a plot like Fig. 3
leads to a significantly reduced scatter of points than Fig. 1. It
is therefore more amenable to chart out the universal regime
sought for. In these figures, the first measure reported after the
dynamics has acted on the initial conditions is for a time of 0.25
collisions per particle for the Maxwellian distribution and of
around 3 collisions per particle for the flat and asymmetric
distributions. The present results establish numerically the
existence of a universal nontrivial scaling regime, for which
we now seek analytical characterization.

C. Analytical approach

For the sake of analytical progress, it is convenient to change
variables in the Boltzmann equation (2), from the set {t,v},
to {β,c}. In these variables, the scaled distribution function

-0.03 -0.02 -0.01 0
a2

-0.015

-0.01

-0.005

0

a3

FIG. 3. (Color online) Same data as in Fig. 1, where the
coefficient a3 is shown as a function of a2. In addition to Maxwellian
and asymmetric, flat initial conditions are also shown. The arrow
indicates the steady state values.

fulfills

[μ(β) − μ(1)β3]

{
∂

∂c1
· [c1χ (c1,β)] + β

∂

∂β
χ (c1,β)

}

=
∫

dc2T̄0(c1,c2)χ (c1,β)χ (c2,β)+1

2
μ(1)β3 ∂2

∂c2
1

χ (c1,β),

(15)

where

μ(β) = − 1

2d

∫
dc1

∫
dc2

(
c2

1 + c2
2

)
T̄0(c1,c2)χ (c1,β)χ (c2,β).

(16)

We note that here and in contrast with Eq. (10), the equation
is fully consistent as it appears as a change of variables where
β simply plays the role of time. Nevertheless, proving that for
any “reasonable” initial condition, the system forgets the initial
condition and reaches a universal state is a formidable task.
For this reason we limit ourselves to the simplified problem
of deriving an approximate expression for this distribution
function. As in the stationary state, the distribution will be
worked out in the first Sonine approximation

χ (c,β) ≈ χM (c)[1 + a2(β)S2(c2)], (17)

where the kurtosis a2 has been defined in Eq. (12) and, by
definition, we have∫

dcχ (c,β) = 1,

∫
dccχ (c,β) = 0,

∫
dcc2χ (c,β) = d

2
.

(18)

In expansion (17), we neglect contributions in a3 and higher
order. This is justified as long as the inelasticity is not too
strong, and is backed up here by the fact that |a3| < a2, as
can be seen in Figs. 1 and 2. Of course, inclusion of higher
order terms in Eq. (17) would improve the accuracy of the
subsequent calculation.

Inserting (17) into the Boltzmann equation (15), taking
the fourth velocity moment while neglecting nonlinear terms
in a2, we obtain the following evolution equation for the

051301-4



UNIVERSAL REFERENCE STATE IN A DRIVEN . . . PHYSICAL REVIEW E 85, 051301 (2012)

cumulant a2:

1

4
β(1 − β3)

d

dβ
a2(β) = (1 − B − β3)a2(β) + Bas

2, (19)

where the parameter B depends on the dissipation and space dimension according to

B = 73 + 8d(7 − 3α) + 15α[2α(1 − α) − 7]

16(1 − α)(3 + 2d + 2α2) + as
2{85 + d(30α − 62) + 3α[10α(1 − α) − 39]} . (20)

Equation (19) is an inhomogeneous linear differential
equation that can be integrated. It exhibits two singular points
at β = 0, β = 1, and we start with the interval [0,1]. In this case
the general solution of the associated homogeneous equation
reads

aH
2 (β) = K

(1 − β3)
4
3 B

β4(B−1)
, (21)

and a particular solution can be obtained by variations of
parameters. The general solution will then be the sum of
these two contributions. The ensuing a2 depends on the initial
conditions through K , and since our purpose here is to extract
the universal behavior of a2 as a function of β, we note that
the contribution (21) fades rapidly as β approaches unity [as
(1 − β3)4B/3 where B can be large; note that it diverges in the
elastic limit α → 1]. The universal behavior is consequently
encoded in the particular solution, and we finally have

a2(β) = as
2

[
1 + 1 − β3

B − 1
2F1

(
−1

3
,1;

