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Notation

the set of d-dimensions real numbers

the set of positive real numbers

the set of complex numbers

the set of positive integer

the set of natural numbers

the empty set

the space in R or sample space

the space of functions f which are m times continuously differentiable
on {2

the set of Lebesgue measurable function f on [a,b], p € [1, o]

the set of strongly-measurable, square-integrable H-valued random
variables

the set of the subspace of the divergence-free vector fields in L?

the subspace of L? consisting of functions that the weak derivative
% Helongs to L2

the space of functions f which are absolutely continuous on [a, b
Mittag-Leffler function with parameters a and

the expectation

complete probability space

bounded linear operator from Banach space X to itself

norm in L?(Q)

inner product in L*(Q)

the smaller one between a and b, i.e., min{a,b}

an arbitrary positive constant, which may be different from line to
line and even in the same line
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Introduction

The classical heat equation 0;u = Awu describes heat propagation in a homogeneous
medium. The time fractional diffusion equation dfu = Aw with 0 < a < 1 has
been widely used to model anomalous diffusion exhibiting subdiffusive behavior,
e.g., due to particle sticking and trapping phenomena. While in normal diffusions
(described by the heat equations or more general parabolic equations), the mean
square displacement of a diffusive particle behaves like const-t for ¢ — 0o, the time-
fractional diffusion equation exhibits a behavior like const-t* for ¢ — oo. This is
the reason why time fractional equations with 0 < a < 1 are called subdiffusion
equations in the literature and for the case 1 < a < 2 are called superdiffusion
equations. Hence, in recent decades, scientists have developed many new models that
naturally involve fractional differential equations, which demonstrate the anomalous
diffusion phenomena appearing in the real world successfully, see e.g., [1], 21, 24|, [26],
A7, 56, 59 45] and references therein.

Fractional Calculus has a long history, and its origins can be tracked back to
the end of 17th century. The first main steps of the theory date back to the first
half of the 19th century, although this subject has become very active only over the
last few decades. Derivatives and integrals of non-integer order are very suitable
for the description of properties of various real materials, e.g., in mechanics (theory
of viscoelasticity and viscoplasticity), biochemistry (modeling of polymers and pro-
teins), electrical engineering (transmission of ultrasound waves), medicine (modeling
of human tissue under mechanical loads) etc. For more applications and references
we refer the reader to [20], 211, 311 [45] 47, 52 56, [59) [78] and references therein.

There are several kinds definitions of fractional calculus, here we only introduce
Riemann-Liouville and Caputo time fractional derivatives which are frequently used
in current literature. The classical form of fractional calculus is given by Riemann-
Liouville integral, which is essentially described below,

12 f(t) = ﬁ / (t — 7y f(r)dr,

where T'(a) is the Gamma function defined by I'(@) := [ t* 'e~'dt. Similar to
definition of Riemann-Liouville integral, the Riemann-Liouville fractional derivative

is defined by

(“Dp () = 577;1;—& (1) =~ i - (%)n/o (t—7)" " f(r)dr, n<a<n+l.

13
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Another option for computing fractional derivative is the Caputo fractional one.
It was introduced by Michelo Caputo in 1967, Caputo’s definition is illustrated as
follows:

(“D () = ! ] /0 (t— T)n_a_lf(n)(T)dT, n—1<a<n.

I'n—«
In contrast to Riemann-Liouville fractional derivative, the advantages of Caputo
factional derivative are: (a) when solving differential equations using Caputo’s defi-
nition, it is not necessary to define the fractional order initial conditions; (b) f™ ()
is zero when f(t) is constant and its Laplace transform is expressed by means of the
initial values of the function and its derivative.

From the mathematical point of view, the deterministic partial differential equa-
tions have been well studied. A. Friedman and B. Hu in [30] analyzed the bifurcation
from stability to instability for a free boundary problem modeling tumor growth by
Stokes equation. T. Caraballo and J. Real in [17] studied 2D Navier-Stokes equa-
tions with delays. R. N. Wang and D. H. Chen and T. J. Xiao in [78] investigated
the abstract fractional Cauchy problems with almost sectorial operators etc. How-
ever, when we consider a physical system in the real world, we have to consider
some influence of internal, external, or environmental noises. Besides, the whole
background of physical system may be difficult to describe deterministically.

Therefore, in recent years, there has been growing interest in stochastic partial
differential equations (see, e.g.,[12, 13| [14] 15 29, B9, 40, 56, 68, (9, 79, €I]). In
order to have a much better description of real models, we are able to consider some
randomness which can be described by some kinds of white or colored noise or some
other types of stochastic terms. In this project, we are mainly interested in apply-
ing two kinds of noises: Brownian motion/Wiener Process and Fractional Brownian
motion.

e Brownian motion/Wiener process

In 1828 the Scottish botanish Robert Brown observed that pollen grains sus-
pended in liquid performed an irregular motion. The motion was later explained
by the random collisions with the molecules of the liquid. To describe the motion
mathematically it is natural to use the concept of a stochastic process By(w), inter-
preted as the position at time ¢ of the pollen grain w. In mathematics, Brownian
motion is described by the Wiener process, a continuous time stochastic process. It
is one of the best known Lévy processes and occurs frequently in pure and applied
mathematics, economics and physics, etc.

The Brownian motion By(w) is characterized by four facts:

(2) Bi(w) is almost surely continuous;

(3) B;(w) has independent increments, which means that if 0 < s < t; < 59 < 1,
then By, (w) — By, (w) and By, (w) — By, (w) are independent random variables;

(4) Bi(w) — Bs(w) ~ N(0,t —s) (for 0 < s <t).
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N (p, 0?) denotes the normal distribution with expected value p and variance o2

Based on these properties of Brownian motion, it is possible to represent B; as a
generalized stochastic process called white noise process. Suppose that H is a right-
continuous, adapted and locally bounded process, if {m,} is a sequence of partitions
of [0,t] with mesh going to zero, then the Ito integral of H with respect to B up to
time t is a random variable

K3

HdB = lim > H, (B,—B,,) in L*Q).

[ti, ,ti] Emp,

Indeed, Ito integrals are martingales, this gives [t0 integral an important compu-
tational advantage, such as, the Itd isometry (Lemma |1.11)) which will be used
frequently in our analysis.

e Fractional Brownian motion

A. N. Kolmogorov was the first to consider continuous Gaussian processes with
stationary increments and with self-similarity properties, it means that for any a > 0,
there exists b > 0 such that

Law(X (at);at > 0) = Law(bX (t);t > 0).

It turns out that such processes with zero mean have a special correlation function:

B (X()X(5)) = 5 + 1Pt — ),

where 0 < H < 1, which is called Hurst index. Notice that fractional Brownian
motion is neither a semimartingale (except the case H = 1/2 when it is a Brownian
motion) nor a Markov process. The former prevents the use of a well-established
integration theory, the latter means that there is no direct connection between frac-
tional Brownian motion and differential operators. However, it is closely connected
with fractional calculus and can be represented as a “ fractional integral” (with the
help of a comparatively complicated hypergeometric kernel) via the Wiener process
not only on infinite, but also on finite intervals. Such a representation, together
with the Gaussian property of fractional Brownian motion and the Holder property
of its trajectories (fractional Brownian motion with Hurst index H is Holder up
to order H) permits us to create an interesting and specific stochastic calculus for
fractional Brownian motion. But, the technique has one main point: it is harder to
obtain a proper notion of integration as Hurst index H is smaller; the more irregular
paths of the stochastic process are , the harder it is to integrate against them. It is
worth mentioning that in [I3], the authors established a technical lemma (Lemma
which is crucial to the stochastic integral with respect to fractional Brownian
motion when considering the Hurst parameter H € (1/2,1), this point of view is
adopted in our thesis.

We also want to mention that, obviously, the future evolution of a system does
not only depend on its current state, its past history does determine its future
behavior too. Therefore, the retarded differential equations have been becoming
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an important area of applied mathematics, such as high velocity fields in wind
tunnel experiments, or other memory processes, or biological motivations like species
growth or incubating time in disease models among many others, for example, [12],
13), [16], 17, 18, 25, 57, 58, 62, R0, &1].

Motivated by above considerations, we will study in this work time fractional
stochastic lattice system, impulsive system and 2D Stokes system to convince readers
that such kind of differential equations is an important subject nowadays.

This PhD project is split into four chapters. In Chapter 1, we recall some basic
definitions, properties and lemmas about fractional calculus and stochastic process
which will be used throughout the project. Chapter 2 is devoted to studying the
existence and uniqueness of solutions as well as the asymptotic behavior of stochas-
tic lattice systems with a Caputo time fractional derivative. Next, in Chapter 3,
we are going to investigate the well-posedness and dynamics of a kind of stochas-
tic fractional impulsive differential equations with infinite delay in phase space PC
(piecewise continuously). At beginning, a much more complicated model is consid-
ered (problem @), only well-posedness and asymptotic behavior can be analyzed
in Sections 3.2 and 3.3. In order to go further step, later, a quite general model
is studied in Section 3.4 (problem ), because of higher regularity of this original
model, we are not only able to obtain well-posedness to this problem, but also global
attracting sets (general case/ singleton case). At last, the main goal of Chapter 4
is to construct the well-posedness of stochastic time fractional 2D-Stokes equations
with delay in the phase space C((—h,0]; L*(Q; L2)), where h < oo.

Below we will describe in more details the content of each chapter.

e Preliminaries

Chapter 1 is divided into three sections. In Section 1.1, we mainly recall ba-
sic concepts/properties to Riemann-Liouville time fractional derivative. Next, the
Caputo fractional derivative is defined via Riemann-Liouville fractional derivative.
As pointed out by Lemma [1.6] D* is a left inverse of J%, not a right inverse, when
we want to obtain the mild solutions to time fractional differential equations, the
Laplace transform of the Caputo fractional derivative provides us an alternative to
obtain it.

In Section 1.2, some basic results concerning the theory of stochastic processes
are presented. Indeed, Lemma and inequality guarantee us to deal with
stochastic integral with respect to finite/infinite Brownian motion, respectively.
Moreover, we are able to handle stochastic integrals with respect to fractional Brow-
nian motion by virtue of Lemma [1.13]

Additionally, some examples of time fractional stochastic functional differential
equations from applications are listed in Section 1.3 to end this chapter.

e Stochastic lattice systems with a Caputo time fractional derivative
Lattice systems have attracted much attention in the literature, which arise
naturally in a wide variety of applications where the spatial structure possesses a
discrete character as well as in the spatial discretization of continuous problems.
Therefore, in Chapter 2, we will study a kind of fractional stochastic lattice system.
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Let X be a separable Hilbert space with norm || - || and inner product (-, -). Then
L2(); X) is a Hilbert space of X-valued random variable with norm (E|| - ||?)z and
inner product E(-, -).

In this chapter, when no confusion is possible, D* and D¢ denote the Caputo
fractional derivative, and Caputo fractional substantial derivative (see Definition
of order a with o > 0, respectively.

We first consider the existence of solutions of the fractional order SDEs,

Dew(t) = f(t,z(t) + g() 2L,  t> 0’% <a<l, (1)
2(0) =z € L* (% X)

and
Dra(t) = f(t,2() + () B, 1200 <a<1, (2)
z(0) =z € L2(Q; X),

in the Hilbert space L*(Q; X).

Instead of using a fixed point theorem to prove the existence and uniqueness of
solutions to problems of this chapter, we will follow the approach of Lakshmikantham
and Vatsala [52], who proved a Peano local existence result for fractional ordinary
differential equations.

Let f : [0,00) x L*(; X) — L*(Q; X) be sequentially weakly continuous in
bounded sets, and ¢ : [0,00) — X measurable.

(R1) Suppose f and g are bounded maps, i.e.,
E|f(t,2)|* < M?,  |lg@)|* <M, forall (t,2) € Ry,

where Ry = {(t,x) : 0 < ¢ < T and E||z —z||*> < b*}. We are able to prove the
initial value problem possesses at least one solution z(-) defined globally

in time (Theorems [2.5 and [2.6)).

(Ry) In addition to conditions of (Ry), also let b* > 12E||zo||?, the initial value prob-
lem ([2]) possesses at least one solution z(-) defined globally in time (Theorems

2.7 and [2.8).

Furthermore, imposing Lipschitz conditions on terms f and g, we prove the
existence and uniqueness of solutions of the fractional order SDEs,

{D"‘x(t) = f(talt) + gt o() D > 0,% <a<l, 5

z(0) = zg € L*(; X)

and

{D‘S"x(t) = F(t2() + gt 2 () EQ, > o,% ca<l, "

z(0) = 2o € L*(; X),
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in L?(Q; X). Let f, g : [0,00) x L*(Q; X) — L*(Q; X) be measurable functions
satisfying for all z, y € L?(Q2; X) and ¢ € [0, T],

(
El|f(t,2) = [t p)|” + Ellg(t.x) — gt y)|I* < LE||z — y|?
for some constants L. In addition, let f and g be bounded maps, i.e.,
E||lf(t, z)|* < M?, Elg(t, z)|* < M?, for all (¢t,z) € Ry,
where Ry = {(t,x) : 0 <t < T and E|z — z0|*> < b?}. We obtain

(R3) for every zy € L*(%; X), there exists a unique solution to problems (3)), (4),
respectively (Theorem [2.10)).

The details how to prove these results can be found in Theorem [2.5} Theorem

2.10lin Section 2.2.
Section 2.3 is devoted to investigating the following stochastic lattice system
with Caputo fractional substantial time derivative of the form

Deai(t) + (— 1P AP (1) + Aa(t) = filwi(8) + g:() 22, >0,

IZ<0) = Xy, 1 € 7.
where, 1/2 < a < 1, B(t) is a standard scalar Brownian motion on an underlying
complete filtered probability space (2, F,{F;}ier,P), and A € R, p is any positive
integer, AP = Ao---0 /A, ptimes. A denotes the discrete one-dimensional Laplace
operator, which is defined by Ax; = ;1 +x;_1 —2x;. We also write 01 x; = x4 — a4,
0~ x; = x; — x;—1 and define

DF — A%, p even,
T otAtE, p odd.

The natural phase space for such an infinite dimensional system of differential
equations, fractional or not, is the Hilbert space

62 = {x = (.ﬁEi)iEz,l’i eR: Z.T? < +OO},

i€z
with the inner product and norm
(z,y) = inyia | = 2%27 Vo = (2i)icz, Y= (Yi)iez € £,
i€Z i€z

Let L?(Q; ¢?) denote the Hilbert space of all strongly measurable, square-integrable
(?-valued random variables with the inner product and norm

E(x,y):/inyidIP’, Il = El2lP)},  Va.y € L(Q:0).
Q

1EL

In Section 2.3.1, suppose that
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(Hy) The operators f : L*(Q; (%) — L*(Q;¢%) and g : [0, +00) — ¢2, given compo-
nentwise by (f(z)); = fi(z;) and (g(t)); = ¢:i(t), i € Z, are well defined and
bounded, and ¢ is measurable.

(Hy) The f; : L*(;R) — L*(;R) are sequentially weakly continuous in bounded
sets.

(Hs) The f; : L*(O;R) — L*(Q;R) satisty E|fi(2)]* < |ki1|* + K3E|z|? for all
x € L*(R), where ky = (ky;)iez € €% and ky > 0.

(H4) There exists a positive constant M’ such that for all ¢ > 0,

t
[ e e gy i < ar
0

(Hs) E|fix) — fi(y)> < L'Elx — yP? for any z, y € L*(%R), where L' > 0.
We obtain the following results:

(R4) The initial value problem ({5]) has at least one solution if (H;)-(Hs) hold (The-

orem [2-11).

(R5) Let o (the coefficient of Caputo fractional substantial derivative) be large
enough and (Hz)-(H,) hold, then the solutions of initial value problem
define globally in time, also the estimation of absorbing set of problem is

derived (Corollary [2.13]).

(Rg) Let o be sufficiently large and conditions (H;), (Hs)-(Hjs) hold, then there
exists a unique global solution to problem (Theorem [2.14]).

Once we derive the estimation of absorbing set (Lemma , immediately, it
is possible to study the existence of absorbing set to problem (Theorem .
Moreover, in the strong mean-square topology sense, the uniformly asymptotic sta-
ble of the solutions to problem is shown (Theorem to end Chapter 2.

e Fractional stochastic impulsive differential equations
The theory of impulsive differential equations has become an active area due to
its wide applications in communications, mechanics, electrical engineering, medicine,
biology, etc.
So, the aim of Chapter 3 is to address the issues of well-posedness and dynamics
to the following problems
Dea(t) = Ax(t) + f(t,2,) + g(t, 2) 3L + h(1)22L ¢ >,
t#t,, 3<a<l,
Ax(ty) = o(ty) —a(ty) = Lu(z(t;)), k=12,
z(t) = ¢(t), te€ (—o0,0],
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and

dB§ (t)

Dga(t) = Aw(t) + 117" f(t ) + (11 g(t, 2) S5 + (1 h()] =5~

t>0, t#t, O0<a<l,
Az(ty) =x(tf) —x(ty) = L(z(ty)), t=ty, k=1,2,---,
a(t) = ¢(t), te(—o0,0],

(7)

where D¢ is the Caputo fractional derivative of order 0 < a < 1, I}™® is the
(1 — a)-order fractional integral operator. For both models () and (7)), z(-) takes
values in the separable Hilbert space H. A : D(A) C H — H is the infinitesimal
generator of an a-order fractional compact and analytic operator T, (t)(t > 0).
B(t) and Bf(t) denote, respectively, a K-valued Q-cylindrical Brownian motion
and fractional Brownian motion. The fixed time ¢, where the impulses take place,
satisfy 0 =tp < t; < -+ <ty — 400 as k — o0.

To achieve our goal, in Section 3.1, we first present the abstract phase space PC in
which we will establish our results properly. Let L?(£2;H) denote the Banach space
of all strongly-measurable, square-integrable H-valued random variables equipped
with the norm ||u()||7. = E|lu(-)||*>. The abstract phase space PC is defined by

PC = {5 : (—00,0] — L*(%; H) is Fy-adapted and continuous except in at

most a countable number of points {6}, at which there exist £(6;")

and £(0;) with £(0,) = £(0;), and  sup eE|£(0)]* < oo},

0e(—00,0]

for some fixed parameter v > 0. The norm of this Banach space PC is endowed with

||§||pc=( sup eWEng(e)nQ)?, ¢ e P

0 (—o00,0]

With the help of Laplace transform of Caputo fractional derivative, the mild
solutions to problems @ and are stated in Definitions and , respectively.

Secondly, in Section 3.2, the existence of mild solution to problem @ is ana-
lyzed. To do this, we use the Picard method and do estimations on each impulsive
interval, together with the assumptions that a-order fractional solution operator
T,(t) (t > 0) and the a-resolvent family S,(t) (¢ > 0) are compact (Theorem [3.11)).
Analogously, the existence of mild solution to problem is also proved (Theorem
. Next, general results on the continuous dependence of mild solutions to prob-
lems () and (7)) on initial value are proved (Theorems[3.14and [3.15). When dealing
with fractional impulsive differential equations, we need to do estimation on each
impulse interval first, then combine them by induction to obtain final results.

