Synthesis of tri- and tetramines containing two 2,3-dihydroxypyrrolidine moieties and their inhibitory activity toward α-mannosidases

Sandrine Gerber-Lemaire,* ${ }^{* a}$ Florence Popowycz, ${ }^{\text {a }}$ Eliazar Rodriguez-García, ${ }^{a}$ Catherine Schütz, ${ }^{\text {a }}$ Ana T. Carmona Asenjo, ${ }^{\mathrm{b}}$ Inmaculada Robina, ${ }^{\mathrm{b}}$ and Pierre Vogel ${ }^{\mathrm{a}}$
${ }^{a}$ Institut de chimie moléculaire et biologique, Ecole Polytechnique Fédérale de Lausanne, BCH, CH-1015 Lausanne, Switzerland and ${ }^{b}$ Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, E-41071 Sevilla, Spain
E-mail: Sandrine.Gerber@epfl.ch

Dedicated to Professor Josef Muchowski on the occasion of his 65 ${ }^{\text {th }}$ birthday (received 20 Feb 03; accepted 08 Apr 03; published on the web 16 Apr 03)

Abstract

Through the reductive amination of N-[(tert-butoxy)carbonyl]-2,5-dideoxy-2,5-imino-3,4-O-isopropylidene-L-ribose with tetramethylenediamine, hexamethylenediamine, 2,7diaminofluorene, 4,4'-diaminodiphenylmethane and 1,4-(diaminomethyl)benzene, five tetramines containing two ($2 R, 3 R, 4 S$)-2-aminomethylpyrrolidine-3,4-diol moieties have been prepared and assayed for their inhibitory activities toward 24 glycosidases. Tetramines containing the tetramethylene or benzene-1,4-dimethylene linkers are more potent α mannosidase inhibitors than simple ($2 R, 3 R, 4 S$)-2-aminomethylpyrrolidine-3,4-diols. Triamines such as $(2 S, 3 R, 4 S)$-bis(3,4 -dihydroxy-pyrrolidin-2-ethyl)amine were also prepared and shown to be better α-mannosidase inhibitors than (2S,3R,4S)-2-(2-aminoethyl)pyrrolidin-3,4-diol.

Keywords: α-Mannosidase inhibitors, polyamines containing hydroxylated pyrrolidines, reductive amination

Introduction

Cell sociology involves a language based on molecular recognition between cell-surface carbohydrates and proteins. ${ }^{1}$ The biosynthesis of the surface oligosaccharides uses glycosyltransferases and glycosidases as catalysts. Inhibitors of these enzymes ${ }^{2}$ are important molecular tools for glycobiology, and can be used to modulate cellular functions. They are also potential drugs in new therapeutic strategies. ${ }^{3}$ Among the most potent glycosidase inhibitors are polyhydroxypiperidines (1,5-dideoxy-1,5-iminoalditols) that are mimics of the glycosyl cation
intermediates liberated during enzyme-catalyzed hydrolytic processes. ${ }^{4,5}$ Derivatives of 3,4dihydroxypyrrolidines (1,4-dideoxy-1,4-iminoalditols) also emerge as an important class of glycosidase ${ }^{4,5,6}$ and glycosyltransferase ${ }^{7}$ inhibitors. Simple meso-3,4-dihydroxypyrrolidine $\mathbf{1}$ is a non-selective, weak inhibitor of several glycosidases (Figure 1). ${ }^{8}$ We have found that derivatives $\mathbf{2 b}$ with $(2 R)$-aminomethyl side chains can be highly selective and competitive inhibitors of α mannosidases, especially for $\mathrm{Ar}=$ phenyl, thiophenyl. ${ }^{8}$

1

2a $\mathrm{R}=\mathrm{H}$ 2b $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ar}$

3

Figure 1. Inhibitors of glycosidases and glycosyltransferases.

Clinical trials have shown that swainsonine 3, a natural α-mannosidase inhibitor that contains a 4-amino-4-deoxy-mannofuranoside moiety, ${ }^{9,10}$ reduces solid tumors and hematological malignancies. ${ }^{11}$ Analogues of $\mathbf{3}$ have also shown interesting properties. ${ }^{12}$ Mannosidase inhibitors mediate increased secretion of mutant $\alpha 1$-antitrypsin Z. They are thus leads in the development of drugs for the chemoprophylaxis of liver injury and emphysema in patients with $\alpha 1$-antitrypsin Z deficiency. ${ }^{13}$ Mannostatin A and B isolated from the soil microorganism Streptoverticillum verticillus ${ }^{14}$ and a synthetic analogue ${ }^{15}$ are probably the most potent inhibitors of α mannosidases reported so far. ${ }^{16}$ Often α-mannosidase inhibitors that are monosaccharide mimics ${ }^{4 a, 17}$ also inhibit other types of glycosidases, ${ }^{18}$ in particular α-L-fucosidases. ${ }^{4 \mathrm{a}, 19}$ To become a drug, a good inhibitor must satisfy a number of conditions apart from its low toxicity and enzyme specificity. ${ }^{20}$ We have envisioned that polyamines containing two ($2 R, 3 R, 4 S$)-2-(aminomethyl)-3,4-dihydroxypyrrolidine fragments could be alternative α-mannosidase inhibitors with improved pharmacological properties. We report here the synthesis of five tetramines 4 (Figure 2). We have also prepared triamine 5 that contains two ($2 S, 3 R, 4 S$)-2-(1-aminoeth-2-yl)-3,4-dihydroxypyrrolidine moieties, as well as its enantiomer ent-5. These new compounds have been assayed for their inhibitory activity toward 24 commercially available glycosidases, and in particular toward α-mannosidase from jack bean, an enzyme known to be a useful model for mammalian α-mannosidases such as Golgi α-mannosidase II. ${ }^{21}$ Whereas triamine ent-5 does not inhibit any of the enzyme tested (except for a poor 38% inhibition of β glucosidase from almond at 1 mM concentration), its enantiomer 5 is a moderate inhibitor of α mannosidase from jack bean $\left(\mathrm{K}_{\mathrm{i}}=74 \mu \mathrm{M}\right)$ and from almond $\left(\mathrm{K}_{\mathrm{i}}=92 \mu \mathrm{M}\right)$. Among the five tetramines $\mathbf{4}$, best inhibitory activities toward these enzymes were found with $\mathbf{4 a}$ and $\mathbf{4 e}$. But contrary to inhibitors of type $\mathbf{2 b}$, these polyamines are less enzyme selective.

4
a: $\mathrm{A}=\left(\mathrm{CH}_{2}\right)_{4}$
b: $A=\left(\mathrm{CH}_{2}\right)_{6}$

d: $A=$

e: $A=$

5

Figure 2. Tri- and tetramines containing two 2,3-dihydroxypyrrolidine moieties.

Results and Discussion

Synthesis of the polyamines

Tetramines 4 were all prepared from aldehyde $\mathbf{6}^{8}$ by reaction with the corresponding diamine $\mathrm{H}_{2} \mathrm{~N}-\mathrm{A}-\mathrm{NH}_{2}$ (1.8 equivalent) in the presence of $\mathrm{NaBH}(\mathrm{OAc})_{3}{ }^{22}$ for in situ reduction of the resulting diimine intermediate (Scheme 1).

Scheme 1. Synthesis of tetramines 4.

The so-formed semi-protected tetramines were treated with aqueous $\mathrm{CF}_{3} \mathrm{COOH}$, at room temperature, to cleave the Boc and acetonide moieties. Overall yields based on 6 ranged from 50 to 90%.

Triamines 5 and ent- $\mathbf{5}$ were derived from aldehydes $\mathbf{8}$ and ent-8, themselves derived from Land D-arabinose, respectively ${ }^{23,24}$ (Scheme 2). Treatment of a $1: 1.1$ mixture of 8 and benzylamine with $\mathrm{NaBH}(\mathrm{OAc})_{3}$ in 1,2-dichloroethane resulted in the formation of $\mathbf{9}$ and $\mathbf{1 0}$ with 46% and 18% yield, respectively. Using a half equivalent of benzylamine, 10 was obtained in 55% yield. Hydrogenolysis of the benzyl group ($10 \% \mathrm{Pd} /$ charcoal, THF/MeOH) gave 11 in 98% yield. Deprotection under acidic conditions provided 5 in almost quantitative yield. The same reactions were applied to ent-8 providing ent-(9-13). Compound ent-8 was obtained from known 14^{24} after Boc-protection and reduction with DIBAL-H.

Scheme 2. Preparation of triamines 5 and ent-5.

Glycosidase inhibitory activities

Appropriate p-nitrophenyl pyranosides were used as substrates and commercially available glycosidases (see below and Table) were used as catalysts of the buffered hydrolysis under optimal $\mathrm{pH} .{ }^{25}$ At 1 mM concentration and under optimal pH conditions tetramines 4 and triamines 5 and ent-5 did not inhibit the following enzymes: α-L-fucosidase from bovine epididymis, α-D-galactosidases from coffee bean, Aspergillus niger and E. coli, β-galactosidase from orizae, β-D-mannosidase from Helix pomatia, $\beta-N$-acetylgalactosamidase from jack bean, bovine epididymis A and B. The inhibitory activities toward other glycosidases are reported in Table 1.