4B − 1

3
; β3

)]
,

0 < β < 1. (22)

where 2F1 is the hypergeometric function [33]. This expres-
sion is well behaved in all of the interval [0,1]. An analogous
analysis can be performed for β > 1. Following similar lines,
we identify the universal solution to be

a2(β) = − 4Bas
2

7β3(1 − 1/β3)
4B
3

2F1

(
7

3
,1 + 4B

3
;

10

3
;

1

β3

)
.

(23)

Clearly, the same technical procedure can be applied to the
higher order cumulants. For the sake of simplicity, we restrict
ourselves to the function a2(β), that we wish to test against
simulation results.

In order to compare the above theoretical predictions to
the simulation data, attention should be payed to the fact that
analytical computation of velocity moments or cumulants is
plagued by nonlinear effects that have been discussed in the
literature [19,34]. This results in some error in the calculation
of the steady state value as

2, and we can also expect B to
suffer from a similar inaccuracy, that may be of the order of
10 or 20%. To circumvent this (somewhat minor) drawback,
we take as

2 appearing in Eqs. (22) and (23) from the Monte
Carlo simulations, and we adjust B to match the measured
function a2(β). This procedure provides us with Fig. 4, where
the agreement between the functional forms (22) and (23) with
Monte Carlo simulations is excellent. It is of course important
to check a posteriori that as

2 and B thereby obtained are close
enough to our predictions. The precise values are reported
below:

α = 0.95 α = 0.8

as
2 from DSMC −0.0171 −0.0150

as
2 from Eq. (7) −0.0157 −0.0135

B from DSMC 5.17 2.32

B from Eq. (20) 6.43 2.61

0 0.5 1 1.5 2 2.5
β

-0.025

-0.02

-0.015

-0.01

-0.005

0

a2

T0/Ts=44
T0/Ts=0.11

0 0.5 1 1.5 2 2.5
β

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

a2

T0/Ts=51
T0/Ts=0.11

FIG. 4. (Color online) Kurtosis as a function of β (reduced inverse typical velocity), for a system with α = 0.95 (left) and α = 0.80 (right).
The points are simulation results starting from a Maxwellian distribution, and the solid lines are the theoretical predictions, given by Eq. (22)
for β < 1 and Eq. (23) for β > 1 (see text). The two values of the initial temperature mentioned for each graph are used to generate separately
the β < 1 branch (associated to large T0) and the β > 1 branch (obtained for small T0). The steady state values correspond to β = 1.
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III. CONCLUSION AND PERSPECTIVES

To summarize, we have studied the dynamics of a system
of inelastic hard spherical grains, heated homogeneously by a
stochastic thermostat. We have restricted the analysis to low
density systems, amenable to a Boltzmann equation treatment.
We have found that generically, after a kinetic transient, the
system evolves into a scaling solution that no longer depends
on initial conditions, before the steady state is finally reached.
The relevant scaling form is not of the single parameter
family as is the case in the homogeneous cooling state, but
involves two parameters. The velocity distribution function
was calculated in the so-called first Sonine approximation,
which provides a very good agreement with the Monte Carlo
simulations.

At this point several questions arise: What is the counterpart
of the universal state brought to the fore at two-particle level, or
even N particle? What is the effect of density, and of a change

in the driving mechanism? Do the hydrodynamic relations
(worked out say at the Chapman-Enskog level) depend on
the structure of this state? The complete answer to all these
interrogations requires further studies, but we expect that
similar scaling forms should occur at higher densities, and
with different thermostats as long as a steady state can be
reached. In this respect, the Gaussian thermostat is presumably
singular, since it can be mapped onto the free cooling case. The
questions pertaining to hydrodynamics are more subtle; how
the universal β-scaling behavior discussed in the present paper
impinges, as a reference state, on transport properties, should
be explored.
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