Thirdly, we are interested in analyzing asymptotic behavior to our models. Prov-
ing the existence of global mild solution in time is first step to go further. To do
so, we focus on dynamics of problem @ in Section 3.3. Impose assumptions that
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a-order fractional solution operator T, (t) and an a-resolvent family S, (¢) are con-
trolled by exponential decay functions,

ITL(®)] < Me™ . ||Sa(®)] < Me (1 +7Y),  Wt>0, M>1,  (8)

together with Lipschitz conditions on nonlinear terms f and g, it is proved mild
solution to problem @ is unique and defined globally in time (Theorem . We
end up this section with showing the exponential asymptotic behavior to our model,
although the idea to prove long time behavior is standard, infinite impulses pose big
challenge for us. To overcome this difficulty, taking advantages of the definition of
PC norm and properties of exponential calculus (v > 2u), by doing estimation on
each impulse interval, the expected result is proved (Theorem .

To conclude this chapter, Section 3.4 is devoted to analyzing the asymptotic
behavior of problem . We have studied well-posedness and exponential decay be-
havior to problem @ in Section 3.3, however, the lack of compactness of the a-order
resolvent operator S, (t) does not allow us to establish the existence and structure of
attracting sets, which are a key concept for understanding the dynamical properties
of the model. Heuristically, in our fractional situation, the a-order fractional solu-
tion operator T, (t) is compact which has been proved in [78], therefore, the analysis
of well-posedness and dynamics to problem is presented in Section 3.4 to make
our work complete. First, the globally existence and uniqueness of mild solution
are proved due to assumption (8) on fractional solution operator T, (¢) (Theorem
. Next, making use of the relationship between PC norm and exponential decay
parameter of fractional solution operator T,(t) (v > 2u), we are capable of showing
mild solutions to problem ([7)) are bounded uniformly with respect to bounded sets of
initial conditions (Theorem @D We emphasize such a priori estimation is crucial
for our work in Sections 3.4.1 and 3.4.2.

In Section 3.4.1, a general result considering the existence of a minimal com-
pact set which is globally attracting is presented in phase space PC. Thanks to
the compactness of fractional solution operator T,(t), together with the definition
of PC norm, by Arzela-Ascoli theorem, the desired goal is obtained (Lemma .
Furthermore, by a standard way, the properties of the omega limit set and the com-
pactness of minimum attracting sets are proved (Theorems and . Beyond
these general results, if we want to obtain more details of the geometrical struc-
ture of this set, we need to impose stronger conditions. Therefore, in Section 3.4.2,
Lipschitz condition ensures the uniqueness of solution to problem , moreover, a
priori estimation about uniform boundness of solutions is exponential decay, which

implies the attracting set is a singleton (Theorems [3.25] [3.27)).

e Fractional stochastic 2D-Stokes differential equations

The well-posedness of flow problems in a viscous fluid is crucial for many areas
of science and engineering, for example, the automotive and aerospace industries,
as well as nanotechnology. In the latter case of microfluidic structures, we often
encounter flow problems at moderate viscosities, from the mathematical point of
view, the Stokes equations provide a first approximation of the more general Navier-
Stokes equations in situations where the flow is nearly steady and slow, and has small
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velocity gradients, so the inertial effects can be ignored.

For this reason, in Chapter 4, we will analyze the following time fractional
stochastic delay incompressible flow problem, i.e., the non-stationary 2D-Stokes
equations,

D{u — kAu+ Vp = f(t,u,) + g(t,ut)%t(t) in R? ¢>0,

V-u=0 in R? t>0, (9)
u(t,z) = p(t, ) in R? ¢ ¢ [—h,0],

where f and g are external forcing terms containing some hereditary or delay char-
acteristics, and ¢ is the initial data in the interval of time ¢ € [—h,0], where h is
a fixed positive number, and W (t) is a standard scalar Brownian motion/ Wiener
process on an underlying complete filtered probability space {Q, F, {F:}+>0, P}.
Chapter 4 is divided into 3 sections. In Section 4.1, the background why we
study stochastic fractional 2D-Stokes equations with delay is stated, also we in-
troduce some basic lemmas with respect to Mittag-Leffler families E,(—t*A) and
E,.(—t*A) that will be used throughout this chapter. In Section 4.2, we analyze
the well-posedness results with bounded delay in a proper phase space X5 := {u :
[—h,T] x Q — L*(Q; L?)}. Using fixed point theory, we prove the existence and
uniqueness of mild solution to problem @ with bounded delay when external terms
f and g are Lipschitz, T is small enough (Theorem [4.8). Next, by extension, it is
possible to prove the solution of problem @D is globally defined in time (Theorem
, meanwhile, the continuity with respect to initial value of mild solution to our
model is proved by the same method (Proposition . In Section 4.3, similarly, we
prove the same results as in Section 4.2 to problem @D with unbounded delay but
in different phase space Cx(H) := {¢ € C((—o0,0]; H) : limg_,_~ ©(#) exists in H}.
In addition, the advantages of the phase space Cxy that we adopt in Section 4.3
are illustrated comparing with another alternative phase space, C7(H) := {p €

C((—00, 0 H) : $upye(_oe) - €7 [0(0) s < 00} (Remark [L11).

e Future work

We conclude this PhD project with showing our future work: time fractional
stochastic delay 2D-Navier Stokes equations with multiplicative noise, that is a
further work of Chapter 4. P.M. Carvalho-Neto and G. Planas analyzed in [22] the
following Navier-Stokes model with Caputo fractional time derivative,

Dy — kAu+u-Vu+Vp=f in RY, t >0,
V-u=0 in RY, t>0, (10)

u(0,x) = ug in RY,

well-posedness of problem , the existence and eventual uniqueness of mild so-
lutions as well as their regularity in time are analyzed completely. Combing our
previous concerns, our model can be more realistic if we introduce stochastic and
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delay,
Dfu— kAu+u - Vu+Vp = ft,u,) + g(t,u) 28 in RY, ¢t >0,
V-u=0 in RN, t>0, (11)
u(t,z) = p(t, o) in RY, t € [~h,0].

We are strongly interested in problem , it is well known that when we deal with
the integer time stochastic Navier-Stokes equations in the phase space L*(Q; C([0, T7;
X)), with the help of 1t6’s isometry and Burkholder-Davis-Gundy’s inequality, a
priori estimation can be handled smoothly. However, for time fractional stochastic
Navier-Stokes equations, if the same phase space were adopted, we would face essen-
tial troubles: (a) [t0’s isometry only holds true for the integer time derivative rather
than time fractional derivative; (b) Burkholder-Davis-Gundy’s inequality cannot be
used since the integral is not a martingale (the main reason is the singular kernel
appearing in the stochastic integral). This inspires us to find a new technique to
obtain some results to problem ([11)).
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Summary

La ecuacién del calor clasica 0;u = Aw describe la propagacion del calor en un medio
generalmente homogéneo. No obstante, la version fraccionaria de dicha ecuacion,
Ofu = Au with 0 < a < 1, ha sido usada para modelar difusiones anémalas que
exhiben un comportamiento subdifusivo debido, por ejemplo, a fenémenos de cap-
tura y uniones de particulas. Mientras que en las difusiones normales (descritas por
la ecuacién del calor o ecuaciones en derivadas parciales parabdlicas més generales)
el desplazamiento en media cuadréatica de una particula difusiva es del orden de ¢
cuando t — 00, en el caso de derivadas fraccionarias con respecto al tiempo dicho
desplazamiento es del orden de t“ cuando t — oo. Por esta razon, las ecuaciones
fraccionarias de orden 0 < o < 1 son conocidas como ecuaciones subdifusivas (o
de subdifusion) en la literatura, mientras que en el caso 1 < o < 2 se llaman su-
perdifusivas (o de superdifusién). Asi, durante las ultimas décadas, los cientificos
han desarrollado nuevos modelos que involucran de una manera natural ecuaciones
diferenciales fraccionarias, mostrando de una forma exitosa los fenémenos de difusion
anémala que aparecen en el mundo real (véanse, e.g., [1l 2], 24, 26| 47, [56] 59 [45]
y las referencias mencionadas en estos trabajos).

El cdlculo fraccionario posee una larga historia, y sus origenes se remontan a los
finales del siglo XXVII. Los primeros pasos de la teoria datan de la primera parte
del siglo XIX, aunque ha sido durante las iltimas décadas cuando esta teoria se ha
mostrado mas activa. Derivadas e integrales de érdenes no entero son muy adecuadas
para describir propiedades de diversos materiales del mundo real, por ejemplo, en
Mecénica (teoria de viscoelasticidad y viscoplasticidad), Bioquimica (modelado de
polimeros y proteinas), Ingenierfa eléctrica (transmisién de ondas de ultrasonidos),
Medicina (modelado de tejidos humanos bajo el efecto de cargas mecanicas) etc.
Para mas aplicaciones y referencias sobre el tema se pueden consultar los trabajos
[20, 211, 31}, 45], 47, 52, 56l 59, [78] y las referencias alli mencionadas.

Aunque existen varias definiciones y conceptos para el calculo fraccionario, en
esta memoria solamente introduciremos los conceptos de derivadas fraccionarias en el
sentido de Riemann-Liouville y de Caputo ya que son las méas usadas frecuentemente
en la literatura actual. La forma clésica del calculo fraccionario viene dada por la
integral de Riemann-Liouville, que esencialmente esta descrita por

12 f(t) = ﬁ / (t — 7y f(r)dr,

25
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donde I'(@) es la funcién gamma de Euler dada por T'(a) := [;*¢* 'e~'dt. De
forma similar a la definicién de la integral de Riemann-Liouville, la definicién de la
derivada fraccionaria en el sentido de Riemann-Liouville estda dada por

d" 1 d\" [
L - —a—1
THO) = —I""“f(t) = — t—1)" T)Ydr, n<a<n-+1.
(i N0 = gl i0 =2 (5) [t na<ns
Otra opcion para computar las derivadas fraccionarias es utilizar la definicién
introducida en el ano 1967 por Michelo Caputo, y que viene descrita como

(CD8 () = —— ) /0 e O (D dr 1< a<n.

I'(n—a«
En contraste con la derivada fraccionaria en el sentido de Riemann-Liouville, la
definicién de Caputo tiene varias ventajas: (a) para resolver ecuaciones diferenciales
con la definiciéon de Caputo no es necesario definir las condiciones iniciales fraccio-
narias; (b) f™(t) se anula cuando f(t) es constante y su transformada de Laplace
se expresa en términos de los valores iniciales de la funcién y sus derivadas.

Desde un punto de vista matematico, las ecuaciones diferenciales han sido bien y
extensamente estudiadas hoy en dia. Por mencionar sélo algunos ejemplos, Friedman
and Hu [36] han analizado problemas de bifurcacién de estabilidad a inestabilidad
para un modelo con frontera libre relacionado con los crecimientos de tumores usando
la ecuacién de Stokes; Caraballo and Real [I7] han estudiado las ecuaciones bidi-
mensionales de Navier-Stokes con términos de retardo; Wang, Chen y Xiao [78] han
investigado los problemas de Cauchy fraccionarios abstractos para operadores casi
sectoriales, etc. Sin embargo, cuando consideramos un problema fisico del mundo
real, debemos considerar aspectos adicionales para que el modelo sea mas realista,
en concreto, al menos se deben tener en cuenta algunas influencias de caracter in-
terno, externo o medioambiental y que suelen llamarse “ruidos”, lo que hace que
el problema sea dificil de describir de forma determinista y pase a ser estocéstico o
aleatorio.

Por tanto, durante los tltimos anos ha habido un creciente interés por el estudio
de las ecuaciones en derivadas parciales estocasticas en todas las variantes posibles,
es decir, con retardos, no auténomas, con impulsos, multivaluadas, etc. (véanse,
e.g.,[12], 13, 4], 15, 29, B9, 40, 56l B8, (K9, 79, 81]). Para conseguir una mejor de-
scripcion de los modelos reales, podemos considerar algin tipo de aleatoriedad en
las ecuaciones, que pueden venir descritas por alguna clase de ruido, bien de tipo
ruido blanco o coloreado, o de algin otro tipo de términos estocasticos. En esta
memoria, vamos a considerar principalmente dos clases de ruidos:  movimientos
Brownianos/ procesos de Wiener y movimiento Browniano fraccionario.

e Bl movimiento Browniano/proceso de Wiener

En 1828, el botanico escocés Robert Brown observd que los granos de polen
suspendidos en un liquido experimentaban un movimiento irregular. Dicho movi-
miento fue explicado posteriormente por las colisiones aleatorias con las moléculas
del liquido. Para describir mateméaticamente este movimiento es natural usar el
concepto de proceso estocastico By(w), interpretado como la posicién del grano de
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polen w en el instante ¢t. En matematicas, el movimiento Browniano es descrito
por el llamado proceso de Wiener, que es un proceso estocastico continuo, y es
uno de los mas estudiados y mejor conocidos procesos de tipo Lévy, y que ocurre
frecuentemente en los problemas de matematicas puras y aplicadas, en economia,
fisica, etc.

El movimiento Browniano B;(w) se caracteriza por cuatro propiedades:

(1) Bo(w) = 0;
(2) t — By(w) es continua casi seguramente;

(3) Bi(w) posee incrementos independientes, es decir, si 0 < s1 < t; < 59 < 1,
entonces By, (w) — B, (w) y By, (w) — Bs,(w) son variables aleatorias indepen-
dientes;

(4) Bi(w) — Bs(w) ~ N(0,t — s) (para 0 < s < t),

donde N (j1,0?) denota la distribucién normal con media u y varianza o?.

Gracias a estas propiedades del movimiento Browniano, es posible representar B;
como un proceso estocastico generalizado llamado ruido blanco. Supongamos que
H es un proceso localmente acotado, adaptado y continuo por la derecha, si {m,}
es una sucesién de particiones del intervalo [0,%] con didmetro decreciente a cero,
entonces la integral de It6 de H con respecto a B es un proceso estocastico dado
por el siguiente limite en media cuadratica:

t
/ HdB = lm >  H, (B,-B,,) en L*Q).
0

n—oo
[ti— til€mn
Maés atn, los procesos dados por integrales de Ito suelen ser martingalas, lo que
proporciona interesantes ventajas computacionales, como por ejemplo la isometria
de It6 (Lema[1.11)) que serd utilizada frecuentemente en nuestro andlisis.

e Movimiento Browniano fraccionario

A. N. Kolmogorov fue el primero en considerar procesos Gaussianos continuos
con incrementos estacionarios y propiedades de auto similitud, lo que significa que
para cualquier a > 0, existe b > 0 tal que

Law(X (at);at > 0) = Law(bX (t);t > 0).

Ocurre que tales procesos con media cero poseen una especial funcion de correlacion:
1
E(X()X(s)) = 5(IsP" + [t = [t = s[*"),

donde 0 < H < 1 es llamado el indice de Hurst. Es importante observar que
el movimiento Browniano fraccionario no es ni una semimartingala (excepto en el
caso H = 1/2 cuando es un movimiento Browniano) ni un proceso de Markov. El
primer hecho previene de la posibilidad de usar una bien establecida teoria de in-
tegracién, mientras que lo segundo implica que no hay una conexion directa entre
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el movimiento Browniano fraccionario y los operadores diferenciales. Sin embargo,
estd muy conectada con el calculo fraccionario y puede representarse como una “inte-
gral fraccionaria” (con la ayuda de un comparativamente complicado nicleo hiper-
geométrico) via el proceso de Wiener no sélo en intervalos infinitos sino también
finitos. Tal representacién, junto con la propiedad Gaussiana del movimiento Brow-
niano fraccionario y la propiedad de continuidad Holder para sus trayectorias (el
movimiento Browniano fraccionario con indice de Hurst H es Holder continuo hasta
el orden H) nos permite utilizar un interesante y especifico célculo estocéstico para
el movimiento Browniano fraccionario. Pero la técnica posee una dificultad impor-
tante: es mas dificil de obtener una nociéon de integracion apropiada cuando el indice
de Hurst H es mas pequeno; cuanto mas irregular son las trayectorias del proceso
estocastico, mas dificil es la intregracién respecto de las mismas. Es resenable men-
cionar que en [13] los autores establecieron un lema técnico (Lemma [1.13]) que es
crucial para la integracion estocastica con respecto al movimiento Browniano frac-
cionario con pardmetro de Hurst H € (1/2,1). Este es el punto de vista adoptado
en la presente Tesis.

Merece la pena mencionar que, obviamente, la evolucién futura de un sistema no
depende sélo de su estado presente sino que la historia del fenémeno tiene también
su importancia y determina su comportamiento futuro. Por esta razon, la teoria
de ecuaciones diferenciales con retardos se ha convertido en un area importante de
las matematicas aplicadas, como por ejemplo, en los experimentos de campos de
alta velocidad de viento en tuneles, en materiales con memoria, o con motivaciones
biolégicas como en el crecimiento de especies, o en el tiempo de incubacién en
modelos de enfermedades entre muchos otros (véanse, e.g. [12, 13, 16, 17, 18| 25|
57, 58, 62, 80, &1]).

Motivado por las consideraciones expuestas anteriormente, en este trabajo vamos
a estudiar modelos como reticulos de ecuaciones diferenciales ordinarias (lattice sys-
tems), sistemas estocdsticos impulsivos con retardo, y sistemas estocdsticos de Stokes
bidimensionales para convencer al lector de que estos modelos son de importancia
hoy en dia.

La presente memoria esta estructurada en cuatro capitulos. En el Capitulo 1
hemos incluido algunos definiciones bésicas, algunas propiedades y lemas sobre el
calculo fraccionario y sobre procesos estocéasticos que seran utilizados a lo largo
del trabajo. El Capitulo 2 estda dedicado al estudio de la existencia y unicidad
de soluciones, asi como al analisis del comportamiento asintético, de un reticulo
estocéstico con derivada fraccionaria sustancial en el sentido de Caputo. En el tercer
capitulo investigamos el buen planteamiento y la dindmica de una clase de ecuaciones
diferenciales estocasticas con impulsos y retardos no acotados en el espacio de fases
PC (de funciones continuas a trozos). Al principio, consideramos un modelo mas
complicado (problema ) para el que sélamente podemos demostrar el caracter
bien planteado y analizamos el comportamiento asintético en las secciones 3.2 y 3.3.
Sin embargo, para ir un poco mas alld, es necesario considerar otro modelo en la
Seccién 3.4, (el problema (18)) que contiene coeficientes mds regulares, y para el
que se puede demostrar ademas la existencia de conjuntos globalmente atrayentes
para las soluciones del problema en el caso general de no unicidad de soluciones
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y en el de unicidad, en el que el conjunto atrayente es unitario. Finalmente, el
principal objetivo del Capitulo 4 es demostrar el caracter bien planteado de un
modelo estocastico bidimensional de Stokes con derivada fraccionaria y retardo en
el espacio de fases C'((—h,0]; L*(; L?)), donde h < oo.