We have found that $(2 R, 3 R, 4 S)$-2-aminomethylpyrrolidine-3,4-diol 2a is a weak inhibitor of α-mannosidase from jack bean and from almond. This diamine also moderately inhibits β galactosidases, α-glucosidases and β-glucosidases. Derivatives $\mathbf{2 b}$ are much better and more selective α-mannosidase inhibitors. ${ }^{8}$ Thus, we expected that compounds 4 and 5 would also show improved inhibitory activities toward α-mannosidases. This is indeed the case for $\mathbf{4 a}$ with the tetramethylene linker, and for $\mathbf{4 e}$ with the p-benzenedimethylene spacer. Both are competitive inhibitors. The bad surprise is that these tetramines also inhibit other glycosidases, moderately though, except for $\mathbf{4 a}$ which is a good, non-competitive inhibitor of β-glucosidase from almond. This result suggests that 4a "sticks" to this enzyme and inhibits it for allosteric reasons, a mechanism different from that making $\mathbf{4 a}$ a competitive inhibitor of α-mannosidases. Tetramine $\mathbf{4 b}$ with the hexamethylene linker and analogues $\mathbf{4 c}$ and $\mathbf{4 d}$ with diphenylmethane linkers are poor inhibitors in terms of both potency and selectivity. They are even worse than simple diamine 2a. As ($2 S, 3 R, 4 S$)-2-(2-aminoethyl)pyrrolidine-3,4-diol 13 is a weak inhibitor of α-mannosidase, although the side chain is in a β-configuration rather than α, we envisioned that triamine 5 might have improved inhibitory activity. Interestingly, we find 5 to be a more potent α-mannosidase inhibitor than 13. Unfortunately, it is not a more selective inhibitor than 13 because it inhibits moderately a few α-glucosidases, β-glucosidases and α - N -acetylgalactosamidase from chicken liver (Table 1). As expected, triamine ent-5, which does not share the configuration of any of the hexoses liberated during the hydrolytical process catalyzed by the enzymes used in this study, ignores all these glycosidases.

Conclusions

The conjugation of two ($2 R, 3 R, 4 S$)-2-(2-aminomethyl)pyrrolidine-3,4-diols by their primary amines to alkane or arene linkers can generate potent α-mannosidase inhibitors. This work opens a new road in the search for new glycosidase inhibitors. Analogues of tetramines $\mathbf{4 a}$ and $\mathbf{4 e}$ that will be more enzyme selective remain to be made.

Table 1. Inhibitory activities of diamines $\mathbf{2 a}, \mathbf{2 b}$, triamines 5 and ent-5 and tetramines $\mathbf{4 a} \mathbf{a} \mathbf{- 4 e}$. Percentage of inhibition at 1 mM concentration, IC_{50} (in parenthesis) and Ki in $\mu \mathrm{M}$, optimal pH , $35^{\circ} \mathrm{C}^{25,26}$

Enzyme / inhibitor	2a	2 b	4a	4b	4c	4d	4 e	5	ent-5
β-galactosidase from									
E-coli	92\%	24\%	95\%	43\%	47\%	ni	37\%	ni	ni
bovine liver	ni	26\%	ni	24\%	95\%	82\%	41\%	ni	ni
Aspergillus niger	24\%	ni	ni	ni	ni	ni	40\%	22\%	ni
jack bean	76\%	ni	45\%	23\%	ni	ni	39\%	31\%	ni
α-glucosidase from									
yeast (maltase)	24\%	ni	88\%	37\%	ni	ni	55\%	ni	ni
rice (maltase)	53\%	ni	ni	ni	26\%	ni	ni	ni	ni
baker yeast (isomaltase)	98\%	ni	ni	69\%	ni	ni	86\%	50\%	ni
Aspergillus niger	ni	ni	ni	ni	ni	ni	28\%	26\%	ni
(amyloglucosidase)									
Rhyzopus mold (amyloglucosidase)	ni	ni	ni	ni	26\%	ni	39\%	ni	ni
β-glucosidase from									
almonds	97\%	68\%	97\%(160)	87\%(110)	35\%	52\%	85\%(99)	37\%	38\%
$\mathrm{Ki}=$			8(NC)	110 (C)			65(C)		
caldocellum sacch.	93\%	ni	90\%	76\%	36\%	29\%	67\%	26\%	ni
α-mannosidase from									
jack bean	81\%	92\%	76\%(330)	72\%	ni	47\%	95\%(50)	71\%(300)	ni
$\mathrm{Ki}=$	53(C)	7.4(C)	21 (C)				12 (C)	74 (C)	
almonds	51\%	69\%	85\%(92)	70\%	39\%	ni	81\%(145)	65\%(280)	ni
$\mathrm{Ki}=$		7(C)	10 (C)				48 (C)	92 (C)	
β-xylosidase from									
Aspergillus niger	ni	ni	ni	ni	ni	ni	26\%	ni	ni
$\alpha-N$-acetylgalactosamidase									
chicken liver	ni	ni	ni	92\%(100)	ni	ni	91\%(53)	ni	ni
$\underline{\mathrm{Ki}=}$				43 (C)			31 (C)		

$\mathrm{ni}=$ no inhibition, $\mathrm{C}=$ competitive, $\mathrm{NC}=$ non-competitive

Experimental Section

General Procedures. All commercially available reagents (Fluka, Aldrich) were used without further purification. Solvents were dried by standard methods. Light petroleum ether used refers to the fraction boiling at $40-60^{\circ} \mathrm{C}$. Solutions after reactions and extractions were evaporated in a
rotatory evaporator under reduced pressure. Liquid/solid flash chromatography (FC): columns of silica gel (Merck No. 9385 silica gel 60, 240-400 mesh). TLC for reaction monitoring: Merck silica gel $60 \mathrm{~F}_{254}$ plates; detection by UV light, Pancaldi reagent $\left[\left(\mathrm{NH}_{4}\right)_{6} \mathrm{MoO}_{4}, \mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}, \mathrm{H}_{2} \mathrm{SO}_{4}\right.$, $\mathrm{H}_{2} \mathrm{O}$] or KMnO_{4}. IR spectra: Perkin-Elmer-1420 spectrometer. Optical rotations were determined at room temperature on a Jasco DIP-370 polarimeter. [$\alpha]_{\mathrm{D}}$ values are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. ${ }^{1} \mathrm{H}$ NMR spectra: Bruker-ARX-400 spectrometer (400 MHz), Bruker AMX-300 spectrometer $(300 \mathrm{MHz}) ; \delta(\mathrm{H})$ in ppm relative to the solvent's residual ${ }^{1} \mathrm{H}$ signal $\left[\mathrm{CHCl}_{3}, \delta(\mathrm{H}) 7.27 ; \mathrm{CH}_{3} \mathrm{OD}\right.$, $\left.\delta(\mathrm{H}) 3.31 ; \mathrm{D}_{2} \mathrm{O}, \delta(\mathrm{H}) 4.79 ; \mathrm{DMSO}_{6}, \delta(\mathrm{H}) 2.54\right]$ as internal reference; all ${ }^{\mathrm{l}} \mathrm{H}$ assigments were confirmed by 2D-COSY-45 and 2D-NOESY spectra. ${ }^{13} \mathrm{C}$ NMR spectra: same instrument as above (100.6 MHz and 75.4 MHz); $\delta(\mathrm{C})$ in ppm relative to the solvent's C -signal $\left[\mathrm{CDCl}_{3}, \delta(\mathrm{C})\right.$ 77.0; $\mathrm{CD}_{3} \mathrm{OD}, \delta(\mathrm{C}) 49.8$; DMSO- $d_{6} \delta(\mathrm{C}) 39.7$] as internal reference; all ${ }^{13} \mathrm{C}$ assigments were confirmed by 2D-HMQC; coupling constants J in Hz. MS: Nermag R 10-10C, chemical ionization $\left(\mathrm{NH}_{3}\right)$ mode m / z (amu) [\% relative to base peak (100\%)]. High resolution mass spectrometry: Micromass AutoSpecQ, resolution of 10000 (5\% valley definition). Elemental analyses: Ilse Beetz, D-96301 Kronach, Germany.

Glycosidase inhibitions. A known protocol was applied. ${ }^{25,26}$ We verified that the delay of inhibitor/enzyme incubation did not affect the inhibition measurements. Under standard conditions, optimal inhibitory activities were measured after five minutes of incubation.

Reductive amination. General procedure A. To a solution of $N-[(t$-butoxy $)$ carbonyl $]-2,5-$ dideoxy-2,5-imino-3,4-O-isopropylidene-L-ribose ($200 \mathrm{mg}, 0.737 \mathrm{mmol}$) in anhydrous 1,2-dichloroethane (7 mL) were added the diamine ($0.6 \mathrm{eq}, 0.442 \mathrm{mmol}$) and $\mathrm{NaBH}(\mathrm{OAc})_{3}(1.8 \mathrm{eq}$, $281 \mathrm{mg}, 1.327 \mathrm{mmol})$. The solution was stirred at $50^{\circ} \mathrm{C}$ for 12 h and then poured into a sat. aq solution of $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The mixture was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was directly used in the deprotection step.

Reductive amination. General procedure B. To a solution of N-[(t-butoxy)carbonyl]-2,3,6-trideoxy-3,6-imino-4,5-O-isopropylidene-L- (or D-) arabino-hexose (1 mmol) in anhydrous 1,2dihloroethane (3 mL) were added benzylamine ($118 \mathrm{mg}, 1.1 \mathrm{mmol}$) and $\mathrm{NaBH}(\mathrm{OAc})_{3}(276 \mathrm{mg}$, $1.3 \mathrm{mmol})$. The solution was stirred at r.t. for 3 h and then poured into a sat. aq solution of $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The mixture was extracted with EtOAc (3 x 20 mL) and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$. After solvent evaporation under reduced pressure the residue was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 60: 1\right.$ to $\left.5: 1\right)$.

Deprotection. General procedure C. A solution of bis (pyrrolidine) derivatives in $\mathrm{CF}_{3} \mathrm{COOH} /$ $\mathrm{H}_{2} \mathrm{O}(4: 1 ; 5-10 \%)$ was stirred at $20^{\circ} \mathrm{C}$ for 2 h . After solvent evaporation in vacuo, the residue was purified by flash chromatography on silica gel ($\mathrm{MeCN} / \mathrm{aq} \mathrm{NH}_{3}$).

Deprotection. General procedure D. A solution of the protected pyrrolidine derivative (0.1 mmol) in $\mathrm{CF}_{3} \mathrm{COOH} \mathrm{H}_{2} \mathrm{O}(4: 1 ; 3 \mathrm{~mL})$ was stirred at $20^{\circ} \mathrm{C}$ for 2 h . The mixture was passed through a Dowex 50WX8 (100-200 mesh) column and eluted, successively with MeOH $(30 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and $\mathrm{NH}_{4} \mathrm{OH}(10 \%, 50 \mathrm{~mL})$. The fractions containing the unprotected product were concentrated to yield the corresponding pyrrolidine derivative.
(2R,3R,4S)-2-[[4-[[[(2R,3R,4S)-3,4-Dihydroxypyrrolidin-2-yl]methyl]amino]butyl]amino-methyl]pyrrolidine-3,4-diol (4a). Procedure A was applied to 1,4-diaminobutane ($45 \mu \mathrm{~L}$, $0.442 \mathrm{mmol})$ to afford crude $7 \mathbf{a}(180 \mathrm{mg})$. Deprotection according to procedure C gave $\mathbf{4 a}$ ($127 \mathrm{mg}, 90 \%, 2$ steps) as a pale orange oil. $\mathrm{R}_{f}=0.15\left(\mathrm{MeCN} / \mathrm{NH}_{4} \mathrm{OH} 1: 1\right) .[\alpha]_{589}^{25}=-106$, $[\alpha]_{577}^{25}=-262,[\alpha]_{546}^{25}=-409,[\alpha]_{435}^{25}=-690,[\alpha]_{405}^{25}=-1114\left(c=0.25, \mathrm{H}_{2} \mathrm{O}\right)$. IR (film): $\widetilde{v} 3500-$ 2900, 1440, 1200, 1140, 840, 800, 710, $695 \mathrm{~cm}^{-1} . \mathrm{UV}(\mathrm{MeCN}): \lambda_{\max }(\varepsilon) 195$ (1360). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta 4.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-4^{\mathrm{IV}}\right), 3.94\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} J=10.7,{ }^{3} J=3.9 \mathrm{~Hz}, \mathrm{H}-3, \mathrm{H}-3^{\mathrm{IV}}\right.$), 3.75 (ddd, $2 \mathrm{H},{ }^{3} J=10.7,{ }^{3} J=5.1,{ }^{3} J=3.3 \mathrm{~Hz}, \mathrm{H}-2, \mathrm{H}-2^{\mathrm{IV}}$), $3.23\left(\mathrm{dd}, 2 \mathrm{H},{ }^{2} J=9.3,{ }^{3} J=2.1, \mathrm{H}-5, \mathrm{H}-5^{\mathrm{IV}}\right.$), 3.13 (dd, 2H, $\left.{ }^{2} J=12.6,{ }^{3} J=5.1, \mathrm{H}-1 ', H-1{ }^{\prime \prime}\right), 3.09-3.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-5^{\mathrm{IV}}\right), 2.81\left(\mathrm{dd}, 2 \mathrm{H},{ }^{2} \mathrm{~J}=\right.$ $\left.12.6,{ }^{3} J=3.3, \mathrm{H}^{\prime} 1^{\prime}, \mathrm{H}-1{ }^{\prime \prime \prime}\right), 2.72-2.64$ (m, 4H, H-1", H-4"), 1.71-1.56 (m, 4H, H-2", H-3"). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}$): $\delta 76.9\left(\mathrm{~d}, \mathrm{C}-3, \mathrm{C}-3^{\mathrm{IV}}\right), 73.5\left(\mathrm{~d}, \mathrm{C}-4, \mathrm{C}-4^{\mathrm{IV}}\right), 60.7\left(\mathrm{~d}, \mathrm{C}-2, \mathrm{C}-2^{\mathrm{IV}}\right), 53.9(\mathrm{t}, \mathrm{C}-5, \mathrm{C}-$ 5^{IV}), 52.6 (t, C-1, C-1"'), 50.4 (t, C-1", C-4"), 26.3 (t, C-2", C-3"). CI-MS: m/z 319 (100, M + H^{+}), 293 (74), 204 (33), 133 (35), 102 (36), 84 (55). Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4}$ (318.42): C, 52.81; H, 9.50. Found: C, 52.79; H, 9.32.
(2R,3R,4S)-2-[[6-[[[(2R,3R,4S)-3,4-Dihydroxypyrrolidin-2-yl]methyl]aminohexyl]amino-methyl]pyrrolidine-3,4-diol (4b). Procedure A was applied to 1,6 -diaminohexane (51 mg , $0.442 \mathrm{mmol})$ to afford crude $7 \mathbf{b}(155 \mathrm{mg})$. Deprotection according to procedure C gave $\mathbf{4 b}$ ($86 \mathrm{mg}, 56 \%$ yield, 2 steps) as a colorless oil. $\mathrm{R}_{f}=0.1\left(\mathrm{MeCN}, \mathrm{NH}_{4} \mathrm{OH} 1 / 1\right) .[\alpha]_{589}^{25}=-54(\mathrm{c}=$ $0.5, \mathrm{H}_{2} \mathrm{O}$). IR (film): $\widetilde{v} 3500-2900,1450,1195,1150,840,800,705,700 \mathrm{~cm}^{-1} . \mathrm{UV}(\mathrm{MeCN}):$ $\lambda_{\max }(\varepsilon) 197(1450) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta 4.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-4^{\mathrm{IV}}\right), 3.95\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=5.4,{ }^{3} \mathrm{~J}=2.7\right.$ $\left.\mathrm{Hz}, \mathrm{H}-3, \mathrm{H}-3^{\mathrm{IV}}\right), 3.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-2^{\mathrm{IV}}\right), 3.29\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-5^{\mathrm{IV}}\right), 3.152 \mathrm{H},\left(2 \mathrm{H}, \mathrm{dd},{ }^{2} \mathrm{~J}=13.2\right.$, $\left.{ }^{3} J=4.8, \mathrm{H}-1 ', \mathrm{H}-1{ }^{\prime \prime} '\right), 3.09$ (m, 2H, H-5, H-5 ${ }^{\mathrm{IV}}$), 2.94 (dd, $2 \mathrm{H},{ }^{2} J=13.2,{ }^{3} J=3.1, \mathrm{H}-1 ', \mathrm{H}-1{ }^{\prime \prime}$ '), 2.73 (m, 4H, H-1", H-6"), 1.65-1.54 (m, 4H, H-2", H-5"), 1.38 (m, 4H, H-3", H-4"). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): \delta 77.0\left(\mathrm{~d}, \mathrm{C}-3, \mathrm{C}-3^{\mathrm{IV}}\right), 71.7\left(\mathrm{~d}, \mathrm{C}-4, \mathrm{C}-4^{\mathrm{IV}}\right), 60.7\left(\mathrm{~d}, \mathrm{C}-2, \mathrm{C}-2^{\mathrm{IV}}\right), 54.2\left(\mathrm{t}, \mathrm{C}-5, \mathrm{C}-5^{\mathrm{IV}}\right), 52.6$ (t, C-1, C-1"'), 50.9 (t, C-1", C-6"), 29.7 (t, C-2", C-5"), 26.3 (t, C-3", C-4"). CI-MS: m/z 347 (28, $\mathrm{M}+\mathrm{H}^{+}$), 274 (9), 232 (12), 117 (100), 98 (85), 86 (63). Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{4}$ (346.47): C, 55.47 ; H, 9.89; N, 16.17. Found: C, 55.18; H, 9.70; N, 16.01.
(2R,3R,4S)-2-[4-[4-[[[[(2R,3R,4S)-3,4-Dihydroxypyrrolidin-2-yl]methyl]amino]benzyl]phenyl-aminomethyl]pyrrolidine-3,4-diol (4c). Procedure A was applied to 4,4'-diaminodiphenylmethane ($88 \mathrm{mg}, 0.442 \mathrm{mmol}$) to afford crude $7 \mathrm{c}(150 \mathrm{mg})$. Deprotection according to procedure C gave 4c (113 mg, 60% yield, 2 steps) as a pale yellow oil. $\mathrm{R}_{f}=0.10\left(\mathrm{MeCN} / \mathrm{NH}_{4} \mathrm{OH} 4: 1\right)$. $[\alpha]_{589}^{25}=+27,[\alpha]_{577}^{25}=+34,[\alpha]_{546}^{25}=+41(\mathrm{c}=0.9, \mathrm{MeOH})$. IR (film): $\widetilde{v} 3400-3200,2950,1675$, 1515, 1450, 1205, 1140, 1025, $725 \mathrm{~cm}^{-1} . \mathrm{UV}(\mathrm{MeCN}): \lambda_{\max }(\varepsilon) 260$ (7250), 207 (13980). ${ }^{1} \mathrm{H}$ NMR (MeOD): $\delta 6.94,6.68$ ($2 \mathrm{~d}, 8 \mathrm{H},{ }^{3} \mathrm{~J}=8.5 \mathrm{~Hz}, \mathrm{H}-2^{2}, \mathrm{H}^{\mathrm{I}}, \mathrm{H}-3^{\mathrm{VI}}, \mathrm{H}-5^{\mathrm{VI}}$), 4.29 (m, 2H, H-4, $\mathrm{H}-4^{\mathrm{VI}}$), $4.08\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=8.6,{ }^{3} \mathrm{~J}=4.0 \mathrm{~Hz}, \mathrm{H}-3, \mathrm{H}-3^{\mathrm{VI}}\right.$), $3.80\left(\mathrm{bs}, 2 \mathrm{H}, 2 \mathrm{H}-1{ }^{\prime \prime}\right), 3.76\left(\mathrm{ddd}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=\right.$
9.1, $\left.{ }^{3} J=8.6,{ }^{3} J=3.7 \mathrm{~Hz}, \mathrm{H}-2, \mathrm{H}-2^{\mathrm{VI}}\right), 3.60\left(\mathrm{dd}, 2 \mathrm{H},{ }^{2} J=14.4,{ }^{3} J=3.7 \mathrm{~Hz}, \mathrm{H}-1^{\prime}, \mathrm{H}^{\mathrm{H}} \mathrm{I}^{\mathrm{V}}\right), 3.48(\mathrm{dd}$, $\left.2 \mathrm{H},{ }^{2} \mathrm{~J}=14.4,{ }^{3} \mathrm{~J}=4.0 \mathrm{~Hz}, \mathrm{H}-5, \mathrm{H}-5^{\mathrm{VI}}\right), 3.45\left(\mathrm{dd}, 2 \mathrm{H},{ }^{2} \mathrm{~J}=14.4,{ }^{3} \mathrm{~J}=3.7 \mathrm{~Hz}, \mathrm{H}-1\right.$ ', H-1 $\left.{ }^{\mathrm{V}}\right), 3.27$ (dd, $2 \mathrm{H},{ }^{2} \mathrm{~J}=14.4,{ }^{3} \mathrm{~J}=1.9 \mathrm{~Hz}, \mathrm{H}-5, \mathrm{H}-5{ }^{\mathrm{VI}}$). ${ }^{13} \mathrm{C}$ NMR (MeOD): $\delta 133.3$ (s, C-1", C-4 ${ }^{\mathrm{IV}}$), 133.2 (d, C-2", C-6", C-3 ${ }^{\text {IV }}, \mathrm{C}-5^{\mathrm{IV}}$), 122.3 ($\mathrm{s}, \mathrm{C}-4$ ", C-1 ${ }^{\text {IV }}$), 116.9 (d, C-3", C-5", C-2 $2^{\mathrm{IV}}, \mathrm{C}-6^{\mathrm{IV}}$), 77.3 (d, $\left.\mathrm{C}-3, \mathrm{C}-3^{\mathrm{VI}}\right), 73.5\left(\mathrm{~d}, \mathrm{C}-4, \mathrm{C}-4^{\mathrm{VI}}\right), 64.0\left(\mathrm{~d}, \mathrm{C}-2, \mathrm{C}-2^{\mathrm{VI}}\right), 53.3\left(\mathrm{t}, \mathrm{C}-5, \mathrm{C}-5^{\mathrm{VI}}\right), 47.1\left(\mathrm{t}, \mathrm{C}-1^{1}, \mathrm{C}-1^{\mathrm{V}}\right)$, 43.8 (t, C-1"'). Anal. calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4}$ (426.51): C, 64.77; H, 7.09; N, 13.14. Found: C, 64.34; H, 7.28; N, 12.99.