A continuaciéon vamos a describir con algo mas de detalle el contenido de cada
capitulo de esta tesis.

e Preliminares

El Capitulo 1 esta estructurado en tres secciones. En la Secciéon 1.1 recordamos
algunas propiedades y conceptos basicos relacionados con la derivada fraccionaria
de Riemann-Liouville. A continuacién, definimos la derivada fraccionaria de Caputo
via la de Riemann-Liouville. Como se sefiala en el Lema [I.6] D* es el inverso por
la izquierda de J%, no por la derecha. Cuando queremos obtener las soluciones
generalizadas (mild) de las ecuaciones diferenciales fraccionarias, la transformada
de Laplace de la derivada fraccionaria de Caputo proporciona una forma alternativa
de conseguirlo.

En la Seccién 1.2, presentamos algunos resultados basicos relacionados con los
procesos estocésticoss. En efecto, el Lemamy la desigualdad nos garantizan
que podamos tratar con la integral estocastica con respecto a procesos Brownianos
finito e infinito dimensionales. Mas atin, podremos tratar integrales estocasticas con
respecto a movimientos Brownianos fraccionarios gracias al Lema [1.13

Adicionalmente, mostraremos, en la Seccién 1.3, algunos ejemplos de ecuaciones
diferenciales estocdsticas funcionales con derivadas fraccionarias en tiempo y que
son de interés para las aplicaciones.

e Reticulos estocdsticos con deriwada fraccionaria de Caputo

Los reticulos diferenciales han recibido mucha atencién recientemente en la lite-
ratura matematica ya que aparecen de una forma muy natural en una gran cantidad
de situaciones en las que la estructura espacial del problema posee un caracter dis-
creto, asi como en problemas de discretizacion espacial de problemas continuos (por
ejemplo en la discretizacién de problemas para ecuaciones en derivadas parciales).
En consecuencia, en el Capitulo 2 estudiaremos una clase de reticulos estocésticos
con derivada fraccionaria de Caputo.

Sea X un espacio de Hilbert separable con norma || - || y producto escalar (-, -).
Entonces L?(€2; X) es un espacio de Hilbert formado por las variables aleatorias que
toman valores en X con norma (E| - |[2)2 y producto escalar E(, -).

En este capitulo, cuando no haya lugar a confusién, D* y D¢ denotaran la
derivada fraccionaria de Caputo, y la derivada fraccionaria sustancial de Caputo
(véase la Definicién de 6rden o con o > 0, respectivamente.

Primero analizamos la existencia de soluciones de los sistemas diferenciales es-
tocéasticos con derivada fraccionaria,
an(p) — aB() 1
Dex(t) = f(t,z(t)) + g(t) =7, t>0, g <ac< 1, (12)

z(0) = 29 € L*(; X)
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{D;‘x(t) = f(a() + ()L > o,% ca<l, ”

z(0) = xo € L*(Q; X),

en el espacio de Hilbert L?(2; X).

En lugar de utilizar un teorema de tipo punto fijo para demostrar la existencia
y unicidad de soluciones para los problemas planteados en este capitulo, vamos a
utilizar el punto de vista adoptado por Lakshmikantham y Vatsala [52], que usaron
un resultado de existencia local de Peano para ecuaciones diferenciales ordinarias
fraccionarias.

Sea f : [0,00) x L*(2; X) — L?*(Q; X) secuencialmente débil continua en con-
juntos acotados, y ¢ : [0,00) — X medible.

(R1) Suppongamos que f y g son aplicaciones acotadas, i.e.,
E||lf(t, 2)|* < M?, lg(t)]|? < M?, para todo (t,z) € Ry,

donde Ry = {(t,z) : 0 <t < Ty El|jz — zo||* < b*}. Vamos a ser capaces
de demostrar que el problema de valores iniciales posee al menos una
solucién z(-) definida globalmente en tiempo (teoremas 2.5y [2.6).

(Ry) Ademés de las condiciones de (R;), supongamos b* > 12E||zyl|?, entonces el
probema de valores iniciales posee al menos una solucién z(-) definida

globalmente en tiempo (teoremas and 2.§).

Mas atn, si imponemos condiciones de tipo Lipschitz en los términos f y g,
demostramos la existencia y unicidad de soluciones de los sistemas diferenciales
estocdsticos con derivadas fraccionarias,

{D%(t) = F(ta(t) + gt o) BD, > o,% ca<l, "
z(0) = 2o € L*(; X)
y
{D‘jx(t) = F(t2() + gt 2 () Q> o,% ca<l, )
z(0) = 2o € L*(; X),

en L*(Q; X). Sean f, g : [0,00) x L?(€; X) — L?(Q; X) funciones medibles que
satisfacen para todo x, y € L*(Q; X) y t € [0,T],

Ellf(t,2) = f(t,)I* + Ellg(t, ») — g(t, »)|I* < LE||z — y]|*

para alguna constante L. Ademads, supongamos que f y ¢ son funciones acotadas,
ie.,

E|f(t,2)|* < M?, Ellg(t, z)||> < M?, para todo (t,z) € Ry,

donde Ry = {(t,z) : 0 <t < Ty El|xz — x> < b*}. Obtenemos entonces que
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(R3) para cada zo € L*(Q; X), existe una tnica solucién de los problemas (14)),
, respectivamente (Teorema [2.10)).

Los detalles sobre cémo se pueden demostrar estos resultados se pueden encontrar
en los teoremas 2.512.10] en la Seccién 2.2.

La Seccién 2.3 estd dedicada a investigar el siguiente reticulo estocéstico con
derivada fraccionaria sustancial de Caputo:

(16)

Dexi(t) + (—1)PAPz(t) + Aai(t) = filzi(t)) + g:(t) 5L, >0,
7;(0) = @, i €7,

donde 1/2 < a < 1, B(t) es un movimiento Browniano estandar sobre un espacio de
probabilidad completo y filtrado (2, F, {F; }er, P), y A € R, p es un nimero entero
positivo, A? = Ao---0A, p veces. A denota el operador de Laplace unidimensional
discreto, que viene definido como Ax; = x;11 + x;_1 — 2x;. Escribiremos también
Otx; = xi1 — 1y, 0 x; = 1y — x4_1 y definimos

DF A%, p even,
T otAate, p odd.

El espacio de fases natural para tal sistema infinito de ecuaciones diferenciales,
ya sea fraccionario o no, es el espacio de Hilbert

62 — {;c = (wi)iEZVT’i ceR: ZI’? < +OO},

i€Z
con el producto escalar y norma correspondiente
(l’,y) = Z:Uzyw HxHQ = fov Vo = (xi)'iEZa Yy = (yi)iGZ € 62'
i€Z i€Z

Sea L%(Q; (?) el espacio de Hilbert de las variables aleatorias con valores en (2
que son fuertemente medibles y de cuadrado integrable, con el producto escalar y
norma

1
E(z,y) = / > wiyidP, |zl = Ellz))2, Yo,y e LA(9:67).
Q ez
En la Seccién 2.3.1 suponemos que

(Hy) Los operadores f : L*(Q; (%) — L*(;0%) y g : [0, +00) — (2, dados compo-
nente a componente por (f(x)); = fi(z;) v (9(t)); = ¢i(t), i € Z, estdn bien
definidos y son acotados, siendo ademas g medible.

(H,) Las componentes f; : L*(Q;R) — L?*(€;R) son secuencialmente débil contin-
uas en conjuntos acotados.

(H;) Las componentes f; : L*(Q;R) — L?(;R) satisfacen E|f;(x)[*> < |k;i1|* +
k3E|z|* para todo = € L?(2;R), donde k1 = (k1;)icz € (* y ko > 0.
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(H,) Existe una constante positiva M’ tal que para todo ¢t > 0,

t
[ te= e gy i < ar
0

(Hs) E|f;(z)— fi(y)|? < L'E|z—y|? para cualesquiera x, y € L*(2;R), donde L' > 0.
En estas condiciones obtenemos los siguientes resultados:

(R4) El problema de valores iniciales ([16]) posee al menos una solucién si se verifican

(H1)-(Hs) (Teorema [2.11)).

(R5) Sea o (el coeficiente de la derivada sustancial fraccionaria de Caputo) sufi-
cientemente grande y supongamos que se verifican (Hs)-(Hy), entonces las
soluciones del problema de valores iniciales estan globalmente definidas
en tiempo, y ademas se deduce una estimacién pare el conjunto absorbente

del problema (véase el Corolario [2.13)).

(Rg) Sea o suficientemente grande y supongamos que se verifican las condiciones
) 5/
(Hy), (H3)-(Hs), entonces existe una tnica solucién global del problema
(véase el Teorema [2.14]).

Una vez que obtenemos estimaciones adecuadas sobre la norma de las soluciones
(Lema , es posible inmediatamente estudiar la existencia de conjuntos ab-
sorbentes para el problema (Teorema . Maés aun, usando la topologia
fuerte en media cuadratica, demostramos la estabilidad asintotica uniforme de las
soluciones del problema ([16]) (Teorema para finalizar el Capitulo 2.

e Fcuaciones diferenciales estocdsticas impulsivas y fraccionarias

La teoria de ecuaciones diferenciales impulsivas se ha convertido en un éarea de
investigacion muy activa debido a las amplias aplicaciones que posee en comunica-
ciones, mecanica, ingenieria eléctrica, medicina, biologia, etc.

Asi, el objetivo del Capitulo 3 es investigar el cardcter bien planteado y la
dindmica de los siguientes problemas:

H
Dea(t) = An(t) + f(t,z) + g(t, 20) B8 1 p(t)Lel ¢ >,
t#£t, 3<a<l,

Aalt) = a(t}) — 3(t7) = Tlalty)), k=1,2,-+, .
l’(t) - (b(t)? te (—OO, 0]7
y
Dtal'(t) _ AI(t) + Itl_af(t,%:) + []tl_ag(ta$t)]%§t) + []tl_ah(t)]dBi(t)y
t>0, t#t;, O0<a<l, (18)

Az(ty) = 2(ty) —z(ty) = I(z(ty)), t=tr, k=12,
2(t) = o(t), t € (—00,0],
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donde D¢ denota la derivada fraccionaria de Caputo de orden 0 < a < 1, e [}
es el operador integral fraccionario de orden (1 — «). Para ambos modelos (17)) y
(18), z(-) toma valores en el espacio de Hilbert separable H. A : D(A) C H — H
es el generador infinitesimal de un operador T,(¢)(t > 0) analitico y compacto
de order fraccionario o. B(t) y Bj(t) denotan, respectivamente, un movimiento
Browniano con valores en K y un movimiento Browniano fraccionario de tipo Q-
cilindrico respectivamente. Los instantes de tiempo t;, donde los impulsos tienen
lugar, satisfacen 0 =ty < t; < --- <ty — 400 cuando k — o0.

Para alcanzar nuestro objetivo, en la Seccion 3.1, presentamos en primer lugar el
espacio de fases abstracto PC en el que estableceremos los resultados de una manera
apropiada. Sea L?(Q;H) el espacio de Banach formado por las variables aleatorias
fuertemente medibles, de cuadrado integrable con valores en H, equipado con la
norma |lu(-)||7. = Ellu(-)||*. El espacio de fases abstracto PC estd definido como

PC = {f i (—00,0] — L*(€; H) is Fy-adaptado y continuo excepto en

a lo més un conjunto numerable de puntos {fx}, en los que existe £(6;")

E0;) eon €(0) = €65). v s SUBIEO)IF < )
€(—o0,
para algin parametro fijo v > 0. La norma de este espacio de Banach PC esta
definida como

1

2

lelee = (5w *BIEOI) . s
0e(—00,0]

Con la ayuda de la transformada de Laplace de la derivada fraccionaria de Ca-
puto, se puede establecer la definicion de la solucién generalizada (mild) de los
problemas y en las correspondientes definiciones y .

En segundo lugar, en la Seccién 3.2 analizamos la existencia de solucién generali-
zada del problema . Para ello, usamos el método de Picard y realizamos estima-
ciones en cada intervalo impulsivo, teniendo en cuenta las hipétesis de compacidad
de los operadores T,(t) (t > 0) y Sa(t) (t > 0) (Teorema [3.11)). Andlogamente de-
mostramos también la existencia de solucion generalizada del problema (Teore-
ma . Posteriormente, demostramos resultados de dependencia continua de las
soluciones respecto de los datos iniciales de los problemas y (teoremas
y . Cuando trabajamos con ecuaciones diferenciales fraccionarias impulsivas,
necesitamos realizar las estimaciones en cada intervalo impulsivo y luego proceder
por induccion para conseguir el resultado final.

En tercer lugar, estamos interesados en analizar el comportamiento asintético de
nuestros modelos. Demostrar que las soluciones generalizadas existen globalmente
en tiempo es lo primero que tenemos que asegurar. A continuacién nos centramos
en estudiar la dinamica del problema en la Seccion 3.3. Para ello necesitamos
imponer algunas hipdtesis adicionales a los operadores T, (t) v S,(t), en concreto
que estan controlados por funciones con decrecimiento exponencial:

[T < Me™, [Sa(®)]| < Me™#(1+t*71),  ¥Vt>0, M>1. (19
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Estas condiciones, junto con el caracter Lipschitz de los términos no lineales f y
g, nos permiten demostrar que la solucién generalizada del problema (|17)) es tinica
y estd definida globalmente en tiempo (Teorema [3.3)). Finalizamos esta seccién
demostrando el decaimiento asintético exponencial de las soluciones de nuestro mo-
delo. Es interesante remarcar que, si bien la idea para analizar el comportamiento
asintético es estandar, el hecho de considerar infinitos impulsos impone un gran
desafio para nosotros. Para solventar esta dificultad, gracias a la definicion del
espacio de fases PC, su norma y propiedades del calculo exponencial (escogiendo
v > 2u), podemos realizar estimaciones en cada intervalo impulsivo y conseguimos
demostar el resultado deseado (Teorema [3.17).

Para concluir este capitulo, la Seccién 3.4 estd dedicada al andlisis del compor-
tamiento asintético del problema ((18). Estudiamos el caracer bien planteado y el
decaimiento exponencial de las soluciones del problema en la Seccion 3.3, pero,
la falta de compacidad del operador S,(t) no nos permitié establecer la existen-
cia de conjuntos atrayentes, que es un concepto clave para la comprension de las
propiedades dindmicas del modelo. Heuristicamente, el operador fraccionario T, (%)
es compacto (como asi fue demostrado en [78]). De esta forma, en la Seccién 3.4
analizamos el caracter bien planteado y la dindmica del problema . Primero,
gracias a la hipdtesis sobre el operador solucién fraccionario T, (t), demostramos
la existencia y unicidad global de la solucién generalizada (Teorema . Luego,
a la vista de la relacion existente entre la norma de PC y el parametro de de-
caimiento exponencial de T, (t) (con v > 2u), somos capaces de demostrar que las
soluciones generalizadas del problema son acotadas uniformemente con respecto
a conjuntos acotados de condiciones iniciales (Teorema. Enfatizamos que estas
estimaciones a priori obtenidas aqui seran de una importancia crucial en el trabajo
realizado en las secciones 3.4.1 y 3.4.2.

En la Seccion 3.4.1 presentamos un resultado que garantiza la existencia de un
conjunto compacto minimal que es globalmente atrayente en el espacio PC. Gracias
a la compacidad del operador T,(t), junto con la definicién de la norma de PC,
y el teorema de Arzela-Ascoli, conseguimos demostrar el resultado deseado (Lema
. Maés aun, realizando un analisis estandar, demostramos las propiedades de
los conjuntos omega limites y la compacidad del conjunto atrayente minimal (teo-
remas y . Mads alla de estos resultados generales, si queremos obtener
méas detalles sobre la estructura geométrica de este conjunto, necesitamos imponer
condiciones més restrictivas. Por eso, en la Seccion 3.4.2, la propiedad de Lipschitz
asegura la unicidad de soluciones del problema , y ademds, unas estimaciones a
priori sobre las soluciones y su decaimiento exponencial, permiten demostrar que el
conjunto atrayente estd formado por un tnico punto (teoremas y .

o Fcuaciones bidimensionales de Stokes estocdsticas y fraccionarias

El caracter bien planteado de problemas de flujos en un fluido viscoso es cru-
cial para muchas areas de la ciencia e ingenieria. Por ejemplo, para las industrias
aeroespaciales y la nanotecnologia. En este tltimo caso de estructuras microflu-
idas, a menudo encontramos problemas de flujos a velocidades moderadas. Desde
un punto de vista matematico, las ecuaciones de Stokes proporcionan una primera
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aproximacion de las méas generales ecuaciones de Navier-Stokes en situaciones donde
el flujo es casi estacionario y lento, y posee pequenos gradientes de velocidad, de
manera que los efectos inerciales pueden ser ignorados.

Por estas razones, en el Capitulo 4 analizamos la siguiente ecuacién incompresible
estocdstica fraccionaria con retardo, i.e., las ecuaciones bidimensionales de Stokes
no estacionarias:

D{u — kAu+ Vp = f(t,uy) + g(t, ut)dvgt(t) en R? ¢t>0,
V-u=0 en R? t>0, (20)
u(t,z) = p(t,x) en R? t € [—h,0],

donde f y g son fuerzas externas conteniendo algunas propiedades hereditarias y
retardos, y ¢ es el dato inicial en el intervalo de tiempo ¢ € [—h,0], donde h es
un nimero positivo, y W(t) es un proceso de Wiener estandar sobre un espacio de
probabilidad completo y filtrado {Q, F, {F; }i>0, P}.

El Capitulo 4 esta estructurado en tres secciones. En la Seccién 4.1 recordamos
el marco en el que vamos a estudiar nuestras ecuaciones estocéasticas fraccionarias
de Stokes bidimensionales con retardos, y también introducimos algunos lemas rela-
cionados con las familias de operadores de Mittag-Leffler denotados como E, (—t*.A)
v Eqo(—t*A), y que seran usados a lo largo de todo el capitulo. En la Seccién 4.2
analizamos el caracter bien planteado en el caso de retardos acotados en un ade-
cuado espacio de fases X, := {u : [~h,T| x Q — L*(©; L?)}. Haciendo uso de la
teoria del punto fijo demostramos la existencia y unicidad de solucién generaliza-
da del problema con retardo acotado cuando los términos de fuerza externa f
y g son Lipschitz y T es suficientemente pequenio (Teorema . Posteriormente,
demostramos que la soluciéon se puede extender de manera que sea globalmente
definida en tiempo (Teorema , y del mismo modo demostramos también la
continuidad con respecto a los datos iniciales (Proposicién . En la Seccion
4.3, demostramos los mismos resultados que en la Seccion 4.2 para el problema
con retardo no acotado pero en un espacio de fases diferente, en concreto en
Cx(H) := {¢ € C((—00,0];H) : limyg_,_ p(0) existe en H}. Ademas, las venta-
jas de este espacio de fases Cx son ilustradas comparando con otro posible espacio
como es C7(H) := {¢ € C((—o00,0]; H) : supge(_oo g : € [l(8) ln < o0} (Nota.

o (uestiones para trabajar en el futuro

Concluimos esta memoria mostrando algunos puntos en los que pretendemos
trabajar en el futuro inmediato: Las ecuaciones de Navier-Stokes bidimensionales
estocasticas fraccionarias con retardo y ruido multiplicativo que son la continuaciéon
natural del contenido del Capitulo 4. P.M. Carvalho-Neto y G. Planas analizaron en
[22] el siguiente modelo de Navier-Stokes con derivadas fraccionarias de tipo Caputo,

Diu—kAu+u-Vu+Vp=f en RY, >0,
Vou=0 en RY, ¢t >0, (21)

u(0,x) = ug en RY.
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Establecieron el buen planteamiento del problema , la existencia y eventual
unicidad de soluciéon generalizada, asi como la regularidad en tiempo de las solu-
ciones. A la luz de las cuestiones anteriores, nuestro modelo podria ser mas realista
si introducimos retardos y ruidos en dicho modelo:

Dfu — kAu~+u-Vu+ Vp = f(t,u) + g(t, ut)dvgt(t) en RY, £>0,

V-u=0 en RY, t>0, (22)
u(t,z) = p(t, ) en RN, t¢c[—h,0].