(2R,3R,4S)-2-[[7-[[[[(2R,3R,4S)-3,4-Dihydroxypyrrolidin-2-yl]methyl]amino]-9H-fluoren-2-yl]aminomethyl]pyrrolidine-3,4-diol (4d). Procedure A was applied with 2,7-diaminofluorene $(87 \mathrm{mg}, 0.442 \mathrm{mmol})$ to afford crude $7 \mathbf{d}(153 \mathrm{mg})$. Deprotection according to procedure C gave $4 \mathbf{d}\left(94 \mathrm{mg}, 50 \%\right.$ yield, 2 steps) as a pale yellow oil. $\mathrm{R}_{f}=0.09\left(\mathrm{MeCN} / \mathrm{NH}_{4} \mathrm{OH} 2 / 1\right) .[\alpha]_{589}^{25}=-62$, $[\alpha]_{577}^{25}=-74,[\alpha]_{546}^{25}=-103,[\alpha]_{435}^{25}=-107,[\alpha]_{405}^{25}=-130(c=1, \mathrm{MeOH})$. IR (film): $\widetilde{v} 3400-$ 3200, 2960, 1675, 1520, 1455, 1210, 1135, 125, 880, $765 \mathrm{~cm}^{-1} . \mathrm{UV}(\mathrm{MeCN}): \lambda_{\max }(\varepsilon) 308$ (5820), 215 (5680), 203 (6200). ${ }^{1} \mathrm{H}$ NMR (MeOD): $\delta 7.43$ (d, 2H, ${ }^{3} J=8.1 \mathrm{~Hz}, \mathrm{H}-3 "$, H-6"), 6.92 (bs, 2H, H-1", H-8"), 6.71 (d, 2H, ${ }^{3}$ J = $8.1 \mathrm{~Hz}, \mathrm{H}-4 ", \mathrm{H}-5$ "), 4.32 (m, 2H, H-4, H-4 ${ }^{\text {IV }}$), 4.13 (dd, $2 \mathrm{H},{ }^{3} J=8.5,{ }^{3} J=4.0 \mathrm{~Hz}, \mathrm{H}-3, \mathrm{H}-3^{\mathrm{IV}}$), 3.82 (ddd, $2 \mathrm{H},{ }^{3} J=8.5,{ }^{3} J=8.4,{ }^{3} J=3.8 \mathrm{~Hz}, \mathrm{H}-2, \mathrm{H}-2^{\mathrm{IV}}$), 3.73 (bs, 2H, H-9"), 3.67 (dm, 2H, ${ }^{2} J=13.3 \mathrm{~Hz}, \mathrm{H}-5, \mathrm{H}-5^{\mathrm{IV}}$), 3.52 (m, 2H, H-5, H-5 ${ }^{\mathrm{IV}}$), $3.51(\mathrm{dd}$, $2 \mathrm{H},{ }^{2} J=12.6,{ }^{3} J=4.0 \mathrm{~Hz}, \mathrm{H}-1$ ', H-1'"), 3.30 (dd, $2 \mathrm{H},{ }^{2} J=12.6,{ }^{3} J=1.8 \mathrm{~Hz}, \mathrm{H}-1$ ', H-1'"). ${ }^{13} \mathrm{C}$ NMR (MeOD): $\delta 148.2,146.2$ (2s, C-4a", C-4b", C-8a", C-9a"), 121.0 ($s, C-2 ", C-7 "), 120.5$ (d, C-3", C-6"), 114.2 (d, C-4", C-5"), 111.9 (d, C-1", C-8"), 75.7 (d, C-3, C-3 ${ }^{\text {IV }}$), 71.9 (d, C-4, C$\left.4^{\mathrm{IV}}\right), 62.5\left(\mathrm{~d}, \mathrm{C}-2, \mathrm{C}-2^{\mathrm{IV}}\right), 51.7$ (t, C-1', C-1"'), 45.7 (d, C-5, C-5 $\left.{ }^{\text {IV }}\right), 42.1$ (t, C-9"). CI-MS: m / z 427 (21, M + H ${ }^{+}$), 370 (14), 311 (50), 197 (28), 98 (100), 80 (57). Anal. calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4}$ (426.51): C, 64.77; H, 7.09. Found: C, 64.88; H, 7.23.
(2R,3R,4S)-2-[[4-[[[(2R,3R,4S)-3,4-Dihydroxypyrrolidin-2-yl]methyl]aminomethyl]benzyl]-aminomethyl]pyrrolidine-3,4-diol (4e). Procedure A was applied with 1,4-(diaminomethyl)benzene ($60 \mathrm{mg}, 0.442 \mathrm{mmmol}$) to afford crude $7 \mathrm{e}(157 \mathrm{mg})$. Deprotection according to procedure C gave $4 \mathbf{e}\left(89 \mathrm{mg}, 55 \%\right.$ yield, 2 steps) as a colorless oil. $\mathrm{R}_{f}=0.14\left(\mathrm{MeCN} / \mathrm{NH}_{4} \mathrm{OH}\right.$ 1:1). $[\alpha]_{589}^{25}=+57,[\alpha]_{577}^{25}=+77,[\alpha]_{546}^{25}=+83,[\alpha]_{435}^{25}=+93,[\alpha]_{405}^{25}=+110\left(c=0.65, \mathrm{H}_{2} \mathrm{O}\right)$. IR (film): $\widetilde{v} 3500-3000,1675,1425,1200,1130,835,800,740,700 \mathrm{~cm}^{-1} . \mathrm{UV}(\mathrm{MeCN}): \lambda_{\max }(\varepsilon)$ 197 (5600). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$): $\delta 7.50$ (bs, $4 \mathrm{H}, \mathrm{H}_{\text {arom }}$), 4.26 (m, $2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-\mathrm{Cl}^{\mathrm{VI}}$), 3.94 (s, 4H, $2 \mathrm{H}-1$ ", $2 \mathrm{H}-1^{\mathrm{IV}}$), $3.87\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=7.6,5.0 \mathrm{~Hz}, \mathrm{H}-3, \mathrm{H}-3^{\mathrm{VI}}\right), 3.30-3.25\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-2^{\mathrm{VI}}, \mathrm{H}-5, \mathrm{H}-5^{\mathrm{VI}}\right.$), 2.99-2.94 (m, 4H, H-1', H-1 ${ }^{\mathrm{V}}, \mathrm{H}-5, \mathrm{H}-5^{\mathrm{VI}}$), 2.79 (dd, $2 \mathrm{H},{ }^{2} \mathrm{~J}=12.5,{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz}, \mathrm{H}-1$ ', H-1V). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}$): $\delta 137.4$ ($\mathrm{s}, \mathrm{C}-1 \mathrm{l}^{\prime \prime}$, C-4'"), 129.2 (d, C-2"', C-3"', C-5"', C-6"'), 75.2 (d, C-3, C-3 ${ }^{\mathrm{VI}}$), $70.9\left(\mathrm{~d}, \mathrm{C}-4, \mathrm{C}-4^{\mathrm{VI}}\right), 59.9\left(\mathrm{t}, \mathrm{C}-1 \mathrm{l}, \mathrm{C}-1^{\mathrm{IV}}\right), 52.1\left(\mathrm{t}, \mathrm{C}-5, \mathrm{C}-5^{\mathrm{VI}}\right), 50.6\left(\mathrm{~d}, \mathrm{C}-2, \mathrm{C}-2^{\mathrm{VI}}\right), 50.0\left(\mathrm{t}, \mathrm{C}-1{ }^{1}\right.$, C-1 ${ }^{\mathrm{V}}$). CI-MS : m/z 368 (24, M M^{+}, 252 (7), 133 (100), 117 (59). Anal. calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4}$ (368.48): C 58.67; H 8.75; N 15.21. Found: C 58.42, H 8.60, N 15.12.
N-(tert-Butoxycarbonyl)-(2S,3R,4S)-2-[2-(benzylamino)ethyl]-3,4-O-isopropylidenepyrrol-idine-3,4-diol (9) and N, N-bis[N-(tert-butoxycarbonyl)-[(2S,3R,4S)-3,4-O-isopropylidenoxypyrrolidinyl]ethyl]benzylamine (10). Procedure B was applied to carbaldehyde $\boldsymbol{8}^{23}$ (298 mg , $1.05 \mathrm{mmol})$ affording $\mathbf{9}(178.8 \mathrm{mg}, 46 \%)$ as oil and $\mathbf{1 0}(123.4 \mathrm{mg}, 18 \%)$ as white solid.
9. $[\alpha]_{589}^{25}=+46\left(\mathrm{c}=0.94, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (KBr): $\widetilde{v} 3335,1705,1470,1405,1085,735,695 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 90^{\circ} \mathrm{C}$): $\delta 7.36-7.27\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 4.71-4.64(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4), 3.83(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-2), 3.75\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=13.6, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.70\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=13.6, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.67\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=7.0,{ }^{2} J=\right.$ $12.2, \mathrm{H}-5$), 3.13 (dd, $1 \mathrm{H},{ }^{3} \mathrm{~J}=3.3, \mathrm{H}-5$), 3.00 (bs, $1 \mathrm{H}, \mathrm{NH}$), 2.65 (ddd, $1 \mathrm{H},{ }^{2} \mathrm{~J}=11.6, \mathrm{H}-2$ '), 2.59 (ddd, $\left.1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 1.93\left(\mathrm{dq}, 1 \mathrm{H},{ }^{3} J=6.5,{ }^{2} J=13.3, \mathrm{H}-1^{\prime}\right), 1.81\left(\mathrm{dq}, 1 \mathrm{H},{ }^{3} J=6.1, \mathrm{H}-1{ }^{\prime}\right), 1.39(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.42$ and $1.26\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6} 90^{\circ} \mathrm{C}\right): \delta 153.4$ (s, CO),
 $78.4\left(\mathrm{~s}, \mathrm{CMe}_{3}\right), 57.3$ (d, C-2), $52.4\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{Ph}\right), 50.0(\mathrm{t}, \mathrm{C}-5), 45.3(\mathrm{t}, \mathrm{C}-2$ '), $28.8(\mathrm{t}, \mathrm{C}-1$ '), 27.6 (q , $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 26.0, $24.6\left(2 \mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$. CI-MS: m/z 377 (100, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$. CI-HRMS: m/z 377.2439 (calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}: 223.1446$).
10. $[\alpha]_{589}^{25}=+81\left(\mathrm{c}=0.98, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (KBr): $\widetilde{v} 1700,1400,1165,1100,870,735 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 7.36-7.16\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 4.49(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4), 4.53\left(\mathrm{dd}, 2 \mathrm{H},{ }^{3} \mathrm{~J}=6.1,{ }^{3} \mathrm{~J}=6.1\right.$, H-3), 3.83 (ddd, $2 \mathrm{H},{ }^{3} J=9.3,{ }^{3} J=6.1,{ }^{3} J=5.4, \mathrm{H}-2$), $3.80\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=12.9, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.77\left(\mathrm{dd},{ }^{2} J\right.$ $\left.=12.1,{ }^{3} J=7.1, \mathrm{H}-5\right), 3.60\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=12.9, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.24\left(\mathrm{dd}, 2 \mathrm{H},{ }^{2} J=12.1,{ }^{3} J=4.7, \mathrm{H}-5\right)$, $2.63\left(\mathrm{dt},{ }^{2} \mathrm{~J}=12.8,{ }^{3} \mathrm{~J}=7.8, \mathrm{H}-2{ }^{\prime}\right), 2.50\left(\mathrm{ddd}, 2 \mathrm{H},{ }^{2} \mathrm{~J}=12.8,{ }^{3} \mathrm{~J}=8.4,{ }^{3} \mathrm{~J}=4.4, \mathrm{H}-2{ }^{\prime}\right), 1.42(\mathrm{~s}, 18 \mathrm{H}$, $\left.{ }^{t} \mathrm{Bu}\right), 1.47,1.27\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 154.2$ (s, CO), 140.2 (s, Carom), 129.0, 127.8, 126.3 (3d, Carom), 112.2 (s, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 79.3$ (d, C-3), 77.3 (s, CMe_{3}), 77.3 (d, C-4), 58.2 (d, C-2), $58.0\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{Ph}\right), 50.7,50.6\left(2 \mathrm{t}, \mathrm{C}-5, \mathrm{C}-2\right.$ '), $28.3\left(\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.5(\mathrm{t}, \mathrm{C}-1$ '), 26.7, 25.0 (2q, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$. CI-MS: m/z 646 (100, $\mathrm{M}+\mathrm{H}^{+}$). CI-HRMS: $\mathrm{m} / \mathrm{z} 646.4069$ (calcd for $\mathrm{C}_{35} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O}_{8}+\mathrm{H}: 646.4067$).