Estamos muy interesados en el problema . Es bien conocido que cuando traba-
jamos con las ecuaciones de Navier-Stokes estocésticas con derivadas enteras en el
espacio de fases L*(Q; C([0,T]; X)), gracias a la isometria de It y la desigualdad
de Burkholder-Davis-Gundy, podemos obtener estimaciones a priori de una forma
adecuada. Sin embargo, en el caso de derivadas fraccionarias, si considerasemos
el mismo espacio de fases, nos enfrentarfamos con problemas esenciales: (a) la
isometria de It6 no ha sido demostrada en el caso fraccionario; (b) la desigual-
dad de Burkholder-Davis-Gundy no puede ser usada ya que la integral estocastica
no es una martingala (siendo la principal razén que el nicleo que aparece en la
integral estocéstica tiene una singularidad). Esto nos inspira y motiva para tener
que buscar y disenar una nueva técnica que nos permita abordar el problem y
obtener resultados interesantes sobre el mismo.



Chapter 1

Abstract results on the theory of
time fractional stochastic
ordinary /partial differential
equations

This chapter contains the definitions and some properties of fractional integrals/
derivatives and stochastic processes.

The fractional calculus is a name for the theory of integrals and derivatives of
arbitrary order, which unifies and generalizes the notions of integer-order differenti-
ation and n-fold integration. There are several different kinds of definitions to frac-
tional derivatives and integrals, such as, Griinwald-Letnikov fractional derivative,
Riemann-Liouville fractional derivative and Caputo fractional derivative. However,
in the models of this thesis we consider Caputo time fractional derivative, whose ad-
vantage is, comparing with Riemann-Liouville derivative [45] (Lemm, Caputo
derivatives remove singularities at the origin and share many similarities with the
classical derivative so that they are suitable for initial value problems (Lemma [L.F)).

1.1 Basic concepts/properties to time fractional
calculus

1.1.1 Riemann-Liouville fractional derivative

Let I = [a,b] (w00 < a < b < o0) be a finite interval on the real axis R. The
Riemann-Liouville fractional integral 13, f and I;* f of order o € R are defined by

0@ = | ol et @ a) (1)

(cv

and

(12 f)(x) = 1"(1(1) / i O g (<) (1.2)
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respectively. Here I'(«) is the Gamma function. The integrals are called the left-
sided and the right-sided fractional integrals.

Accordingly, the Riemann-Liouville fractional derivatives Dy, y and Dy y of or-
der o € R are defined by

(Dapy)(z) = (%)n(lg;ay)@)

L (AN @) e
o () [ gt =kl >(1>3)

and

D50 = (—1) )

SR S (0 Y AU ) R S R B
_F(n—a)( dx) /x (t—x)a—nﬂdt’ (n=la] +1, Zbi)

separately, where [o] means the integral part of «.
If 0 < a <1, then

D20 = i | et (@)

(Dy_y)(z) = _ﬁ%/x (ty_(?:)adt, (z < b).

The semigroup property of the fractional integration operators I, and I;* are
given by the following result.

Lemma 1.1. If a > 0 and 8 > 0, then the equations
g I (@) = (L)) and (L1 f) () = (1,77 f)(x)
are satisfied at almost every point x € |a,b] for f € LPla,b] (1 < p < 00).
Lemma 1.2. Ifa >0 and f € LP(a,b) (1 < p < o0), then the following equalities
(Do 1ay f)(x) = f(z) and (Dy_ Dy f)(z) = f(x) (1.5)
hold almost everywhere on |a, b.

Lemma 1.3. Let a > 0, n = [a]+1 and let f,_o = (177 f) be the fractional integral
of order n — av. If f € L'(a,b) and f,_o € AC"[a,b], then the equality

(I3, Dgy an—]—i— z—a),
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holds almost everywhere on |a,b]. We denote by AC™[a,b] the space of real-valued
functions f which have continuous derivatives up to order n — 1 on |a,b] such that
f=Y ¢ ACla,b):

AC"[a,b] = {f :[a,b] = R and [D"'f] € AC[a,b], D = d%:}

In particular, AC'[a,b] = AC|a,b).

1.1.2 Caputo fractional derivative

Next we present the definitions and some properties of the Caputo fractional deriva-
tives. Let D¢ [y(t)](xz) = (Dg, y)(x) and Dy [y(t)](z) = (Dj_y)(x) be the Riemann-
Liouville fractional derivatives of order o € R™ defined by and 7 respec-
tively. The fractional derivatives (“ D2, y)(z) and (“D,_y)(x) of order o € R* on
la, b] are defined via the above Riemann-Liouville fractional derivatives by

n—1 (k) a
(D u)(a) = (D;: o0 -3 Nt—a)’f]) (@

and

-1 0y
(CDf )(a) = (Ds o -3 %b—t)’f])(x)

k=0

3

<

separately, where n = [a] 4+ 1. These derivatives are called left-sided and right-sided
Caputo fractional derivatives of order «.

Definition 1.4. Let & > 0 and let n = [o] + 1. If y € AC"[a,b], then the Caputo
fractional derivatives (° DZ, y)(x) and (“ Di_ y)(x) exist almost everywhere on [a, b],
they are represented by

P )
(D) = iy | gt = (T (o)

I'n—« x — t)entl

and

RN
(€D y)(a) = Y ) / - O g = (1) (@),

I'n—« t — x)ontl

respectively, where D = d/dz.
Lemma 1.5. Let a >0 and n = [a] + 1. Ify € AC"[a,b] ory € C"[a,b], then

1) (g
(12,2, )(a) = i) = 3 U o - 0

and
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Lemma (equality (L.5))) shows Riemann-Liouville/Caputo fractional deriva-
tive Dy, (Dy) is a left inverse of J¢, (J;"), but in general, not a right inverse
(see Lemmas and [L.5). Hence when we want to obtain the mild solutions to
time fractional differential equations, we need other methods, that is the following
assertion, which yields the Laplace transform of the Caputo fractional derivative.

Lemma 1.6. Let a > 0, n — 1 < a < n (n € N) such that y € C*(RT), y™ ¢
LY(0,b) for any b > 0, the estimates

|y(n) (x)] < Ce®® (z>b>0) for constants B >0 and gy >0

hold for any y™, the Laplace transforms (Ly)(t) and L(D"y(t)) exist, and lim,_, , «
(D*y)(z) =0 for k=0,1,--- ,n — 1. Then the following relation holds:

In particular, if 0 < a <1, then

(LD y)(s) = s"(Ly)(s) — s*7'y(0).

At the end of this subsection, we present some properties of two special functions.
Denote by E, s the generalized Mittag-Leffler special function defined by

P 1 AP
Ea = 7 o\ A d)‘7 ) ) C?
5(2) ;F(ak‘—i—ﬁ) 271'@'/7)\0‘—2: ap>0z¢

where 7 is a contour which starts and ends at —oo and encircles the disc |A| < |z|a
counter-clockwise. If 0 < a < 1, # > 0, then the asymptotic expansion of E, 3 as
2z — o0 is given by

Fos(2) ézl—ﬁ/a exp(zl/a) +eap(z), |argz| < %Om’
a,B\RZ) =
8 cap(2), |arg(—z)] < (1-— %a)ﬁ,

where
N-1 n
Eap(2) = — Z m + O(|Z]_N), as  z — 0.
n=1

For short, set
E.(2) := Ey1(2), €a(2) := Egu(2).

Remark 1.7. Throughout this thesis, we only adopt left-sided Caputo fractional
derivative on the interval [0,t]. Therefore, as a matter of convenience, we denote
Dy by “Dgyy.
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1.2 Basic concepts and properties to stochastic
process

In this section, we present some basic results for the theory of stochastic processes.
To start off, we first show the precise definitions of random wvariable and stochastic
process.

Definition 1.8. If€) is a given set, then a g-algebra F on ) is a family F of subsets
of Q0 with the following properties:

(i) 0eF;
(i1) F e F=F°cF, where F© =Q\ F is the complement of F in €,

(iii) Ay, Ay, € F= A= JA € F.

i=1

Definition 1.9. Let T be an ordered set, (2, F,P) a probability space, and (E,G)
a measurable space. A stochastic process is a collection of random variables X =
{Xi;t € T} such that for each fizred t € T, Xy is a random variable from (2, F,P)
to (E,G). The set Q is known as the sample space, where E is the state space of the
stochastic process X;.

The set T' can be either discrete, for example the set of positive integers Z*, or
continuous, T" = RT. The state space £ will usually be R? equipped with the
o-algebra of Borel sets.

1.2.1 Finite dimensional Brownian motion/Wiener process

To describe the irregular motion mathematically it is natural to use the concept of
a stochastic process By(w) (Brownian motion/Wiener process), interpreted as the
position at time ¢ of the sample w.

Definition 1.10. A one-dimensional standard Brownian motion B(t) : RT — R is
a real-valued stochastic process with almost surely (a.s.) continuous paths such that
B(0) = 0, it has independent increments, and for every t > s > 0, the increment
density of the random variable B(t)-B(s) has a Gaussian distribution with mean 0
and variance t — s, i.e.,the density of the random variable B(t)-B(s) is

ot t,5) = (2(e =) Fewp (507 ).

A standard d-dimensional Brownian motion B(t) : R* — R? is a vector of d
independent one-dimensional Brownian motions:

B(t) = (Bi(t),-- -, Ba(t)),
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where B;(t), i = 1,--- ,d are independent one-dimensional Brownian motions. The
density of the Gaussian random vector B(t)-B(s) is thus

otxit9) = (2rle = o) exp (52,

where | - | is the usual norm of R

Although it is reasonable next to present the construction of stochastic integral,
we will only recall [t0’s isometry which will be used throughout the paper frequently.
For more details about the construction of stochastic integral, see [66] and references
therein.

Lemma 1.11. (The It6 isometry) Let V = V(S,T) be the class of functions
f(,) :]0,00) x @ = R
such that
(1) (t,w) — f(t,w) is B x F-measurable, where B denotes the Borel o-algebra on
[0, 00),
(13) f(t,-) is Fi-adapted,

(i) E { /S ' f(t,w)%lt} < .
Then

T
E =E {/ fQ(t,w)dt} for all feV(S,T).
S

D)

1.2.2 Infinite dimensional Brownian motion/ fractional Brow-
nian motion

In this subsection, we introduce the basic definitions of K-valued Q-cylindrical frac-
tional Brownian motion as well as Brownian motion. Let H and K be two separable
Hilbert spaces and L£(K,H) be the space of all bounded linear operators from K
to H, £ (K;H) denotes the space of all ¢ € L(K,H) such that £Q"/? is a Hilbert-
Schmidt operator, separately. For convenience, we will use the same notation || - ||
to denote the norms in H, K and £(K, H), and use (-, -) to denote the inner product
of H and K without any confusion. Let (£2, F,P) be a complete probability space
with a filtration {F;}:>o satisfying the usual conditions (i.e., right continuous and
Fo contains all P-null sets of F).

Let B = (B(t))i»0 and Bf = (B (t))i=0 be a K-valued Q-cylindrical Brownian
motion and fractional Brownian motion respectively, defined on (Q, F, {F;}i>0, P)
with Tr@Q) < oo, where () is a symmetric nonnegative trace class operator from
K into itself. We assume that there exists a complete orthonormal basis {eg}r>1
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in K, a bounded sequence of nonnegative real numbers A\, such that Qep = Apeg,
k =1,2,---. Then for arbitrary t € [0,T], B(-), Bg() have the expansions

=Y VABer,  BE() =Y VMBI (e, >0,
k=1 k=1

where {8 }x>1 and {8 }>1 are, respectively, a sequence of two-sided one-dimension-
al real valued standard Brownian motions and a sequence of fractional Brownian
motions mutually independent on (Q, F, {F: }i>0, P).

According to above construction, first, we consider some properties about Brow-
nian motion. For ;¢ € L(K H), we define (¢,v) = Tr[pQy*], where ¢)* is the
adjoint operator of 1. Then, for any bounded operator ¢ € L(K, H),

14|13 = Tr{vQy’] Zw_wekn

If [|4|3) < oo, then 4 is called a Q-Hilbert-Schmidt operator, we denote by £, (KK, H)

the space of all ¢ € L(K,H) such that fQ% is a Hilbert-Schmidt operator. By
Proposition 2.8 in [26], if ¢ is an L(K, H)-valued stochastic process on 7" x € such
that 1(t) is measurable relative to F; for all ¢t € [0, T, and satisfies

T
| Elv@ipd <,

0

then we have the following property,

EH / v

Next, we would love to recall some properties of fractional Brownian motion,
introduced in [I3] by Caraballo et al., which will be used in the thesis frequently.
Let ¢ : [0,T] — L (K, H) such that

T

< Tr(Q) / E|l(s) | ds. (L6)

0

Z HKE(SOQI/%k)HL?([O,T];H) < 00, (1.7)
k=1
where K7, is a linear operator from the linear space of R-valued step functions on
[0, 7] to L0, T].

Definition 1.12. Let ¢ : [0,T] — LL(K,H) satisfy . Then, its stochastic
integral with respect to the fractional Brownian motion B s defined fort > 0, as
follows

/Ot (s)dBH (s Z/ (5)QY2erdl = Z/ (K3 (0Q%er)) (s)dW (s).



44 1.3. Some examples in applications

Notice that if

> 10Q P exll 11 0,77y < 00 (1.8)

k=1
then in particular holds.

Lemma 1.13. For any ¢ : [0,T] — EOQ(K, H) such that holds, and for any «,
g €0,T] with a > 3,

| o

where ¢ = c¢(H).
If, in addition, > |p(t)QY%e,|u is uniformly convergent for t € [0,T], then
n=1

| o

For more details about fractional Brownian motions, the reader is referred to
[13] and the references therein.

2

< cH(2H — 1)(a — B)*H~ 12/ lo(5)QY %e,|2ds,

H

2
<cH(2H — 1)(a — B)*1~ 1/ lo(s)||Hds. (1.9)

H

1.3 Some examples in applications

Fractional differential equations now play a central role in the modelling of anoma-
lous diffusion processes [19]. They arise naturally in a wide variety applications such
as physics, fluid mechanics, viscoelasticity, heat conduction in materials with mem-
ory, chemistry and engineering [3, [8, 47]. Fractional differential equations with the
fractional substantial derivative also appear in the transport equation of describing
the time evolution of the partial differential equation (PDE) of a Lévy walk, which
is a model with the spatiotemporal coupled PDFs of waiting time and jump length
[35., [74].

Example 1.14. The authors in [50] investigated the finite element approximation
for the following initial boundary value problem with 1 < a < 2 and % <p <1

Ofu(t, x) + (—A)Pu(t,r) = ag/t—a(m), 0<t<T, 0<zx<l,
u(t,0) = u(t,1) =0, 0<t<T,

u(0,2) = vi(2), hu(0,2) = vofx), O <w <1,
where 0f denotes the left-sided Caputo fractional derivative of order v with respect

tot; (—A)P is the fractional Laplacian, and W (t,x) represents a space-time infinite
dimensional Brownian motion.
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Example 1.15. The authors in [22] studied generalized Navier-Stokes equations
with time fractional differential operators:

Dy — vAu+ (u-V)u+ Vp = f, in RN, ¢t >0,
V-u=0, in RN, ¢ >0,
u(z,0) = uy, in RY,

where a € (0,1) is a fired number and Dy is the Caputo fractional derivative.

Example 1.16. The authors in [78] considered the linear and semilinear time frac-
tional evolution equations involving the linear part. The existence and uniqueness of
mald solution and classical solutions for the inhomogeneous linear abstract Cauchy
problem

Du(t) + Au(t) = f(t), 0<t<T,

u(0) = o,
are firstly studied, where A € ©)(X) (see [78] Definition 1.1 for more details) with
—1<y<0and0<w<7/2, DY (0 < a < 1) is the Caputo fractional derivative
of order a, and ug is given belonging to a subset of Banach space X .

Next, the authors applied the theory of time fractional derivative and their prop-
erties to the nonlinear fractional abstract Cauchy problem

{Dgu(t) +Au(t) = f(tu(t), 0<t<T,
u(0) = wy,

where A and DY has the same meaning with the above linear abstract Cauchy prob-
lem.






Chapter 2

Stochastic lattice systems with
Caputo time fractional derivative

Lattice systems have attracted much attention in recent decades. They arise natu-
rally in a wide variety of applications where the spatial structure possesses a discrete
character as well as in the spatial discretization of continuous problems. The asymp-
totic behavior of both deterministic and stochastic lattice systems has been investi-
gated extensively in the literatures, see, e.g., deterministic [5, [16] 27, [86], stochastic
[4, 14, 15, 39 40], 41, 42]. The existence and uniqueness for a class of fractional
stochastic delay and evolution differential equations were given in [33], while the
existence of solutions for fractional stochastic differential equations (SDEs) with in-
finite delay was obtained in [25] [70] using fixed point theory. There has, however,
been little mention of deterministic or stochastic lattice differential equations with
time fractional derivative.

Hence, in this chapter, we will study a stochastic lattice system with Caputo
fractional substantial time derivative, the asymptotic behavior of this kind of prob-
lem is investigated. In particular, the existence of a global forward attracting set in
the weak mean-square topology is established. A general theorem on the existence
of solutions for a fractional SDE in a Hilbert space under the assumption that the
nonlinear term is weakly continuous in a given sense is established and applied to
the lattice system. The existence and uniqueness of solutions for a more general
fractional SDEs are also obtained under a Lipschitz condition. Instead of using
fixed pointed theory, we will follow the approach of Lakshmikaantham and Vatsata
[52], who proved a Peano local existence result for fractional ordinary differential
equations (ODEs).

The results of this chapter can be found in [79].

2.1 Statement of the problem, some definitions
and lemmas

The Caputo fractional substantial time derivative [45] is defined as
D{f(s) = LDTF@)], v=m—p,

47
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when m is the smallest integer that exceeds pu. Here IY f(t) is the fractional sub-
stantial integral [20] B1] defined by

IE) = p(l,,) /O (t— Pl f()dr, v >0,

where o is a constant or a function, and
m a " m
DT = a—i—a =D+o0)"=(D+0o)(D+0o) - (D+o0).