N-(tert-Butoxycarbonyl)-(2S,3R,4S)-2-aminoethyl-3,4-O-isopropylidenepyrrolidine-3,4-diol (11). A solution of $9(131.6 \mathrm{mg}, 0.35 \mathrm{mmol})$ in abs. EtOH (7 mL) was hydrogenated with catalyst $\mathrm{Pd} / \mathrm{C}(10 \%, 55 \mathrm{mg})$ at 1 atm for 2 h . The mixture was filtered through Celite, and the filtrate was evaporated to give $11(101 \mathrm{mg}, 100 \%)$ as a syrup. $[\alpha]_{589}^{25}=+48\left(\mathrm{c}=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (KBr): $\widetilde{v} 1695,1400,1090,800,735 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 90^{\circ} \mathrm{C}\right): \delta 4.77-4.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$ 3, H-4), 3.84 (m, 1H, H-2), 3.68 (dd, $1 \mathrm{H},{ }^{2} J=12.0,{ }^{3} J=7.2, \mathrm{H}-5$), 3.14 (dd, $1 \mathrm{H},{ }^{3} J=3.4, \mathrm{H}-5$), 2.66-2.62 (m, 3H, H-2', H-2’, NH), 1.87-1.71 (m, 3H, H-1', H-1', NH), 1.43 and 1.29 ($2 \mathrm{~s}, 6 \mathrm{H}$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $1.41\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{DMSO}-\mathrm{d}_{6}, 90{ }^{\circ} \mathrm{C}$): $\delta 153.4(\mathrm{~s}, \mathrm{CO}), 111.2$ (s, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 79.2,76.8(2 \mathrm{~d}, \mathrm{C}-4, \mathrm{C}-3), 78.3\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 56.9(\mathrm{~d}, \mathrm{C}-2), 49.9(\mathrm{t}, \mathrm{C}-5), 38.2\left(\mathrm{t}, \mathrm{C}-2^{\prime}\right)$, 32.4 (t, C-1'), $27.6\left(\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.9$ and $24.6\left(2 \mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$. CI-MS: m/z $287\left(85,[\mathrm{M}+\mathrm{H}]^{+}\right)$. CIHRMS: m/z 287.1971 (calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}: 287.1980$).
N, N-Bis-[N-(tert-butoxycarbonyl)-[(2S,3R,4S)-3,4-O-isopropylidenoxy-pyrrolidinyl]ethyl]amine (12). A solution of $10(115 \mathrm{mg}, 0.18 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{MeOH}(1: 1,4 \mathrm{~mL})$ was hydrogenated with $\mathrm{Pd} / \mathrm{C}(10 \%, 28 \mathrm{mg})$ at 1 atm for 2.5 h . The mixture was filtered through a pad of Celite and evaporated in vacuo to afford 11 as a white solid ($97 \mathrm{mg}, 98 \%$ yield). $[\alpha]_{589}^{25}=+57$ (c = 0.77, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (KBr): $\widetilde{v} 3335,1705,1470,1405,1085,865,735 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}): δ 4.77-4.70 (m, 4H, H-3, H-4), 3.84 (m, 2H, H-2), 3.68 (dd, $2 \mathrm{H},{ }^{2} J=12.0,{ }^{3} J=7.2, \mathrm{H}-5$), 3.14 (dd, $\left.2 \mathrm{H},{ }^{2} \mathrm{~J}=12.0,{ }^{3} \mathrm{~J}=3.4, \mathrm{H}-5\right), 2.66-2.62\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 1.87-1.71$ (m, 5H, H-1', NH), 1.43, 1.29 $\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.41\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CMe}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.\mathrm{d}_{6}\right): \delta 153.4(\mathrm{~s}, \mathrm{CO}), 111.2(\mathrm{~s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 79.2(\mathrm{~d}, \mathrm{C}-3), 78.3\left(\mathrm{~s}, \mathrm{CMe}_{3}\right), 76.8(\mathrm{~d}, \mathrm{C}-4), 56.9(\mathrm{~d}, \mathrm{C}-2), 49.9(\mathrm{t}, \mathrm{C}-5), 38.2$ (t, C-2'),
32.4 (t, C-1'), $27.6\left(\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.9$, $24.6\left(2 \mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$. CI-MS: m/z $556\left(100, \mathrm{M}+\mathrm{H}^{+}\right)$. CIHRMS: m/z 556.3593 (calcd for $\mathrm{C}_{28} \mathrm{H}_{49} \mathrm{~N}_{3} \mathrm{O}_{8}+\mathrm{H}: 556.3598$).
(2S, 3R, 4S)-2-Aminoethylpyrrolidine-3,4-diol (13). Deprotection of 11 ($94.3 \mathrm{mg}, 0.33 \mathrm{mmol}$) according to procedure D gave $13(47 \mathrm{mg}, 98 \%)$ as viscous oil. $[\alpha]_{589}^{25}=+16(\mathrm{c}=1.1, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR (MeOD): $\delta 4.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.92\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=4.3, \mathrm{H}-3\right), 3.00-2.92(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-5)$, 2.84-2.77 (m, 3H, H-5b, H-2', H-2'), 1.84 (dq, $1 \mathrm{H},{ }^{2} J=14.0,{ }^{3} J=7.1, H-1{ }^{\prime}$), $1.71\left(\mathrm{dq}, 1 \mathrm{H},{ }^{3} J=\right.$ 7.0, H-1'). ${ }^{13} \mathrm{C}$ NMR (MeOD): $\delta 73.9,73.4$ (2d, C-4, C-3), 60.6 (d, C-2), 51.5 (d, C-5), 39.8 (d, C-2'), 32.2 (d, C-1'). CI-MS: m/z 147 (100, [M+H] ${ }^{+}$). CI-HRMS: m/z 147.1134 (calcd for $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}: 147.1135$).
N,N-Bis-[[(2S, 3R, 4S)-3,4-dihydroxy-pyrrolidinyl]ethyl]amine (5). Deprotection of 12 (100 $\mathrm{mg}, 0.18 \mathrm{mmol}$) according to procedure D gave triamine $5(49.5 \mathrm{mg}, 100 \%)$ as viscous oil. $[\alpha]_{589}^{25}=+8(\mathrm{c}=0.5, \mathrm{MeOH})$. IR $(\mathrm{KBr}): \widetilde{v} 3295,1690,1460,1410,1095,805 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (MeOD): $\delta 4.20$ (m, 2H, H-4), 3.92 (dd, 2H, $\left.{ }^{3} J=4.3,{ }^{3} J=4.2, \mathrm{H}-3\right), 3.00-2.92(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-$ 5), 2.84-2.77 (m, 6H, H-5, H-2'), $1.84\left(\mathrm{dq}, 2 \mathrm{H},{ }^{2} J=14.0,{ }^{3} J=7.1, \mathrm{H}-1^{\prime}\right), 1.71\left(\mathrm{dq}, 2 \mathrm{H},{ }^{2} J=14.0\right.$, $\left.{ }^{3} J=7.0, \mathrm{H}-1{ }^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR (MeOD): $\delta 73.9$ (d, C-3), 73.4 (d, C-4), 60.6 (d, C-2), 51.5 (t, C-5), 39.8 (t, C-2'), 32.2 ($\mathrm{t}, \mathrm{C}-1$ '). CI-MS: m/z 276 ($80, \mathrm{M}+\mathrm{H}^{+}$). CI-HRMS: m/z 276.1922 (calcd for $\mathrm{C}_{28} \mathrm{H}_{49} \mathrm{~N}_{3} \mathrm{O}_{8}+\mathrm{H}: 276.1923$).
Ethyl N-(tert-butoxycarbonyl)-2,3,6-trideoxy-3,6-imino-4,5-O-isopropylidene-D-arabino-2hexanoate (15). To a solution of ethyl 2,3,6-trideoxy-3,6-imino-4,5-O-isopropylidene-D-arabino-2-hexanoate (14) ${ }^{24}(2.87 \mathrm{~g}, 12.5 \mathrm{mmol})$ in dry pyridine $(35 \mathrm{~mL})$ was added a solution of $(\mathrm{Boc})_{2} \mathrm{O}(3.06 \mathrm{~g}, 13.8 \mathrm{mmol})$ in pyridine $(20 \mathrm{~mL})$. The reaction was left at $\mathrm{r} . \mathrm{t}$. for 2 h and then evaporated. The crude product was dissolved in $\operatorname{AcOEt}(100 \mathrm{~mL})$ and washed twice with brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated. Column chromatography of the residue (ether/petroleum ether, 1:5 to 1:2), gave $15(3.78 \mathrm{~g}, 92 \%)$ as an oil. $[\alpha]_{589}^{25}=-68(\mathrm{c}=1.2$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (KBr): $\widetilde{v} 2980,2940,1720,1700,1380,1090 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 90{ }^{\circ} \mathrm{C}$): δ $4.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 4.73(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 4.13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 4.08\left(\mathrm{q}, 2 \mathrm{H},{ }^{2} \mathrm{~J}=7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.60$ (dd, $\left.1 \mathrm{H},{ }^{3} J=6.5,{ }^{2} J=12.7, \mathrm{H}-6\right), 3.26\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=2.4, \mathrm{H}-6{ }^{\prime}\right), 2.85\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=4.7,{ }^{2} J=16.0\right.$, $\mathrm{H}-2), 2.50\left(\mathrm{dd}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=9.6, \mathrm{H}-2{ }^{\prime}\right), 1.40\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.41,1.27\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.19(\mathrm{t}$, $3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR (DMSO- $\mathrm{d}_{6} 90^{\circ} \mathrm{C}$): $\delta 170.0$ (s, CO), 153.3 (s, CO of Boc), 111.1 (s, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 78.9(\mathrm{~d}, \mathrm{C}-4), 78.7\left(\mathrm{~s}, \mathrm{CMe}_{3}\right), 76.9(\mathrm{~d}, \mathrm{C}-5), 59.0\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 56.0(\mathrm{~d}, \mathrm{C}-3), 50.0(\mathrm{t}$, C-6), 33.8 (t, C-2), $27.6\left(\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.4,24.5\left(2 \mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 13.4\left(\mathrm{q}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$. CI-MS: m/z $330\left(60,[\mathrm{M}+\mathrm{H}]^{+}\right)$. Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{6}$ (329.39): C, 58.34; H, 8.26; N, 4.25. Found: C, 58.49; H, 8.16; N, 4.32.

N -(tert-Butoxycarbonyl)-2,3,6-trideoxy-3,6-imino-4,5-O-isopropyliden-D-arabinohexose
(ent-8). To a solution of ethyl N-(tert-butoxycarbonyl)-2,3,6-trideoxy-3,6-imino-4,5-O-iso-propyliden-D-arabino-2-hexanoate (15) ($0.76 \mathrm{~g}, 2.32 \mathrm{mmol}$) in dry dichloromethane (10 mL), was added dropwise a solution of DIBAL-H in dichloromethane ($1 \mathrm{M}, 4.6 \mathrm{~mL}, 4.6 \mathrm{mmol}$) at $78^{\circ} \mathrm{C}$ under Ar. After 2 h at $-78^{\circ} \mathrm{C} \mathrm{MeOH}(4 \mathrm{~mL})$ was slowly added, and the reaction mixture was left to warm up to r.t. Then the mixture was cooled to $0^{\circ} \mathrm{C}, \mathrm{HCl}(1 \mathrm{M}, 10 \mathrm{~mL})$ was added, and the mixture was extracted with dichloromethane $(4 \times 50 \mathrm{~mL})$. The organic layer was washed
with saturated aqueous NaHCO_{3}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated. Column chromatography of the residue (ether/petroleum ether 1:4 to $1: 2$) gave ent-8 ($0.48 \mathrm{~g}, 72 \%$) as viscous oil. $[\alpha]_{589}^{25}=80\left(\mathrm{c}=0.68, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (KBr): $\widetilde{v} 2935,1725,1400,1090 \mathrm{~cm}^{-1} .1 \mathrm{H}$ NMR (DMSO-d $\left.d_{6}, 90^{\circ} \mathrm{C}\right): \delta 9.69\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=1.7, \mathrm{CHO}\right), 4.79-4.71(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-5), 4.21\left(\mathrm{c}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=\right.$ 6.6, H-3), $3.60\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=6.4,{ }^{2} \mathrm{~J}=12.3, \mathrm{H}-6\right), 3.29\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=2.3, \mathrm{H}-6\right.$ '), 2.74 (dd, 2H, H-2, $\mathrm{H}-2$ '), $1.40\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.41,1.27\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR (DMSO-d $\mathrm{d}_{6}, 90^{\circ} \mathrm{C}$): $\delta 200.0$ (s, CHO), 153.4 (s, CO), 111.1 ($\left.\mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 79.0,76.8$ (2d, C-4, C-5), 78.9 ($\mathrm{s}, \mathrm{CMe}_{3}$), $55.2(\mathrm{~d}$, C-3), 50.3 (t, C-6), $42.9(\mathrm{t}, \mathrm{C}-2), 27.6\left(\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.6$ and $24.5\left(2 \mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) . \mathrm{FAB}-\mathrm{MS}: \mathrm{m} / \mathrm{z}$ $286\left(20,[\mathrm{M}+\mathrm{H}]^{+}\right)$. Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{5}$ (285.34): C, 58.93; H, 8.12; N, 4.91. Found: C, 58.69; H, 8.39; N, 5.16.