In fact, we only adopt Caputo fractional substantial time derivative and Caputo frac-
tional time derivative, at the same time, in this chapter. Hence, to avoid confusion
with notations, we use D¢ and D® to represent Caputo time substantial derivative
and Caputo time derivative, respectively.

We investigate a stochastic lattice system with Caputo fractional substantial
time derivative of the form

1

a _ dB(t

Dga;(t) + (—1)PAPz;(t) 4+ Axi(t) = fi(wi(t)) +9i(t)_d§ ): t>0, 5 <a<l,
2i(0) = @, i € Z.

Here A is the discrete analogue of the one-dimensional Laplacian, which will be
defined later. In addition, B(t) is a standard scalar Brownian motion on an under-
lying complete filtered probability space (Q, F, {F; her, P). In particular, {F;}er
is an increasing and right continuous family of o-sub-algebras of F, which contains
of P-null sets, and B(t) is F; measurable for each ¢ € R*. Essentially, F; represents
the information about the randomness until time ¢.

The natural phase space for such an infinite dimensional system of differential
equations, fractional or not, is the Hilbert space

2= {x = (2)iez, r; € R : fo < —l—oo},

1€Z

with the inner product and norm

(l‘,y) = Z:C’Lyz? HxHQ = fov Vo = (xi)'iEZa Y= (yi)iEZ € £2'

1€Z 1EZ

Moreover, let X be a separable Hilbert space with norm || - || and inner product
(-,-). Then L*(Q; X) is a Hilbert space of X-valued random variables with norm
(E| - |[*)2 and inner product E(-,-).

We first consider the existence of solutions of the fractional order SDEs

{D%(t) = F(h () + (B > o,% ca<l, o

z(0) = 29 € L*(; X)
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and

(4] — ®) 1_.
{sz(t)—f(t,x(t))Jrg(t)%, 20,5 <a<l, 2.9

z(0) = zo € L*(Q; X),

in the Hilbert space L?(Q; X), where f : [0,00) x L*(; X) — L*(Q; X) and ¢ :
[0,00) = X. Here 3 < a < 1, and D¢ is the Caputo fractional substantial derivative
of order v with ¢ > 0, while D® is the Caputo fractional time derivative of order «
(see Definition [1.4] like D% but with o = 0).

We assume that the nonlinear term f is sequentially weakly continuous in bound-
ed sets. This concept has been introduced by Caraballo et al. [16] in the context of
delay differential equations in Banach spaces with a classical derivative. In addition,
with Lipschitz conditions we prove the existence and uniqueness of solutions of the
fractional order SDEs,

{D%(t) = F(t2(0) + gt 2(0) O, > 0,% <a<l
z(0) = zg € L*(; X)
and
{Dg‘x(t) = f(t,x(t)) + g(t,x(t))%it), t> 0,% <a<l, (2.4)
z(0) = zg € L*(Q; X),

in L2(Q; X), where g : [0,00) x L*(Q; X) — L*(Q; X).

Next we will introduce some notations which will be used throughout this chap-
ter. We denote by C(a,b; L*(©; X)) = C(a,b; L*(2; F,P, X)) the Banach space
of all continuous functions from [a,b] into L?(Q; X) equipped with the supremum
norm. Let L2 (€; X) be the space L*(£2; X) endowed with the weak topology.

Also we recall two concepts who are introduced in [16]. We say that x,, — = €
C(0,T; L2(; X)) in C(0,T; L2 (Q; X)), if z,(s,) — (s) in L2(Q; X) for all s, —
s € [0,T]. We will also say that the function f is sequentially weakly continuous in
bounded sets, if t, — ¢, T, (t,) — x(t) in L2(Q; X) and (B2, (t,)]?)2 < M for all
n imply that f(t,,z(t,)) — f(t,z(t)) in L2(Q; X).

On the other hand, we will say that the function f is bounded if it maps bounded
subsets of [0,00) x L*(Q; X) onto bounded subsets of L?(Q; X).

In what follows, we define what we mean by solutions of the above initial prob-
lems.

Definition 2.1. The map z : [0,T] — L*(Q; X) is called a solution of initial value
problem if x(0) = zo and z(-) is continuous and satisfies for t € (0,77,

z(t) = z(0) + ﬁ /0 (t =) f (7, 2(r))dr

+ —/0 (t — 1) tg(r,2(7))dB(1), P-a.s.
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This definition also applies for problem (2.2) with ¢ depending only on the ¢
variable.

Definition 2.2. The map z : [0,T] — L*(Q; X) is called a solution of initial value
problem if x(0) =z and x(-) is continuous and satisfies for t € [0,T],

z(t) = 2(0)e” 7" + ﬁ /0 (t — 1) Le o f(r 2(7))dr )

L ! — Aale=ot=") o (r 2(F T -a.S
+F(a)/0(t ) g(r,2(7))dB(7) P-a.s.

The following generalization of Gronwall’s lemma for singular kernels [44] will
be used in the sequel.

Lemma 2.3. Suppose b > 0, f > 0 and a(t) is a nonnegative function locally
integrable on 0 <t < T (some T < 400), and suppose that u(t) is nonnegative and
locally integrable on 0 <t < T with

u(t) < af(t) + b/o (t — s)° u(s)ds

on this interval. Then

u(t) < a(t) +/0 [Z %(t - s)”ﬂ_la(s)] ds, 0<t<T.

Corollary 2.4. Suppose o >0, M >0, o > (MF(a)Qa)é, and a, b are nonnegative
constants, and suppose u(t) is nonnegative and locally integrable on 0 < t < T (some
T < o0) with

t
u(t) < ae” " + be” + M/ (t—s)* tu(s)ds, 0<t<T.
0

Then

0—&

o o [ MT(a)2\"
u(t) < ae” " + be’" + (aez’ + be") Z (L) :

n=1

Proof. By Lemma 2.3 we deduce that

u(t) < ae " +be” + /o Z %(i — 8)" ! (ae™7" + be”®)ds

— (MT (o))" [*
<ae " +be” +a Z (F(& / (t —s)"* e 7%ds (2.7)
n=1 0

nao)

+ bzl % /0 (t —s)" e ds.
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Noticing that

t ; |
/ (t — S)na—le—a'sds = egt/ (t _ S)na_le_%(t_s)e_%asds
0 0

- 1—na t na—1 -
<e?! <%) / (%(t - s)) e 279 (s (2.8)
0

es! (%) o ['(na),

IN

and

t t
/ (t —s)"* le7ds = e"t/ (t — s)relemo(t=9) s
0 0
t
— eatgl—na/ (O'(t _ S))na—le—a(t—s)ds (29)
0

< e%o T (na).
It follows from - . that

u(t) < ae™t +be”t 4 (ae! 4 bet) Z < ) : (2.10)

n=1

This completes the proof. []

2.2 Existence results

We consider the existence of solutions of the initial value problems ([2.1)) and ( .
possibly without uniqueness.

Theorem 2.5. Let f : [0,4+00) x L*(;X) — L*(Q; X) be sequentially weakly
continuous in bounded sets, let g : [0,400) — X be measurable, and let f and g be
bounded maps, i.e.,

Ellf(t2)l* < M* g@)|* < M*  for all (t,7) € Ro,

where Ry = {(t,z) : 0 <t < T and E||lx — x0||* < b*}. Then initial value problem
(2.1) possesses at least one solution z(-) defined on [0,Ty], where

_ VI (o +1) % VI (a)(2a — 1) 7 1
szmln {T, {W} y |: AN 1 y §<OZ<1

Proof. Let x¢(t) be a mean-square continuous function on [—6,0], 0 < § < 1, such
that z4(0) = z¢ and E||zo(t) — xo||* < b?. For any 0 < € < §, we define

(2o(t), te[-0,0]

vty = {0t gy | =7 e = i 211)
1 t

\+m/o (t —7)* tg(r)dB(7), te€l0,Ty],
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where T = min{7}, ¢}. Then we find that

R |
+ o /0 "ty
< FQ?a) /Ot(t _r)ldr x /Ot(t PR (2 — €))|2dr
b [ 6=l
2M* % 2022

S TS
(2.12)

because of the choice of T}. If T} < Ty, then we can use to extend as a
continuous function on [—d, Ty] with Ty = min{T}, 2¢}, such that E||lz(t) —xo|* < b?
holds.

Continuing this process, we can define z.(t) over [—d, Ty] so that E||z () —zo]* <
b? is satisfied on [—4,T}).

Let 0 <ty <ty <7T,. We find that

2 2 ! — ) (ty = )V (T — €))dT
Ble.lte) =~ t)l? < | [ (=7 = = 7))l = e

2

+ / 2(752 — 1) (1, 2 (T — €))dT

t1

+ F2?a)EH /t ;2(152 —7)*g(r)dB(r)
+ /0 tl((tl —7)* = (t2 = 1) V)g(7)dB(7) 2

= P1 -+ pg.
(2.13)

Then, using Young’s inequality and Holder’s inequality, we obtain
4 h
Po< — 1 — a—l_t_ a—ld
< g [ (= = =
t1
< [t =7 = = ) BN - )P
0

4 to ol to - . , ]
+m/ (to — 1) d7‘></ (to = T) B f(1,z(T — €))]|°d (2.14)

t1 t1
AM? L
< — (=t + (g — 1)) ———
—r2(a+1)(1 2+ (0 1))JFP2(04+1)
- SM?
=~ T2(a+1)

<t2 _ tl)afl

(t2 - tl)Qaa
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and
P B[ [ =0 = = et
| [ (= anan()
4 h a=1 _ (1. a=1\2| o(7) |12 dr
< £ / (687 o= P -
+ g | =) P
< % (/0 1(251 — 7)2* 2 dr — /0 1(t2 — T)2a2d7'>
4M? [t 20—2 8M? 1 \2a-1
+m/tl (tg—T) dTS—F2(OZ)(206—1>(t2 tl) .
Hence, — imply that
2 8M2 2c 8M2 2a—1
Ellze(ts) — ze(t)]” < m(h — )™+ 2(a) (20 = 1) (t2 —t1)™ . (2.16)

Since X is a Hilbert space, we deduce from that for any ¢t € [0,Ty], there
exists a sequence {x, ()} with €, — 0 as n — +o0, which is relatively compact in
L?(Q; X). By the diagonal method and , arguing as in the proof of Theorem
4 in Caraballo [I6], we obtain the existence of a mean-square continuous function
z(+) and a subsequence of {z., (-)} (denoted again x.,) such that

z.,(t) = x(t) in LA(Q;X) forall t€[0,Tp). (2.17)
It follows from ([2.16]) and (2.17)) that
z., (t,) — 2(tg) in L2(Q;X) if t, —to €0, T3] (2.18)

Let z(t) = xo(t), Vt € [—0,0]. Then we have
z., (t,) — x(ty) in L2(Q;X) if t, =ty € [0, Ty). (2.19)

Now we prove that the limit z(+) is a solution of ({2.1). For this aim we will pass
to the limit in the integral

1 t a-1 —€ T
z, (t) = zo + m/o (t— 1) f(T, 2, (T — €,))d

) (2.20)
+ /O (t— 7)Y g(1)dB(r), t€ [0, Ty,

Since f is sequentially weakly continuous in bounded sets, by (2.19) we have for any
7 € [0,Ty] and any v € L*(; X),

f(rze, (T —€,)) = f(r,2(7)) in L2(Q; X) (2.21)



54 2.2. Existence results

as n — o00. Then, by (2.21)), we deduce from Lebesgue’s theorem that for any
ve LX),

E (/t(t P g (7 — ), u) _ /Ot(t R 3 (7 — €), v)dr

t
—>/ VB (r, 2(r )),U)dT:E(/ (t—T)alf(T,x(T))dT,u).
0
(2.22)
From ([2.22)) and Hoélder’s inequality, we have

E(z(t),v) = E(xg,v) + E (ﬁ /Ot(t — 1) (7, 2(7))dr, v)

+E (ﬁ /Ot@s — F)lg(r)dB(r), v) |

As v € L?(Q; X) is arbitrary, we have for all ¢ € [0, T3],

L t a-l 1 t — 1) g(r T -a.8
x(t):xo—km/o(t—ﬂ f(T,x(T))dT+F(a)/0(t ) g(1)dB(1), P-as.

This implies that x(t) satisfies (2.1)) and completes the proof. [J

Theorem 2.6. Assume the conditions of Theorem . If a solution x(+) of equation
has a mazximal interval of existence, [0,T*], and there exists K > 0 such that
Ellz(t)||* < K for all t € [0,T*), then T* = 400, i.e., z(-) is a globally defined
solution.

Proof. Since f and g are bounded, by the similar arguments as for ({2 - 2.15)), we
see that x is uniformly continuous on [0, 7). Therefore, the limit lim; ,p«- x(t) ="
exists. Then we consider

t * 1
{Dam) = f(ta(t) +9O G, t=2T".5<a<l, (2.23)

z(0) = z* € L*(Q; X),

and by Theorem , we obtain that the solution z(-) can be extended to the interval
[0,T* +§), 6 > 0, which is contradiction. [J

In the following results, we establish the existence of solutions to initial value
problem ([2.2)).

Theorem 2.7. Assume the conditions of Theorem [2.5. Let b? > 12E|zo|/* and
% < a < 1. Then wnitial value problem possesses at least one solution x(t)

defined on [0,T"], where

1
r? 1 2
T’ = min {T, [%(lﬂ — 12EH$0||2)} :

{—W(O‘)@O‘ “ e 121&;\950”2)} }

-

6M?
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Proof. Let x¢(t) be a mean-square continuous function on [—d, 0], where 0 < 0 < 1,
such that z¢(0) = zg and E||zo(t) — z0||> < b*. For 0 < € < 6, we define

x(](t), t e [—6, O],
vt = dave ™ + s [ =7 e = ar 224)
\+ﬁ (1=t g(yin(e), te 0.7,

where T] = min{7", e}. Using (2.12)), we obtain

El|z(t) — ol* < 3El|lzo — zoe ™"

2

t
+ —FQ?Q)E ‘ /0 (t— 1) f(r,zu(r — €))dr
FQ(a) ; T g\Tm T
M2t204 M2t2a—1
< 12E 20| + — 5 <,

Pla+l) Ta)Ra-1) =

because of the choice of T7. If 7] < T", we can use (2.24)) to extend as a continuous
function on [—4d, T3], where Ty = min{T", 2¢} such that E||z.(t) — x0[|*> < b? holds.

Continuing this process, we can define z.(t) over [—§, T"] so that E||z(t) —zol|* <
b? is satisfied on [—6,T"]. Let 0 < t; <ty < T”, then we obtain

E||z(ts) — zc(t1)||? < CE|zo||2(e 771 — e77%2)?

2

t1
+ ¢ E / ((tl - T)a_le_"(tl_T) — (ta — T)O‘_le_"(tQ_T)) f(r,x (T —€))dr
0

2

e 1) (b — 1 (1 — )

t1

2

t1
b B || [ (0= 7)) - (1= e ) g(r)aB(e)
0

2

c 2 a—1_—o(ta—7)
+ o B /t (t, — r)te= g (7)dB(7)

= CE”ZL’OHZ(Q_Utl - 6_0t2)2 + P3 + P4 + P5 + Pﬁ.

(2.26)
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Thanks to the arguments for (2.14)-(2.15)), we have

C t
P3 < I2(a) /0 ((t1 —r)etemothi=) _ (g, — T)a_le_”(tQ_T)) dr
t1
X / ((t1 — T)O‘_le_”(tl_T) — (te — T)O‘_le_"(tz_T)) E||f(1, z(T — €))||*dr
0
CcM? M
< F2(a) /0 ((tl . 7_)204—26—20(t1—7) . (tg . 7_)2&—26—20(152—7)) dr
cCM? [t
< 1—‘2(0[) /O ((tl . 7_)204—26—20(t1—’r) . (tg . 7_)2(1—26—20(751—7')) dr
cM2 [t
+ FQ(@) A ((tg . 7_)204726720'(15177') . (tZ . 7_)204726720@277)) dr
< CM? (tQ — tl)Qail CM? (t2 — t1)2a72 /tl (e*2a(t177) — 672U(t277)>d7—
I?(a)(2a — 1) I?(a) 0
CM2<t2 — tl)ZQ_l CM2(t2 — tl)Qa_l 4 CM2<t2 — t1>2a_1 O(tg — tl)
2(a)(2a — 1) T2(q) T2(a) ts—t,
(2.27)
where limg, 4, 0 (%) = 0;
C to to
P, < m/ (to — T)a_ldT/ (ty — 7)) 'E|| f (7, z(T — €)||Pdr
h h (2.28)
- CM?(ty —t;)*
a+1)
P < C /t1 ((t . T)a_le_g(tl——r) . (t _ T)Oc—le—a(t—r))Q ”9(7_)H2d7_
CM? [
< F2(a) /(; ((tl . 7_)204726720(7&77') . (t2 . 7_)204726720'@277)) dr (229)
CM?(ty — ;)% CM?(ty — ty)*! N CM?(ty — 1) L o(ty — t;)
T2(a)(2a — 1) T2(a) T2(aq) ts— b
and
C to CMQ(tQ - tl)Zafl
P< — to — 200—2  —20(t2—T) 2d < 9.
S g [ (e ) P < St s0)
Then ([2.26)-(2.30]) imply that
_ Y CM?(ty — t1)**
Bt — 2| < CBlaof (e~ — o=t + S0
OMQ(tQ _ t1)2a71 CMQ (t2 _ tl)Qafl
(2.31)
T2(aq) T2(a)(2a — 1)
CMQ(tQ - t1)2a_1 O(tQ — tl)
F2<Oé) tQ - tl

This finishes the proof. []
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Theorem 2.8. Assume the conditions of Theorem . If a solution x(+) of equation
has a maximal interval of existence [0,T"), and there exists K > 0 such that
Ellz(t)||* < K for all t € [0,T"), then T" = +o0, i.e., z(-) is a globally defined
solution.

Proof. The proof of this theorem is similar to that of Theorem so will be
omitted.
Next we consider the existence and uniqueness of solutions to initial value prob-

lems ([2.3]) and (2.4)).
Theorem 2.9. Let T > 0 and let f(-,-), g(-,-) : [0,T] x L*(; X) — L*(Q; X) be
measurable functions satisfying for all x, y € L*(€; X) and t € [0,T],

E|f(t,x) = f(t,9)* + Ellg(t, =) — g(t,y)|I” < LE|z - y|° (2.32)
for some constants L. In addition, let f and g be bounded maps, i.e.,
E[lf(t,2)|* < M?,  Elg(t,2)|> <M?,  forall (t,x)€ Ry,

where Ry = {(t,x) : 0 <t < T and E|lz — xo||* < b*}. Then, for every x, €
L3(Q; X), there exists a unique solution to .

Proof. We start the proof by checking the uniqueness of solutions. Assume z,
y € L*(Q; X) are two solutions of (2.3). Then by Young’s inequality, Holder’s
inequality, 1t6’s isometry and the Lipschitz condition (2.32)), we deduce that

Ellz(t) -y < LE\

/0 (t — 7y (f(rx(r)) — Fry(r)))dr

(@)
2 t ot 2
b g | [ = ot - sttt
2t t S ,
< gy [ =R () — P (239)

2 ! 202 2
+W/o (t — 7)% 2R g(r, 2(r)) — g(r, y(r))|Pdr
2T +2)L [ _ 222 (1) — u()I2dr
S / (t = )" Elle(r) — y(r)|Pdr.