N -(tert-Butoxycarbonyl)-(2R,3S,4R)-2-[2-(benzylamino)ethyl]-3,4-O-isopropylidenepyrrol-idine-3,4-diol (ent-9) and N, N-bis[N-(tert-butoxycarbonyl)-[(2R,3S,4R)-3,4-O-isopropylidenoxypyrrolidinyl]ethyl]benzylamine (ent-10). Procedure B was applied to carbaldehyde ent-8 ($327 \mathrm{mg}, 1.15 \mathrm{mmol}$) to afford ent-9 ($155.3 \mathrm{mg}, 36 \%$) as an oil and ent-10 ($95.5 \mathrm{mg}, 13 \%$) as a white solid.
ent-9. $[\alpha]_{589}^{25}=-47\left(c=0.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. CI-HRMS: $m / z 377.2439$ (calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}$: 377.2446).
ent-10. $[\alpha]_{589}^{25}=-88\left(\mathrm{c}=0.54, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. CI-MS: $\mathrm{m} / \mathrm{z} 668\left(40, \mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right), 646\left(60, \mathrm{M}+\mathrm{H}^{+}\right)$. CIHRMS: $m / z 646.4057$ (calcd for $\mathrm{C}_{35} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O}_{8}+\mathrm{H}: 646.4067$). NMR and IR spectra were identical to those of its enantiomer 10.
N-(tert-Butoxycarbonyl)-(2R,3S,4R)-2-aminoethyl-3,4-O-isopropylidene-pyrrolidine-3,4-diol (ent-11). A solution of ent-9 ($146.3 \mathrm{mg}, 0.39 \mathrm{mmol}$) in abs. EtOH (8 mL) was hydrogenated with catalyst $\mathrm{Pd} / \mathrm{C}(10 \%)(62 \mathrm{mg})$ at 1 atm for 2 h . The mixture was filtered through Celite and the filtrate was evaporated to give ent-11 $(111 \mathrm{mg}, 100 \%)$ as syrup. $[\alpha]_{589}^{25}=-55\left(\mathrm{c}=0.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. CIMS: m/z 287 [50\%, (M+H) $\left.{ }^{+}\right]$. CI-NSHR: m/z 287.1963 (cald for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}: 287.1971$). This product showed NMR and IR spectra identical to those of its enantiomer 11.
N, N-Bis[N-(tert-butoxycarbonyl)-[(2R,3S,4R)-3,4-O-isopropylidenoxy-pyrrolidinyl]ethyl] amine (ent-12). A solution of ent-10 ($90 \mathrm{mg}, 0.14 \mathrm{mmol})$ in THF-MeOH ($1.5 \mathrm{~mL} / 1.5 \mathrm{~mL}$) was hydrogenated for 1.5 h under 1 atm with $\mathrm{Pd} / \mathrm{C}(10 \%$ on charcoal, 22 mg$)$. The mixture was filtered through a pad of Celite and concentrated in vacuo to afford ent-11 (78 mg, 100\%) as white solid. $[\alpha]_{589}^{25}=-62\left(c=0.45, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. CI-MS: $m / z 556\left(100, \mathrm{M}+\mathrm{H}^{+}\right)$. CI-HRMS: m / z 556.3589 (calcd for $\mathrm{C}_{28} \mathrm{H}_{49} \mathrm{~N}_{3} \mathrm{O}_{8}+\mathrm{H}$: 556.3598). NMR and IR spectra were identical to those of its enantiomer 12.
(2R,3S,4R)-2-Aminoethylpyrrolidine-3,4-diol (ent-13). Deprotection of ent-11 (102 mg, $0.36 \mathrm{mmol})$ according to procedure D gave ent-13 $(52 \mathrm{mg}, 91 \%)$ as thick oil. $[\alpha]_{589}^{25}=-12(\mathrm{c}=$ 0.1, MeOH). CI-HRMS m/z 147.1136 (calcd for $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}: 147.1134$). This product showed NMR spectra identical to those of its enantiomer 13.
N,N-bis-[[(2R,3S,4R)-3,4-Dihydroxypyrrolidinyl]ethyl]amine (ent-5). Deprotection of ent-12 $(77 \mathrm{mg}, 0.14 \mathrm{mmol})$ according to procedure D gave ent-5 $(37 \mathrm{mg}, 97 \%)$ as oil. $[\alpha]_{589}^{25}=-10(\mathrm{c}=$
0.78, MeOH). CI-MS: $m / z 276$ ($80, \mathrm{M}+\mathrm{H}^{+}$). CI-HRMS $m / z 276.1919$ (calcd for $\mathrm{C}_{28} \mathrm{H}_{49} \mathrm{~N}_{3} \mathrm{O}_{8}+\mathrm{H}$: 276.1923). NMR and IR spectra were identical to those of its enantiomer 5.

Acknowledgments

The Swiss National Science Foundation (grants $n^{\circ} 20-63667.00$ and 2100-063567.00/1), the European COST (COST D13/0001/99) program, the "Office Fédéral de l'Education et de la Science" (Bern), the "Dirreción General de Investigación Científica y Técnica" of Spain (grant n ${ }^{\circ}$ BQU-2001-3779) and SOCRATES (EPFL/Sevilla) programs are gratefully acknowledged for financial support. We also thank Dr. Vladimir Kren of the Academy of Sciences of the Czech Republic for suggesting to us this investigation.

References

1. (a) Morenem, K. W.; Trimble, R. B.; Herscovics, A. Glycobiology 1994, 4, 113. (b) Varki, A. Glycobiology 1993, 3, 97. (c) Crocker, P. R.; Feizi, T. Curr. Opin. Struct. Biol. 1996, 6, 679. (d) Dwek, R. A. Chem. Rev. 1996, 96, 683.
2. (a) Kirby, A. J. Acc. Chem. Res. 1984, 17, 305. (b) Gorenstein, D. G. Chem. Rev. 1987, 87, 1047. (c) Sinnott, M. L. Chem. Rev. 1990, 90, 1171. (d) Jeong, J. H.; Murray, B. W.; Takayama, S.; Wong, C. H. J. Am. Chem. Soc. 1996, 118, 4227. (e) Ganem, B. Acc. Chem. Res. 1996, 29, 340. (f) Bols, M. Acc. Chem. Res. 1998, 31, 1. (g) Heightman, T. D.; Vasella, A. T. Angew. Chem., Int. Ed. 1999, 38, 750. (h) Ichikawa, Y.; Lin, Y. C.; Dumas, D. P.; Shen, G. J.; Garcia-Jonceda, E.; Williams, M. A.; Bayer, R.; Ketcham, C.; Walker, L. E.; Paulson, J. C.; Wong, C. H. J. Am. Chem. Soc. 1992, 114, 9283. (i) Qiao, L. Murray, B. W.; Shimazakin, M.; Schultz, J.; Wong, C. H. J. Am. Chem. Soc. 1996, 118, 7653. (j) Jefferies, I.; Bowen, B. R. Bioorg. Med. Chem. Lett. 1997, 7, 1171. (k) Palcic, M. M.; Heerze, L. D.; Srivastava, O. P.; Hindsgaul, O. J. Biol. Chem. 1989, 264, 17174.
3. (a) Fernandes, B.; Sagman, U.; Auger, M.; Demetrio, M.; Dennis, J. W. Cancer Res. 1991, 51, 718. (b) Robinson, K. M.; Begovic, M. E.; Rhinerhardt, M. E.; Heineke, E. W.; Ducep, J. B.; Kastner, P. R.; Marshall, F. N.; Danzin, C. Diabetes 1991, 40, 825. (c) Platt, F. M.; Reinkensmeier, G.; Dwek, R. A.; Butters, T. D. J. Biol. Chem. 1997, 272, 19365. (d) Lapierre, F.; Holme, K.; Lam, L.; Tressler, R. J.; Storm, N.; Wee, J.; Stack, R. J.; Castellot, J.; Tyrrell, D. J. Glycobiology 1996, 6, 355. (e) Mehta, A.; Zizmann, N.; Rudd, P. M.; Block, T. M.; Dwek, R. A. FEBS Lett. 1998, 430, 17. (f) Kolter, T. Angew. Chem., Int. Ed. 1997, 36, 1955. (g) Fan, Q. J.; Ishii, S.; Asano, N.; Suzuki, Y. Nat. Med. 1999, 5, 112. (h) Cox, T.; Lachman, R.; Hollack, C.; Aerts, J.; van Weely, S.; Hrebicek, M.; Platt, F.; Butters, T.; Dwek, R.; Moyses, C.; Gow, I.; Elstein, D.; Zimran, A. Lancet 2000, 355, 1481.
4. (a) Stütz, A. E. Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond; WileyVCH: Weinheim, 1999. (b) Asano, N.; Nash, R. J.; Molineux, R. J.; Fleet, G. W. J. Tetrahedron: Asymmetry 2000, 11, 1645. (c) Asano, N.; Nishida, M.; Kato, A.; Kizu, H.; Matsui, K.; Shimida, Y.; Itoh, T.; Baba, M.; Watson, A. A.; Nash, R. J.; de Q Lilley, X.; Watkin, D. J.; Fleet, G. W. J. J. Med. Chem. 1998, 41, 2565. (d) Martin, O. R.; Saavedra, O. M.; Xie, F.; Liu, L.; Picasso, S.; Vogel, P.; Kizu, H.; Asano, N. Bioorg. Med. Chem. Lett. 2001, 9, 1269.
5. (a) Jespersen, T. M.; Dong, W.; Sierks, M. R.; Skrydstrup, T.; Lundt, I.; Bols, M. Angew. Chem., Int. Ed. 1994, 33, 1778. (b) Ichikawa, Y.; Igarashi, Y. Tetrahedron Lett. 1995, 36, 4585. (c) Igarashi, Y.; Ichikawa, M.; Ichikawa, Y. Bioorg. Med. Chem. Lett. 1996, 6, 553. (d) Ichikawa, Y.; Igarashi, Y.; Ichikawa, M.; Suhura, Y. J. Am. Chem. Soc. 1998, 120, 5854. (e) Williams, S. J.; Hos, R.; Whiters, S. G. J. Am. Chem. Soc. 2000, 122, 2223. (f) Nishimura, Y.; Shitara, E.; Adachi, H.; Toyoshima, M.; Nakajima, M.; Okami, Y.; Takeuchi, T. J. Org. Chem. 2000, 65, 2. (j) Liu, H.; Liang, X.; Sфhoel, H.; Bülow, A.; Bols, M. J. Am. Chem. Soc. 2001, 123, 5116, (h) Jensen, H.; Bols, M. J. Chem. Soc., Perkin Trans. 1 2001, 905.
6. (a) Fleet, G. W. J.; Nicholas, S. J.; Smith, P. W.; Evans, S. V.; Fellows, L. E.; Nash. R. J. Tetrahedron Lett. 1985, 26, 3127. (b) Asano, N.; Oseki, K.; Kizu, H.; Matsui, K. J. Med. Chem. 1994, 37, 3701. (c) Asano, N.; Nishida, M.; Miyauchi, M.; Ikeda, K.; Yamamoto, M.; Kizu, H.; Kameda, Y.; Watson, A. A.; Nash, R. J.; Fleet, G. W. J. Phytochemistry 2000, 53, 379.
7. (a) Saotome, C.; Kanie, Y.; Kanie, O.; Wong, C. H. Bioorg. Med. Chem. 2000, 8, 2249 references cited therein. (b) Saotome, C.; Wong, C. H.; Kanie, O. Chem. Biol. 2001, 8, 1061.
8. (a) Popowycz, F.; Gerber-Lemaire, S.; Demange, R.; Rodriguez-García, E.; CarmonaAsenjo, A. T.; Robina, I.; Vogel, P. Bioorg. Med. Chem. Lett. 2001, 11, 2489. (b) Popowycz, F.; Gerber-Lemaire, S.; Rodriguez-García, E.; Schütz, C.; Vogel, P. Helv. Chim. Acta, in press.
9. (a) White, S. L.; Nagai, T.; Akiyama, S. K.; Reeves, E. J.; Grzegorzewski, K.; Olden, K. Cancer Commun. 1991, 3, 83. (b) Olden, K.; Breton, P.; Grzegorzewski, K.; Yasuda, Y.; Gause, B. L.; Oredipe, O. A.; Newton, S. A.; White, S. L. Pharmacol.Ther. 1991, 50, 285. (c) Asano, N. J. Enzyme Inhibition 2000 15, 215. (d) Carver, J.; Dennis, J. W.; Shah, P. US Patent 5773239A, 30 Jun. 1998; Chem. Abstr. 1998, 129, 95683.
10. Colegate, S. M.; Dorling, P. R.; Huxtable, C. R. Austr. J. Chem. 1979, 32, 2257.
11. Elbein, A. D.; Molyneux, R. D. Iminosugars as Glycosidase Inhibitors; Nojirimycin and Beyond, A. E. Stütz, Ed; Wiley-VCH: Weinheim, 1999, Chapt.11, pp 216-251.
12. (a) Goss, P. E.; Baptiste, J.; Fernades, B.; Baker, M.; Dennis, J. W. Cancer Res. 1994, 54, 1450. (b) Goss, P. E.; Reid, C. L.; Bailey, D.; Dennis, J. W. Clin. Cancer Res. 1997, 3, 1077.
(c) P. D. Rye, N. V. Bovin, E. V. Vlasova, R. A. Walker, Glycobiology 1995, 5, 385.
13. (a) Pearson, W. H.; Guo, L. Tetrahedron Lett. 2001, 42, 8267. (b) Pearson, W. H.; Perlmutter, D. H. Tetrahedron Lett. 2001, 42, 8273.
14. (a) Aoyagi, T.; Yamamoto, T.; Kojiri, K.; Morishima, H.; Nagai, M.; Hamada, M.; Takeuchi, T.; Umezawa, H. J. Antibiot. 1989, 42, 883. (b) Morishima, H.; Kojiri, K.; Yamamoto, T.; Aoyagi, T.; Nakamura, H.; Iitaka, Y. J. Antibiot. 1989, 42, 100. (c) Tropea, J. E.; Kaushal, G. P.; Pastuszak, I.; Mitchell, M.; Aoyagi, T.; Molyneux, R. J.; Elbein, A. D. Biochem. 1990, 29, 10062. (d) Berecibar, A.; Grandjean, C.; Siriwardena, A. Chem. Rev. 1999, 99, 779.
15. Ogawa, S.; Morikawa, T. Bioorg. Med. Chem. Lett. 2000, 10, 1047.
16. (a) Ogawa, S.; Morikawa, T. Eur. J. Org. Chem. 2000, 1759. (b) Ogawa, S.; Morikawa, T. Bioorg. Med. Chem. Lett. 1999, 9, 1499. (c) Wong, C. H.; Provencher, L.; Porco, J. A.; Jung, S. H.; Wang, Y. F.; Chen, L. R.; Wang, R.; Steensma, D. H. J. Org. Chem. 1995, 60, 1492.
17. Winkler, D. A. J. Med. Chem. 1996, 39, 4332.
18. See e.g. Davis, B. G.; Brandstetter, T. W.; Hackett, L.; Winchester, B. G.; Nash, R. J.; Watson, A. A.; Griffiths, R. C.; Smith, C.; Fleet, G. W .J. Tetrahedron 1999, 55, 4489.
19. (a) Andersen, S. M.; Ekhart, C.; Lundt, I.; Stütz, A. E. Carbohydr. Res. 2000, 326, 22. (b) Kim, Y. J.; Takatsuki, A.; Kogoshi, N.; Kitahara, T. Tetrahedron 1999, 55, 8353. (c) Joubert, M.; Defoin, A.; Tarnus, C.; Streith, J. Synlett 2000, 1366.
20. See e.g. (a) Lipper, R. A. Modern Drug Discovery 1999, 55. (b) Lipinsky, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Adv. Drug Delivery Rev. 1997, 23, 3.
21. Howard, S.; He, S.; Whithers, S. G. J. Biol. Chem. 1998, 273, 2067.
22. Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D. J. Org. Chem. 1996, 61, 3849.
23. (a) Thompson, D. K.; Hubert, C. N.; Wightman, R. H. Tetrahedron 1993, 49, 3827. (b) Cardona, F.; Robina, I.; Vogel, P. J. Carbohydr. Chem. 2000, 19, 555.
24. Robina, I.; Gearing, R. P.; Buchanan, J. G.; Wightman, R. H. J. Chem. Soc., Perkin Trans. 1 1990, 2622;
25. (a) Brandi, A.; Cicchi, S.; Cordero, F. M.; Frigneoli, B.; Goti, A.; Picasso, S.; Vogel, P. J. Org. Chem. 1995, 60, 6806. (b) Picasso, S.; Chen. Y.; Vogel, P. Carbohydr. Lett. 1994, 1, 1.
26. Saul, R.; Chambers, J. P.; Molyneux, R. J.; Elbein, A. D. Arch. Biochem. Biophys. 1983, 221, 593.