By Lemmal2.3] it follows that E||z(t)—y(t)||> = 0 for all ¢ € [0, 7] and the uniqueness
is thereby proved.

Now we prove the existence of solutions to problem . First of all, let xg be a
mean-square continuous function on [—4, 0], where 0 < § < 1, such that z((0) = zg
and E||zo(t) — zo||* < b2 For 0 < € < §, we define

xo(t), t € [—0,0]
1t »
$€(t) _ Zo + _F(O() \/0 (t — 7_)04 f(’T, $€(T — 6))d7’ (234)

L a-l —€ T
e / (t = 7) g, (v — ))dB(r).
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Arguing as in the proof of Theorem 2.5 we can define z(t) over [—4, T} so that
E||z(t) — x| < V? (2.35)

is satisfied on [—6, T}), there exists a continuous function z(-) and a subsequence of
{z¢, ()} (denoted again z., ) such that

T, (t) = x(t) in L2 (Q; X) for all ¢ € [0,Ty], (2.36)
and for any tq, to € [0, T3] with ¢; < to,

8M*? 8M*?

SParp M T RGN

El|lze(t2) — ze(t:)|* <

Combing this with the definition of z.(t), we obtain that z(t) is equi-continuous
n [—9, Ty, i.e., for any n > 0 there exits §; > 0 such that for ¢, t5 € [—0,T}] with

‘tl — tg’ < 51, we have
E||ze(t2) — ze(t)|* < 7 (2.37)

for all € € [0, d].

Then we show that the sequence {z.,} given in the proof of Theorem is a
Cauchy sequence in C(0,Ty; L?(€; X)). Similar to the argument for , in view
of , we find that for all n, m sufficiently large,

- 2 —(2T+2)L t — 1) 2Bz, (T —€,) — x (T — €,)||2dT
Bl () = 201 < sl [ 0=l (7 = ) = 20, (r = en)la

(2T +2)L [! 902 2
< W/o (t—7) (3]E||:L'en(7 —€n) = 7o, (7)]

+ 3Bz, (1) — 2, (1) |I* + 3El|ze,, (7) — e, (7 — 6m)||2) dr

6(27 + 2)LT?* ' 32T +2)L
I'?(a)(2a — 1) ()

« /0 (t — 72|z, () — 2. (7)|2d7

(2.38)
Applying Lemma we have for n, m large enough
Ellz, (t) — e, ()]
3(2T+2)L n
6(27 + 2) LT o FRa—1))" rt
?(a)(2a — 1) n(2a — 1)) 0
3(2T+2)L a1\" 2.39
6T +2)LT>" T Z ( F(2a - r* 1) (2:39)
r2(a)(2a—1) | na—1)+1)
6(27 + 2)LT?~1 T 6(T+ 1)L 2o 1
14 Fon ——T'(2a—1)T* :
Paee—1 | T T (2a=1)
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Consequently,
sup El|z, (t) — e, (1)

0<t<a
6(27 + 2)LT%! 6(T"+ 1)L o1
1+ Eop ——— ' (200 — 1)T* :
Moo —1) |1 T B Ty TR U
so {z, } is a Cauchy sequence in C(0,Ty; L*(Q; X)).
Finally, we check that the limit x of the sequence {x. } is a solution of ([2.3)).
For this aim we will pass to the limit in the integral

ze, (t) = x(0) + ﬁ/o (t—7) (1,20, (T — €,))dT

(2.40)

1 ¢ (2.41)
+ m/o (t — 1) tg(r, 2., (T — €,))dB(T), t €10,a.

By Hélder’s inequality, (2.37) and (2.39)), we obtain for all n large enough

E ’ /Ot(t ) (s a ( — €))dr — /Ot(t e e a( |

< TL/0 (t = 7)*7?E|ae, (1 — €n) — x(7)|Pdr (2.42)

<TL / (t — 7)222(2E |z, (7 — €n) — 2o, (7)]?

+ 2E||z., (7) — x(7)|]?)dr < On,

and by [t0’s isometry, it follows that for all n sufficiently large,
t t 2
| [ (0= gt - s - [ 6= 0t am)a)
0 0

- / (t = 1) 2B g, 2, ( — ) — g(r, (7)) |%dr (2.43)
<r /0 (t — 72|z (r — e) — 2(r)|2dr < C.

Therefore, (2.40) and (2.42))-(2.43]) imply that x is the solution of (2.3)). [

Theorem 2.10. Assume that conditions of Theorem [2.9. Then for every x, €
L*(Q; X) there exists a unique solution to .

Proof. The proof of this theorem is similar to that of Theorem [2.9] so is omitted
here.

2.3 Fractional stochastic lattice systems

Stochastic lattice system involving classical Ito SDEs have been investigated exten-
sively, e.g.,[4l [14], 15 39, 4], 42], but seemingly not for those with a fractional time
derivative.
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2.3.1 Statement of the problem, existence and uniqueness
results

In this chapter, we consider the following stochastic lattice system with a Caputo
fractional substantial time derivative,

{Dg‘xi(t) + (=1)PAPz;(t) + Az (t) = fi(xi(t)) + gz’(t)d?hgt)’ t20, (2.44)

2:(0) = 2oy, i€ Z,

where % < a <1, A € R, pis any positive integer, AP = Ao ---0 A, p times.

Here A denotes the discrete one-dimensional Laplace operator, which is defined by
Ax; = xip 1+ —2x;. We also write 0T x; = x;.1 —x;, 0" x; = x; — x;_1 and define

P A%, p even,
T otA,  podd.

Recall that ¢? is a Hilbert space of square summable real-valued bi-infinite se-

quences with the inner product (z,y) = Y, , ;% and norm |[|z|* = Y, , 27 for all

= (2)icz, ¥ = (Yi)iez € €. Let L*(£2;¢*) denote the Hilbert space of all strongly
measurable, square-integrable ¢?-valued random variables with the inner product
and norm

1
E(x,y) = /QZmiyidIP’, 2| L2y = (E|z|*)?, Va,y € L*(; 0%).

i€Z
Then it is easy to see by induction that
> EDAw()f < 4Bl ()], (2.45)
i€Z

for all z = (;)icz € L*(2;¢?). Let L2 (Q;(?) be the space L*(Q;¢?) endowed with
the weak topology. We shall use the similar notations L*(€;R) and L2 (Q;R).
We consider the following conditions:

(Hy) The operators f : L*(Q;¢?) — L*(€;¢%) and g : [0, +00) — £2, given compo-
nentwise by (f(x)); = fi(z;) and (g(t)); = gi(t), i € Z, are well defined and
bounded, and ¢ is measurable.

(Hy) The f; : L*(;R) — L*(;R) are sequentially weakly continuous in bounded
sets.

Theorem 2.11. Let (H;)-(Hy) hold. Then for every xo € L*(; (%), the initial value
problem has at least one local solution z(t) defined on [0,T) for some T > 0.

Proof. We can rewrite equation (2.44) as

1
{Dg:c(t) = F(z(t)) +9(t) %52, =0, g o<l (2.46)

z(0) = xo,
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where
F(z(t) = f(z(t)) — (=1)PAPz(t) — Az (?).

First, we show that F : L?(Q;(?) — L*(Q; (?) is sequentially weakly continuous in
bounded sets.

Let 2™(t) — (t) in L2 (Q; 0?), E||z"(¢)||> < C* for all n € N and let v € L?(£; (?)
be arbitrary. Then for each 1,

o' (t) — x;(t)  in L2 (Q;R), (2.47)

and for any ¢ > 0, there exists M (e) > 0 such that
E ) vl <€ (2.48)

li| =M
By (H>) and (2.47)), it follows that there exists N (e, M) > 0 such that
EY (filai() = filzi®))vi <€, ifn>N, (2.49)
i<M
and by (H;) we obtain there exists C' > 0 such that for all n € N,
Elf@"@)I* <, Elfm)* <C" (2.50)

Hence, we find for all n > N that

E(f(@"(t) = f(@(t),0)| <EY (fila] (1) = filxi(t)v:

i<M

(2.51)
+ (VEIF@O)P + VEIFEEIE) B ful? < C.

The result for the operator AP can be proved similarly.

Since f is bounded, in view of and (Hy), F and g are bounded. Then the
results follows from Theorem 2.5 [

In order to show that every solution is globally defined, we now need the following
estimates of solutions.

Lemma 2.12. Assume (Hy) holds and also that

(Hs3) The f; : L*(;R) — L2(4R) satisfy Elfi(x)]* < |kia|* + kE3E|z|* for all
x € L*(4R), where ky = (k1:)icz € 02 and ke > 0.

(Hy) There exists a positive constant M’ such that for all t > 0,

t
= et g(o|Par < o
0
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Then, every solution x(-) with x(0) = zo € L*(2; (*) satisfies

Ela(t)|P < (CEflrolPe 5t + O) <1+Z (S ) e 1),

O-Oé

where T is the maximal time of existence and o 1is large enough to ensure the
convergence of the above series.

Proof. By (H3) and It6’s isometry, we deduce that

C t
) 2 < ) 2 _—20t _ \a—1l_—o(t—7)
E|z;(t)]* < CE|z;(0)[7e™*"" + T7(a) /0 (t—71)""e dr

t
x / (t — 7)o Lemot=) (EMA%»(T)F + NElai(7)
0 (2.52)
+ [kual? + kr%Em(T)'z) o

C ' 20-2 2
a—2 —20(t—T 2
—I—W/O(t—ﬂ e )gi(7)|2dr.
Then (2.9),(2.45), (2.52)) and (H,) imply that
t
E||lz(t)||* < CE||zo|[?e " + C/ (t — T)O‘_le_"(t_T)E||x(T)||2d7' +C. (2.53)
0
Hence,

t
'Rz (t)])? < CE||zol[2e™" + C/ (t — 1) e E||a(7)||?dr + Ce". (2.54)
0

From Corollary we obtain

Bl < (CElleolPe$+ C) (1 +Y () ) e

O-OL

This completes the proof of the lemma. [J
Thanks to the Theorem and the Gronwall Lemma [2.12] it follows from
Theorem [2.§] that

Corollary 2.13. Let (Hs)-(Hy) hold, and let o be sufficiently large. Then every
local solution of initial value problem 1s defined globally.

Furthermore, we can prove the uniqueness of solutions for the fractional stochas-
tic lattice system (2.44)) when the nonlinearity satisfies the following Lipschitz prop-
erty.

(Hs) El|fi(z) — fi(y)]? < L'E|z — y|? for any z, y € L*(Q;R), where L' > 0.

Theorem 2.14. Let (Hy) and (Hs)-(Hs) hold, and let o be sufficiently large. Then
for every xg € L*(%; %), there exists a unique globally defined solution x to M
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Proof. Define F(z(t

) = flx(t) — (- )pApx( ) — A\x(t). We first prove that
F o L2(Q:0%) — L2(Q; 02

) is Lipschitz. By (2.45) and (Hj), we have

E|lF(z(t) — Fly)I* = Y ElF(a:(t) — Fi(yi(1))?

€L

<3 (3E|fi<xi<t>> — ) + SEIA" (1) — 5 (1)

1€Z
T 3NEa (1) — yi<t>r2)

<Y CElzi(t) —yi(t)* = CE|Ja(t) — y(1)]>.

i€z
(2.56)
Thus, using and (Hj), we deduce that
E|[F ()] < (BEIfi(xi(t))]” + 3E|APz;(£)[* + 3N Ela;(t)|*)
i€z
<O (ki + BEz(O) + Elz() + NE[z,())  (2.57)
i€z

< C+CE[z(1)|",

and thus F : L*(Q;0?) — L*(Q;¢?) is well defined and bounded. It follows from
Theorem that for any zo € L*(Q;(?), there exists a unique local solution to

(2.44). Finally, Theorem [2.8 and Lemma imply that the local solution of ([2.44)
can be extended globally. [J

2.3.2 Asymptotic behavior

Mean-square asymptotic properties of random systems are frequently used in physics
and engineering. Recently, mean-square random dynamical systems and their mean-
square attractors were introduced by Kloeden and Lorenz [49]. The existence of
a mean-square attractor was established in [49] as well as in [32], 81] for random
dynamical systems generated by a mean-field SDE and a stochastic delay equation.
These mean-square attractors are defined in terms of pullback convergence, which
uses information about the system in the distant past. They usually say nothing
about the future asymptotic behavior of the system, in which case we need to talk
about forward attractors or attracting sets [50].

These results do not, however, apply in the present context because the fractional
SDEs do not generate a pathwise cocycle mapping or a mean-square two-parameter
semi-group. Nevertheless, we can establish the existence of a forward global at-
tracting set in the weak topology for the fractional stochastic lattice model possibly
without uniqueness of solutions.

Theorem 2.15. Let (Hs)-(Hy) hold, and let o be sufficiently large. Then
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(1) for any bounded subset B of L*(Q;¢?), any sequence {t,} with t, — +oc as
n — +oo, {x3} € B, and any sequence of solutions {z"(-)} of problem
with x™(0) = xf € B, the sequence {x™(t,)} is relatively compact in L% (Q;(?);

(2) for any bounded subset B of L*(S;(?), the set
Wy (B) :{:v : It — 400,25 € B and a sequence of solutions x"(-) of prob-
lem with z™(0) = zfy € B such that 2" (t,) — x in L2 (% 62)}

15 nonempty, compact and attracts B in the weak topology;

(3) the set

Aw = H{wu(B): B C L2 (9;(2), B bounded}

is bounded in L*(%; (%), compact in the topology of L2 (S ¢%), and, moreover,
is the minimal weakly closed set that attracts all bounded subsets of L*(2;(?)
i the weak topology.

Proof. Since L2(2;¢?) is reflexive, conclusion (1) follows from Lemma [2.12] and
consequently w,,(B) is nonempty and weakly compact.

Now we show that w,(B) attracts B in the weak topology. Assume, otherwise,
there exist g > 0 and sequences {t,, } with ¢,, — 400 as n — +o0, {z{} with z{ € B
and solutions {z"(-)} of with 2"(0) = xf such that

disty, (2" (t), ww(B)) > €o, Vn € N, (2.58)

where dist,(-,-) is in the sense of weak topology. Using conclusion (1), we obtain
that x"(t,) is relatively compact in L2 (€2; £%) and possesses at least one cluster point
w. By the definition of w,,(B), it is clear that w € w,(B), but this contradicts (2.58).

From Lemma and the conclusion (2), we see that A,, is bounded in L?*(; (?)
and attracts all bounded subsets of L?*(£2;¢?) in the weak topology. It is clear that
A, is compact in the topology of L2 (€; ?).

Finally, we prove that A, is the minimal weakly closed set attracting any
bounded set B C L2(£2;¢?) in the weak topology. Indeed, if there is a weakly
closed set A’ which attracts any bounded set B C L*(£2;¢?) in the weak topol-
ogy, then by the definition of w,(B), we deduce that w,(B) C A’, and thus
H{ww(B)} : B C L*(2;¢?), B bounded} belongs to A’. Since A’ is weakly closed,

we have

Ay = | J{ww(B) : B C L*(;¢?), B bounded } C A'.
This completes the proof of Theorem [2.15, [J

Theorem 2.16. Assume that (Hy) and (Hs)-(Hs) hold, and let o be sufficiently
large. Then the solutions of are uniformly asymptotically stable in the strong
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mean-square topology, i.e., for any bounded subset B of L*(2;0?) and n > 0, there
exists a T, > 0 such that

Elz(t) —y@®)||> <n, foral t>T,, (2.59)

for any two solutios x(t) and y(t) of problem corresponding to initial values
xo and yo belong to B.

Proof. Let z(t) and y(¢) be two solutions of problem (2.44]) corresponding to initial

values zg and 9. Then by (2.45), (2.9) and (Hs), using Hoélder’s inequality, we
obtain

C t
Elz;(t) — y:(t)]> < CE|z;(0) — y:(0)[?e ™" + o /0 (t — r)e=lemot=" gy
t B a—1_—o(t—7) E (1
« [ (€= rpmtee o (ElAG)

— fi(ys () + Elas(7) — yi(7)|* dr (2.60)

Therefore,

Ellz(t) — y(t)|I* < CE[zo — yol/*e™"

L t — ) e IR 2(7) — y(7)||2dr
e K Ella(r) — y(r)|/%dr.

Let w(t) = e“'E||lx(t) — y(t)]|?, then we have
¢
w(t) < CE|lzg — yol|*e ™" + C’/ (t —7)* tw(r)dr.
0

Applying Lemma [2.3] we have

w(t) < CIE||$O—y0”26—0t+/O 3 (CT(a))"

t— na—lCE o 2 —o7d
T(na) (t=7) [0 = yol[“e™"dT

B CT(a))™ [* _
< _ 2 ,—ot _ 2 (—/ _ \na-1
< CE|lzg — yol|"e™ " + CE||xo — wol| 7;:1 Ta) J, (t—7) dr

_ = (CT(a)t)"
< CEl|zo — yoll*e™" + CE|lzo — wol* Y = ——+
“—~ DI'(na+1)

< CE||zo — yol[?e™ " + CE||xq — yo\|2Ea71(CF(a)t°‘),
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where 4
By (CT()t%)| < Ay exp(CT(a)t¥) s + ——————
B (CT(@)1")] < Ay exp(CT(@))* + i
where A; and A, are positive constants. Hence

A
1+ [CT ()t (2.61)
+ CEl|zo — yol>A1 exp(((CT(a))? — o)t),

Ellz(t) — y(t)]I* < CE[lzo — yol*e™" + CEl|lzo — yol[*e™"

this implies that (2.59)) and thus the proof is finished. [J
Let Z(t) be the solution of (2.44]) in Theorem with initial value z(0) = 0.

Then ([2.61)) gives

ta
= 2 < 2 _—ot —ot
Bla(t) - 2Ol < CBllaoe (e + ).

so the solution Z(t) is mean-square exponentially asymptotically stable (as indeed
is any other solution).

Suppose, in addition, that (H>) also holds in Theorem [2.16 Then Theorem [2.15]
also holds and the fractional stochastic lattice system has a weak mean-square
global attracting set A,,. In this case A, = w,(0).



Chapter 3

Stochastic fractional impulsive
differential equations with delay

There are numerous examples [10} 54 [72] of evolutionary systems that are subjected
to rapid changes at certain instants in time. The interest in describing such processes
by appropriate mathematical models, which are so-called differential equations with
impulsive effects, mainly arose in recent years. In the simulations of such systems it
is often convenient to neglect the durations of the rapid changes and to assume that
the changes are represented by state jumps, see, e.g., [0, 12| 23] 29, (3]. Therefore,
the theory of impulsive differential equations has become an active area due to its
wide applications in several fields such as communications, mechanics, electrical
engineering, medicine, biology, etc. For the basic theory of impulsive differential
equations, we refer the readers to [0, [7, 9], 23, [30} 53], 63, [64], 68] and the references
therein.

It is well-known that the deterministic models arising in mathematical finance,
climate and weather derivatives, often fluctuate due to the presence of some kind
of noise. Hence, the stochastic models driven by a Brownian motion or fractional
Brownian motion have attracted the researchers great interest (see, e.g., [9, 12, 13,
28, 166, 65, [77]). On the other hand, the fractional differential equations which are
presented in the modeling of many real problems (e.g. in physical phenomena)
have been the object of extensive study in order to analyze not only non-random
fractional phenomena in physics, but also stochastic processes driven by a fractional
Brownian motion, see [3, 23], 55, B8 57, [70] and references therein. Therefore,
our first aim of this chapter is to address the issue of existence, uniqueness and
asymptotic behavior of mild solutions to the following fractional stochastic impulsive
differential equations with infinite delay,

Dea(t) = A(t) + f(t ) + g(t, ) 20 + ()22 ¢ >,
t#t,, 3<a<l,
Aa(ty) = altf) — olty) = Iu(e(ty)), k=12,
z(t) = ¢(t), te€ (—o0,0],

(3.1)

where Dy is the Caputo fractional derivative of order 1 < ar < 1.

67
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The theory of local existence of solutions of impulsive non-stochastic or impulsive
stochastic differential equations has experienced a good development up to date. In
[57], the local existence of mild solutions for neutral impulsive stochastic integro-
differential equations has been investigated. Subsequently, using a Banach fixed
point theorem, the existence and uniqueness of local solutions for fractional impul-
sive differential equations with infinite delay are established in [29]. Henceforth,
studies of existence of solutions for impulsive stochastic differential equations have
been launched as can be seen, for instance, [58] 70, [72] [73]. Notice that, most of
the previous research concerns the case of the local existence of solutions for such
kind of equations, there has been little regarding the case of the global existence of
solutions except for [23] 80], in which the global existence of solutions for fractional
impulsive differential equations was obtained.

Motivated by the work in [80], in this chapter, the local and global existence
and uniqueness of mild solutions to problem are studied by means of a fixed
point theorem, and the properties of a-order fractional solution operator T, (t) and
resolvent operator S, (t). Moreover, the exponential decay to zero of the mild so-
lutions to problem (3.1)) is also proved. However, the lack of compactness of the
a-order resolvent operator S, (t) does not allow us to establish the existence and
structure of attracting sets, which is a key concept for understanding the dynami-
cal properties. To this respect, in [I0] the authors already studied the existence of
attractors for impulsive non-autonomous dynamical systems when a = 1, since the
operator generated by the infinitesimal generator A is a semigroup (see [22], 63] for
more details).

Fortunately, to overcome this difficulty in our fractional situation, we can take
advantage of the compactness of a-order fractional solution operator T, (t) which has
been proven in [70)], [78], and this is one of our motivations to analyze the existence
(and eventual uniqueness) of mild solutions, and the global forward attracting set
of the following fractional stochastic impulsive differential equations with infinite
delay,
dBj (1)

at

Dy(t) = Ax(t) + IO f (t,2,) + (I "g(t, 2,)] 58 + [I]7*h(t)]
t>0, t#t, O0<a<l,

Ax(ty) =x(tf) —x(ty) = L(z(ty)), t=tp, k=12,

x(t) = ¢(t), te(—o0,0],

(3.2)

where D¢ is the Caputo fractional derivative of order 0 < o < 1, I}™* is the (1 —a)-
order fractional integral operator.

For both models and , x(-) takes the value in the separable Hilbert
sapce H. A: D(A) C H — H is the infinitesimal generator of an a-order fractional
compact and analytic operator T,,(t)(t > 0), and let K be another separable Hilbert
space. As usual, B(t) and Bg (t) denote, respectively, a K-valued Q-cylindrical
Brownian motion and fractional Brownian motion defined on a filtered complete
probability space (2, F,{F;}i>0,P). The fixed time t;, where the impulses take
place, satisfy 0 =ty <t; < --- <t — +00 as k — oo.

We consider the functions z; : (—oo,0] — L*(2; H) defined by x,(0) = z(t + 6),



Chapter 3. Stochastic fractional impulsive differential equations with delay 69

for all # € (—o0,0], which are continuous everywhere except for countable points
tr (k € N), where impulses take place, at which there exist z(¢;) and x(¢; ), and
x(ty) = x(t;) (for each k, z(t)) = limyox(ty + h) and z(t;) = limy, o z(tx — h)
represent the right-hand and left-hand limits of z(¢) at t = ¢, respectively).

The nonlinear maps f : Rt x PC — H, g : R* x PC — L(K,H) and h : RT —
L(K, H) that satisfies hQ% is a Hilbert-Schmidt operator, are appropriate functions
which will be specified later, I}, € C(H, H) for each k € N.

It is worth noticing that, the nonlinear terms of the right hand side of problem
have higher regularity because of the integral operator I}~®. For this model, by
a fractional variation of constants formula, the mild solution to problem is only
involving the a-order fractional solution operator T, (t) (¢ > 0) which is compact.
We emphasize that the main advantage of model is that we can extend the
results of model with a € (3,1) to model with a € (0,1). Also, thanks to
the good properties of the a-order fractional solution operator (see Lemma , we
are able to prove the existence of attracting sets and provide interesting information
about the dynamics of model .

3.1 Setting of the phase space, preliminaries

Notice that, in Section 1.2.2, we introduced some basic properties of Brownian
motion and fractional Brownian motion, thus in this chapter, we assume that B()
and Bj (t) appearing in models (3.1) and (3.2) satisfy those hypotheses.

Now we recall some basic definitions concerning the sectorial operator A, a-order
fractional solution operator T,(t) and a-resolvent family S, (t).

Definition 3.1. A linear closed densely defined operator A is said to be sectorial if
there are constants w € R, 0 € [5, 7], M > 0, such that the following two conditions
are satisfied,

(D) o(A) C Y, o={reC:A#w, |arg(\ —w)| <0};
2) IR A < 550 A€ 2o

[A—wl?

Definition 3.2. Let A be a closed and linear operator with domain D(A) defined
on H. Let p(A) be the resolvent set of A. We say that A is the generator of an o-

resolvent family if there exist w > 0 and a strongly continuous function S, : RT —
L(H), such that {\*: Re(\) > w} C p(A) and

(AT — Aty = /e’\tSa(t)ydt, Re(N) > w, yeH,

0

where S, (t) is called the a-resolvent family generated by A.

Definition 3.3. A solution operator T,(t) of (5.4)or is called analytic if T (t)
admits an analytic extension to a sector ), = {A € C\{0} : [arg A| < b} for some
0o € (0,5]. An analytic solution operator is said to be of analyticity type (wo, 0o) if
for each 6 < 6y and w > wy, there is a positive constant M = M(w, ) such that
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I TL()|| < MewBe®) ¢ € 3, = {t € C\{0} : |argt| < 0}. Denote A%(wy,bp) = {A
generates analytic solution operators T, (t) of type (wo,6o)}-
Definition 3.4. A family T,(t) : R™ — L(H) is called an a-order fractional solution
operator generated by A if the following conditions are satisfied:
(1) To(t) is strongly continuous for t >0 and T,(0) = I;
(2) T,(t)D(A) C D(A) and AT, (t)x = T,(t)Ax for all z € D(A) and t > 0;
(3) for all zg € D(A), To(t)x is a solution of the following operator equation
¢

1 a—1
x@):xy+F@y/@—s) Ax(s)ds, >0

Definition 3.5. An a-order fractional solution operator T,(t)(t > 0) is called com-
pact if for every t > 0, T,(t) is a compact operator.

Arguing as in the proof of Lemma 3.8 in [34], we obtain the continuity of the -
order fractional solution operator T, (t) and a-resolvent family S, (¢) in the uniform
operator topology for t > 0.

Lemma 3.6. Assume A € A%(wy,00), and that the a-order fractional solution op-
erator T,(t)(t > 0) and the a-resolvent family S,(t)(t > 0) are compact. Then the
following properties are fulfilled:

(1) 1 [[Ta(t 4+ B) = Tu(6)]| = 0, lim [[Sa(t + h) — Sa(6)]| =0 for t > 0:
—> —

(2) lim ||Toc(t+h) _Ta(h>Ta(t>|| - O; lim ||Sa(t+h> - Sa(h>sa(t)|| =0 fO’f’t > 0;
h—0t+ h—0t

(3) lim [[Ta(t) = Ta(R)Ta(t = 2)] = 0, lim [[Sa(t) = Sa(h)Salt = h)|| = 0 for t > 0.

Lemma 3.7. If A € A%(wo,0y), then for every w > wy (wy € RY), there exists a
constant M = M (w,0) such that, for allt > 0,

IT. (]| < Me*t  and  ||Sa(t)]| < Me*t(1 + o), (3.3)

Furthermore, let My := supgc;<7 [|To(t)]|, Np := supgc,cr Me*'(14t'7). Then we
obtain that
ITa@)ll < My and  [|Sa(t)]| < Nt (3.4)

Next we are going to establish the existence of mild solutions to fractional im-
pulsive stochastic differential equation and . Before doing this, we first
present the abstract phase space PC.

Let L?(; H) denote the Banach space of all strongly-measurable, square-integrable
H-valued random variables equipped with the norm ||u(-)||7. = E|ju(-)||?, where the
expectation [ is defined by Eu = [, u(-)dP. The abstract phase space PC is defined
by

PC = {5 : (—00,0] — L*(%; H) is Fy-adapted and continuous except in at
most a countable number of points {6}, at which there exist £(6;")

and (6, ) with £(0;) =&(0,), and  sup eWIEle(G)H2 < oo},

0e(—00,0]
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for some fixed parameter v > 0. If PC is endowed with the norm

||§||7>c=< sup eWEnswm?) . cerc
0e(—o0,0]

then, (PC, | - ||pc) is a Banach space.
Now, we introduce the definitions of mild solutions to problems (3.1)) and .

Definition 3.8. Set F; = Fy for allt € (—o0,0]. An Fi-adapted stochastic process
z : (=00, T] — H is called a mild solution of equation if x(t) = ¢(t) for
t € (—o0,0] with ¢ € PC, and fort € [0,T], x(t) satisfies the integral equation

;

T /5 (t— ) f(s, 24 ds+/S (t — $)g(s, 23)dB(s)
/S (t—s)h dBQ(), t €[0,t],

To(t — )L (1)) + 2(t7)) + / Salt — 5) (5, 22)ds

t1

x(t) = +/t So(t —8)g(s,z5)dB(s) + /t Sa(t — s)h(s)dBg (s), t € (t1,ta],

t1 t1

)

To(t — tm) (L (z(8,)) + 2(t,,)) + / Salt —s)f(s,xs)ds

/S (t —s)g(s,z5)dB(s /S (s)dBS(s), t€ (tm,T],

where ¢, = max{ty, t, <T, k=0,1,2,---},

« 1 At )\a—l
To(t) = Eqn(AtY) = 57 A e ———d,

1 1
Sa(t) = t* By o0(AtY) = 2—7”/ e)‘t)\a —

here the integral contour I'y is oriented counter-clockwise.

The definition of mild solution to problem (3.2)) is almost the same than Defini-
tion [3.8 to be precise, we present the definition as below.

Definition 3.9. Let F, = Fy for allt € (—00,0], and let ¢ € PC be an initial value.
An Fi-adapted stochastic process x : (—oo,T| — H is said to be a mild solution of

the equation if ©(t) = ¢(t) fort € (—o0,0], and fort € [0,T], x(t) satisfies the
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integral equation

/

T, (t)o(0) + /0 To(t —s)f(s,xs)ds +/ To(t — 8)g(s,xs)dB(s)

+/tTa(t — s)h(s)ng(s), t € [0,t],

Rw%Mﬂm+hmhm+/wa@ﬂww%

-l—/t T.(t —s)g(s,z5)dB(s) +/t To(t — s)h(s)ng(s), t € (t1,ts],

"

naﬁmmm+m@@m+[zm—wwam

—I—/t To(t — 8)g(s,xs)dB(s) +/t To(t — s)h(s)dBf(s), t € (tm,T),

where t,, and T,(t) are the same as in Definition [5.4

In order to establish the main result, we impose the following conditions.

(Hy) f :[0,00) x PC — H, g : [0,00) x PC — L(K,H) are continuous and there

exist two functions [;(-), lo(+) € L®(R*; R") such that
Ellf(t,2) = fEI* <h@®llz—ylpe,  Ellgt,2) =gt v)lI* < L)z —yllpe.

for every z, y € PC, and almost every ¢t > 0. Moreover, g(t,-) is measurable

relative to F; for all ¢ € [0, 0o0) satisfying / El|lg(t, z)|*dt < oo.
0

h:[0,00) — L(K, H) satisfying hQ:2 is a Hilbert-Schmidt operator, and there
exist ¢ > 1 and A > 0 such that, for every ¢ € [0, 77,

t
/0 |h(s)|2ds < A.

(H3) The functions I : L*(€;H) — L*(Q;H) are continuous for each k¥ € N, and

there exist two positive constants by, by > 0 such that

E|I1(2)]|* < b.E||z||* + by, for all z € L*(Q;H).

There exists a positive constant N such that, for all £ € N,

E|[Ii(x) — L(y)|]? < NElle — y|?, for all o,y € L*(;H).

(H}) The functions I, : L*(;H) — L?*(;H) are linear and continuous for each

k € N, and there exists Ny > 0 with >~ | Ny < +o0, such that

E|I.(2)|* < NyE||z||?, for all z € L*(Q;H).

Notice that these assumptions imply that Ny — 0 as k — +o0o, and there
exists a positive constant N such that

E|I.(2)|*> < NE||z||?, forall z € L*(Q;H).
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(Hy) p=inf{ty —tr—1} >0, n=sup{ty —tp_1} < 0.
keN keN

Remark 3.10. Comparing assumptions (Hs) with (HY), obviously condition (HY)
is more restrictive, as we need this condition to ensure the existence of attracting
set for problem .

3.2 Existence results

Theorem 3.11. Assume (Hy)-(Hy) hold, let A € A*(wy,6y) with 6y € (0,5] and
wo € RT, and assume that the a-order fractional solution operator Ty (t) (t > 0)
and the a-resolvent family S, (t) (t > 0) are compact. Assume also that there exist
two constants p and q which satisfy I% + %1 =1, where 1 < p < m Then, for
every initial value ¢ € PC and every T > 0, the problem has at least one mild
solution defined on (—oo,T).

Proof. We start the proof by defining an abstract phase space PCT as follows: for
a fixed T' > 0,

PCT = {I(, ) 1 (=00, T] x  — H such that x(¢,-) is F-adapted, x(t,-) € L*(;

H) for all t < T, z|;, € O(J; L*(;H)) and sup e"E|x(t)|* < oo},

te(—o0,T]

where x|, is the restriction of x to Jy = (tx,tx+1], kK € N. Then the abstract space
PCT endowed with the norm

3
2]l per = ( sup 67tﬂ*:st(lf)HQ) , z e PCT

te(—o0,T]

is a Banach space. Notice that, when considering 7' = 0, we have PC* = PC° = PC.
Now, for ¢ € PC, we define

PCl ={x e PCT: x(s) = ¢(s), s<0}.

It is clear that PCZ: is a closed subset of PCT, and consequently, it is a complete
metric subspace of PC”.

In order to simplify our presentation, let us abbreviate ||;||o by ;(i = 1,2)
according to the fact [;(-) € L*(R™,R"), and we write PC, instead of PC} for a
fixed T" > 0, when no confusion is possible.
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Let us pick ¢ € PCy4 and define

SCESNIOTICRD SRS {t(t ) () + 2 (8)
+/t Sa(t —3s)f(s,z2~ 1)ds + / Sa(t — s)g(s,m;‘_l)dB(s)

K 173

+/t5a(t—s)h(s)ng(s)}, te(—o0,T], k=0,1,2---,

\ tr

(3.5)

where Ip = 0 and t, < T, x is a characteristic function.
To ensure the existence of mild solutions, we split the proof into several steps.

Step 1. For all n € N, 2"(-) € PCy.

First, we claim that z"(-) is F;-adapted for all n € N. Obviously, 2°(t) = (t) €
PC, implies that 2°(t) is Fi-adapted for all t € (—oo,T]. With the help of the
continuity of f and I, as well as the fact that the limit of measurable function
is still a measurable function, it is easy to see that Ik(xo(t,;)) and fttk f(s,20)ds

are F-adapted. In addition, the stochastic integral f: ,29)dB(s) is Fi-adapted

according to Definition 5.3 in [61]. For the last term ft (s)dB§ (s), which is Fi-
adapted naturally. In conclusion, thanks to the Picard iterations technique, we
obtain that x!(t) is also Fi-adapted. By induction, 2" (¢) is Fi-adapted for all ¢ €
(=00, T] and n € N.

Next, we want to prove z"(t,-) € L*(€;H). Since 2™(t) = (t) on (—o0, 0], then
z"(t) = (b( ) for t € (—00,0], and as ¢ € PC, then we have x (t, ) € L*(Q;H) for

all t € (—o0,0]. Furthermore, for every ¢ € [0,t], by (L.6), (L.9), (3-4), (H1)-(H,)
and Holder’s inequality,

25201 1

Ella" (Ol < 4Mzll¢lec, + 8Nr(nh + Tr(@))[lpe, 5—

+8Nz(n sup |[f(s,0)|* +Tr(Q) sup |lg(s, 0)II")5~ :

5€[0,t1] s€[0,t1] -1

t
+4NFcH(2H — 1)t2H1/ (t — s)**?||n(s)||5ds
0

t2a 1 tQa 1

= 4M7
Flvllpe, + C'1H7¢1H7>c¢2 —1 t O

2a—1

+ Gyt

where we have used the notation

Cy = 8N7(nh +Tr(Q)l2), C>=8Np(n sup [[f(s,0)I* +T7(Q) sup ||lg(s,0)[),

s€[0,T] s€[0,T]
and

nQ(a 1)p+1 9
Cs < ANZcH(2H — 1)(2( ) (/ lh(s \|qus> < 00.

p+1
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Notice that, if t + 6 € [0,¢;] (where 6 € (—o00,0]), in view of v > 0, then it follows
that

t2a 1 t2a 1

Bzt (t+0)|* < AMZYl7e, + Cillélpe, 50— + Co

— Sy 1+(Jt2H 1(3.7)

if t+6 <0, we have
6”9E||x1(t +0)[? < e IR (t 4 0)|1° < e [¢ e, - (3.8)

Combining (3.7)) and (| -,

;e = sup e“Ellz'(t+0)|
0e(—o0,0]

2a—1

1 204—1 i
< (1o, + ot P ) 3 (2 + € L)

1=0

By induction on n, for ¢ € [0,t;], we derive that

n 2a—1 (
-+ Cyn ) > (4M2 + 01 — 1) (3.9)
1=0

For t € (t1,ta AT, similar to (3.6). By (L.6), (1.9), (3.4), (H1)-(H4) and Hélder’s

2a—

latle < (1ol + Coge—y

inequality,
10412 2 2 (t—t)* ! 2
Ellz () < 8Mz((by + Dl[¢[lpe, + b2) + Cr—F—=—I1¥lIpc,
(t—t)*! 2H—1
A t —
+Cy Sy— + Cs(t — 1)

(t —ti)>! 4Oyt — tl)QH—l) (3.10)

]

~ (o2 (b=t
X Z 8MT<61+1)+01W .

1=0

Using the same argument as in and - ), together with ( and - for
t € (t1,ta AT), we have the followmg estimate,

204—1

-1

2a—1 \ ¢
XZ(8M2 (b + 1)+ Cy a—l)
=0

By induction on n, for t € (t1,t AT], we deduce

a2 < (ww%+wﬁm+@ +@ﬁHQ

2a—1
2 2 Ui
[¥lpe, +8Mrpbs + Co 2 — 1

27 e <

+ 03n2H1>

s N

(3.11)

2a—1 (
M2(b C



76 3.2. Existence results

In a similar way, combining (3.9) with (3.11]), for each fixed n € N, for all
t € [0,7T], we find that

2a—1

n 7 _
latle < (Wolle, + a3 + Cogl— + ™)

(3.12)

n 20—1 \ ¢
x> (SM%(b1 +1)+ 0127; — 1) < 0.
=0

Taking into account that E|jz™(t)|* < ||z}||%¢, then implies that z"(¢,-) €
L2(Q;H) for all t € [0,T].

Finally, since z°(-) = 1) € PCy, it is easy to see that a"(t) = ¢(t) on (—o0,0].
Now we only need to prove that 2"(-) € PCT for all n € N.

Let us now check x'(-) € PCT. Because the proof of the case k = 0 is similar,

here we assume that k& > 1. To do that, let us consider ¢ > 0 small enough, such
that for ¢, t + 0 € (—oo, T| N (tk, tk+1], then

Ellz"(t + o) — &' (O < Tl Ta(t + 0 — te) = Talt — t) IPE[1u(2°(t;)) + 2° () ]1®

+7E /t(Sa(t b0 —8) = Salt— ) f(s,2)ds

tg

2

t+o
+ 7E / So(t+ o0 —3s)f(s,2)ds
t

2

+7E /t(Sa(t 4o —8) — St — $))g(s, 2°)dB(s)

ty

2

t+o
+7E / So(t+0 —s)g(s,20)dB(s)
t

2

+7E /(Sa(t+a—s)—Sa(t—s))h(s)ng(s)

t

t+o 2

+7E Sa(t+ 0 — s)h(s)dBE (s)

t

= Il+12+[3+14+15+[6+17-
(3.13)

As T,(t) is compact for ¢ > 0, by Lemma [3.6(1) and condition (Hjz), we obtain
that

L < UU|T(t+ 0 —t,) — To(t — t)||*((b1 + 1)||w||%c¢ +b) =0 as o —0.

By (3.4), (H1), (Hy), Hélder’s inequality, Lebesgue’s Theorem, Lemma [3.6{(1)
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and for a fixed but sufficiently small € > 0,

t
I < 1477/t 1Sa(t +0 =) = Salt = )I*(L()Wlpe, +  sup [If(s,0)]*)ds

SE€ (Lt 1 AT

< Mn(h|¢lpe, +  sup ||f(870)||2)(/ Salt +0 ) = Salt - s)|Pds

SE€(th,tr+1AT] 23

+2/t_ (||Sa(t+0—s)||2+ HSa(t—s)HQ) ds)

< Mn(h|¢lpe, +  sup ||f(870)||2)(/ Salt +0 ) = Salt - s)|Pds

SE€(th,trr1AT] 12

o + 6)2a71 62cz71
2N2(— 2N?2 .
+efT 2a — 1 + Toq —1

(3.14)

Taking now limits when o goes to zero, we obtain

2a—1

. €
lim I, < 28N77) (zluwn%% + sup Hf(s,0>|!2>

)
SE€(tr tey1AT] 20 — 1

and as € is arbitrarily small, then I, — 0 as 0 — 0.

It is worth noticing that property (i) of Lemma is not valid for ¢t = 0,
therefore we split the integral of into two parts to avoid the singularity. A
similar argument will be used in I, and 5.

According to (1.6)), (3.4), (H1), (Hy4), Lebegue’s Theorem, Lemma [3.6(1) and,
for a fixed but sufficiently small € > 0, we have

I < 1UTr(Q)(Ll[Ylpe, +  sup  lg(s,0)[I)

Se(tk,tk+1AT]

x </t 1Su(t + 0 — 8) — St — s)|?ds

ty

+ 2/t ([[Salt + 0 = s)|* + [|Sal(t — s)|I7) ds)

< UTr(@Q)(LllYlpe, +  sup lg(s,0)])

Se(tk,tk+1/\T]

(3.15)

x (/H 1Su(t + 0 — 5) — Su(t — 5)|2ds

173

+ 6)20471 620471
on2 T o .
teNrTS Ty Ty T

Arguing again as in (3.14)), we deduce that I, — 0 as o — 0.
For I, there exist two constants p and ¢ which are given in the theorem, by (1.9)),
(B4, (H2), (Hy), Lemmal3.6(1), Lebesgue’s Theorem, Holder’s inequality and, once
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more, for a fixed but sufficiently small ¢ > 0,

t—e
Ig < TcH(2H — 1)n*H~1 / 1Sa(t + 0 — 5) — Salt — 5)|*[|h(s) 1 5ds

ty

t
+ 14cH(2H — 1)6”“/ (I1Sa(t + 0 = s)II* + 1Sal(t = $)I*) | a(s)IGds
t—e

t—e
< T7cH(2H — 1)772H1/ |Sa(t 4+ 0 —s) — Su(t — s)HQHh(s)Héds

ty

t
+ 14N2cH(2H — 1)e*H~! ((/ (t+o— S)Q(a—l)pd5>
t—e

+([y—@m”w§3x(AJW@wﬁf

t—e
< T7cH(2H — 1)772H1/ |Sa(t + 0 —s) — Su(t — S)HQHh(S)HédS

ty
1
- + E)Q(afl)PJrl »
uNzer2H - nei (@
+ 14NTeH ( Je (< 20— 1p+1

(o) ) = () mezas)’
(3.16)

and, as in the previous cases, we deduce I — 0 as ¢ — 0.
For I3, by (3.4), (H;) and Holder’s inequality, we find that
t+o
LN [ (tro =P 2 ho)lhe, + s (. 0))ds
t SE(tk,tk+1/\T} (3 17)

0.2a—1

< oM llfhe, & s 7,0 —

sE€(tg A NT

As for Iy, from ((1.6]), (3.4) and (H;), we deduce
sup|lg(s,0)]*)ds

t+o
g§1MWQM@/ (t+ 0 — 5) 2 (la(s) || ]2, +
t SE(tk,tk+1/\T]

2a—1

< UTr(Q)NF(lal[¥lpe, +  sup lg(s,0)|1*)5—
SE(tk,tk+1/\T] 20{ ]'
(3.18)

—0 as o—0.

—-0 as o—0.

Finally, for I, by (1.9), (3.4)), (Hs) and Holder’s inequality, taking the same con-
stants p, g as for Ig, we obtain that

t+o - t+o L
I; <7TNjcH(2H — 1)02H_1(/ (t+o— S)2(a—1>pds) (/ Hh(s)||Z§ds>
¢ t

) sy [ o2 DpHL % t+o ) 7
< T7N7cH(2H — 1)0°"~ (—2(a . 1> (/ ||h(s)]|qus> —0
¢
(3.19)
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as o — 0.

Therefore, E||z*(t + o) — z'(t)||* tends to zero as ¢ — 0, which implies that
21(:) € C((—oo, T] N (tg, tey1]; L*(Q;H)). An induction argument shows z"(:) €
C((—00, T N (tg, tps1]; L2(Q; H)) for n € N.

In conclusion, for all n € N, the assertion z"(-) € PC, holds true.

Step 2. We now show that {2"},en is a Cauchy sequence in PCy.

By the construction of successive approximations, it is a straighforward conse-
quence that z"(t) = 2"~ !(¢) on (—00,0]. On the other hand, for ¢ € [0,¢;] and n > 1,
by . . (Hy), (Hy) and Holder s inequality, we have for some 0 < p < 1,

E[|lz"(t) — a"(0)]* < 2n/ 1Sa(t = S)IPE[ f (s, 27) — f(s, 2371 |%ds
+2T7”(Q)/0 1Sa(t = $)I"Ellg(s, 2%) — g(s, 257 ||*ds (3.20)

t 2(a—1) —p t 2 P
gzN%(nz1+Tr(Q)12)( / (t— )5 ds) ( / ng—a;gln;;cds) .
0 0

Consequently, for all ¢ € [0, ], we have

t1 2 p
sup E[le1 () — 2" ()| < ﬂn(/nw—wﬂ&w), (3.21)
0

te(0,61]

where we have used the notation

1— 1-p
Cy = 2NZ(nly + Tr(Q)ly) (205_—11)_])) pRe1op,

Hence,

1
P 1 h 2
<prMﬂ“m—ﬂww>séﬂx/uﬁ—wwmm. (3.22)
0

te[0,t1]

By repeating iterations of (3.24)), for all n € N,

o
n . C o ler G :
(mmewww“@%%E@W) <O e 323)

tel0,t1]
Using a similar argument to the one we used with (3.6)), for all ¢ € [0, ], we have

lzy — 2l < t:[léfl]E!\wl(t) — 2" < 8(M7 + DY lec,
2a-1 f2a-1 (3.24)
+ Ol||¢||%c¢ﬁ + 022; — Cyt3=1 = .
Replacing (3.24)) into (3.23)), for all ¢ € [0,#],

'yTC tp n 'yTC tP n
sup e'ytE“wnJrl(t) . .73”(15)“2 < 05 (6 4 1) < C(e 4 1)
te[0,t1] (nt)r (nl)?

(3.25)
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For t € (t1,t2 AT, on the one hand, similar to (3.20)), by (L.6), (3.4), (H1)-(Ha),
(3.25) and Hélder’s inequality, we obtain

E[|lz" () — 2"(1)])"

p
< OMFN + 1EJa"(t5) — a7 +04( JNEES 1Hpcd8)
(€7T04tp n—

SGCM%(N_I_:[) ((n—ll ||._'L' L 1||'PCdS )

which implies that
1
P

sup Bz (1) — 2" (1)
te(tl t2/\T] (3 26)
<€7TC4 )"t

2T l At n n—1 2
(n _ 1) ter C7p / Hxs — T H%Cds?

t1

1T
pCp

where we have used the notation
Cs =2"P(6CM(N +1)),  Cr;=2"7C,.
On the other hand, for ¢t € (t1,t, A T],

g —aflpe < sup  Elz'(t) —a°(#)[* < (16M7by + 16M7 + 8)||6||5c,
te(tl,tg/\T]

(ke AT) —ty)?!
200 — 1

+ C3((ta AT) — t)?H 1

+ 16M7by + Ci |93,

(b AT) — ty)% !
20— 1

+ s

Combining this with (3.26]), by induction on n, we obtain

P(XTC(ty NT)P)" 1
o O = O = O
(TC(t AT)" _ (T C(t2 AT))"
(n!)p N (nl)?

By repeating this procedure and induction, combining (3.27) and (| -, for all
n €N, t €[0,T], we deduce that

(3.27)
+C

(eTCTP)"

n+1 n||2
" = 2" < OF (3.28)

Therefore, for any 0 < n < m, we deduce

’YTC’TP
|la™ —x ||pCT<Z( ¢ ) —0 as n— o0, (3.29)
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which implies that {z"(-)},ey is a Cauchy sequence in PC”. Therefore, the sequence
2"(-) possesses a limit function denoted by #(-), such that, 2"(-) — 2(-) in PC” as
n — oo. Let us define

o(t.1) = {w), t€ (~00,0],

z(t,w), te[0,7].

It is easy to see that x(t) is F;-adapted, z"(-) = z(-) in PC, as n — oo.
Step 3. We check the limit z of the sequence {z"},en is a solution of (3.1)).
Taking into account condition (Hj), for every k > 1,
E|lZu(2" 1 (t) — Loz (tp)II* < NE[a" 7 (t;) — 2(t;)[F = 0 as n — oo.
Moreover, in view of (1.6), (3.4), (H;) and (H,), when n — oo, we have for t €
(tk, trs),

2

:

/t Sult — 5)(F(5,277Y) — f(s,2))ds

t

< nle%/ (t— )02z — 2, |[Bods — O,
12

and

2

5| / Sult — (g5, 2271 — gls, ) dB(s)

t
< TT(Q)ZQN%/ (t —s)* 2|22 — a,||peds — 0.
173

Therefore, x is a solution of problem (3.1)). This completes the proof. [J

Theorem 3.12. Let o € (0,1), A € A%(wo,by) with 6y € (0,5] and wy € RF.
Assume (Hy), (Hs), (HS) and (Hy) hold, and the a-order fractional solution operator
T.(t) (t > 0) is compact. Then, for every initial data ¢ € PC and every T > 0, the
problem has at least one mild solution defined on (—oo,T].

Proof. By slightly modifying the proof of Theorem [3.11] we can first prove that
z"(-) € PCg for all n > 1. Then, one can prove that it is a Cauchy sequence in PCg
and its limit is the solution to problem (3.2). O

Remark 3.13. Note that the main aim of this chapter is to investigate a class of
fractional impulsive stochastic differential equations, therefore, it is more reasonable
to derive the real-value result of theorems and[3.14 with T > t,, which ensures

there is at least one impulse taking place in [0,T].

In what follows, a general result on the continuous dependence of mild solutions
on initial value will be proved. In particular, we obtain the uniqueness of mild
solutions to problem ({3.1)) by means of the conclusion below.
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Theorem 3.14. Under assumptions of Theorem the mild solution of 18
continuous with respect to the initial value ¢ € PC. In particular, if x(t), y(t) are
the corresponding mild solutions, in the interval (—oo,T], to the initial data ¢ and
v, then the following estimate holds,

In A
e = whlle < 27PBME + )16 = plfpeet ™7, vee(0.T), (330
where Ay and As are constants depending on 1.

Proof. It follows from ({3.3) that, for any t € [0, ], in view of (H;), (1.6]), (3.4 and
Holder’s inequality, arguing as in the proof of (3.21]),

Ellx(t) —y(t)|* < 3MFE[6(0) — o(0)[* + 3N7(hn

t

L THQ)) / (t = 5022y — s oeds
0

< BME(6 — o|2e + BNE(Lin + Tr(Q)ly)

t 2(a—1) 1-p t 2 p
x ( NG ds) < JACs ysnfscds)
0 0

t 2 p
< 3026 — o2, +A1( [ —ysn;;cds) ,
0

(3.31)

where we have used the notation

1— o
Al = 3Nj2—‘(ll77 + TT(Q)ZQ) (ﬁ) 77204—17—1'

Observe that v > 0, if t 4 60 € [0,¢;] (where 6§ € (—o0,0]), then

Bl 0) - oo+ O < 33206 — el + A [ s~ webeds)
on the other hand, if ¢t + 6 < 0, it follows
R x(t +0) — y(t +0)|?
= e " IE|g(t+0) — ot + O)[* < e ¢ — pllpe-
Therefore,

lze = ellpe = sup €El|x(t +6) —y(t +0)]*

0e(—o0,0]
t 2 p
< (BME+ 1)[l6 — g2 + Ay ( [ .- ysu%cds) |

and

2 1-p 1 2 t 2
e — willbe < 2555 (302 + 1) 16 — llie + Ao / s — gl Eeds,
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where )
Ay =27 AP
As a consequence of Gronwall’s inequality, for ¢ € [0, 4],
lve = wellpe < 277 (BMF + D¢ — llpee™™, (3.32)
and thus
Ellz(t) — y(t)[I* < 2'(3MZ + 1|6 — wll%ceA”’“ = Bi. (3.33)

For t € (t1,ty A T, similar to and (| - by (H;), ., and

Holder’s inequality, we find for ¢ + 8 > t1 (0 € (—o0,0]) that

Ella(t) — y(0)|P < 3MZENa(t) — y(tD) + 1 (a(t)) — I (y(tr ) P
vangan+ 7@ [0-9" ) ([ lr-vbets) @y
< O3+ V() ~ o)+ An( [ Nl = il

Replacing t by t 4+ 0 in (3.34)), in view of v > 0, if t + 0 € (t1,ta AT] (0 € (—00,0]),

we have

e'yeEHx(t +0) —y(t+0)|?

, , t+0 2 P (3.35)
< 6MA(N + DE|2(t7) — y(t7)] +A1( J —ysu;;cds) |

t1

It follows from ({3.32) and (3.33) that for ¢ € (t1,to AT] and ¢t + 6 < 1,

EE|a(t +6) — y(t + )| < 2 P(3ME +1)]}6 — e+

= 2177 (3M7F + 1)[|¢ — eI < Befter, 50
Combining ((3.35)) and -
2 1—p 1 t 2
o=l < 25 (OMAN + 1) + 3B 4 Ay [ o — il
Applying Gronwall’s inequality, we derive for t € (t1,to A T1,
I — rllBe < 2P (GME(N +1) + eAemm) B evte=to) (337)

If T < ty, this shows the assertion. We assume that T" > t5, and consequently,
El|z(t2) — y(ta)[|* < 2" P(6MA(N + 1) + e*2P7) Byet2rl=) — B,
Arguing similarly, we find that for t € (tg, tp1 A T| with k& > 2,

e — pl|Be < 2V P(6ME(N + 1) + e2P7) ByeA2p(t=te), (3.38)
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we may as well consider the case t;,1 < T, because the estimate (3.30)) holds true
when ¢ 1 > T with k£ > 2. Thus

El|z(tk1) — y(tir) || < 2" P(BME(N + 1) 4 e™277) Beertin =) — By .

For the sake of convenience, let Az = 21"P(6MZ(N + 1) + e?2P7), we deduce the
following result by mathematical induction for k > 2,

B, < AgBk_leAQP(tk_tk—l) < Aé_lBleAQP(tk_tl)- (3'39)

Hence, it follows from (3.38]) and (3.39)), and for t € (tx, tge1 A T1,

[z — yellpe < AsBrePU) < AL B eder(t—h), (3.40)

In view of the fact that condition (Hy) implies that k3 < ¢t < (k+1)n fort € (ty, tpi1],
taking into account ({3.40)), (3.32)) and ([3.38)), we deduce for all ¢ € (0,77,

lze = yellpe < 2'7P(3M7 + D)6 — lfpee* e

In A
< 2P(BME +1)||¢ — || Beet P

The proof is complete. [

Theorem 3.15. Assume the hypotheses of Theorem[3.13. Then, the mild solution
to problem is continuous with respect to the initial value ¢. That is, if x(t),
y(t) are the corresponding mild solutions to the initial data ¢ and ¢ on [0,T], we
have

In Ay
th - ?Jt”%c < (3M72“ + 1)H¢ - SOH%CQ(AHF E )tv Vt € [0>T]a

where Ay = 3MA(Iin + 1,Tr(Q)) and Ay = 6M2(N + 1) + e,

3.3 Asymptotic behavior to problem (3.1

We first prove the global existence of mild solutions to stochastic impulsive differ-
ential equations before studying the exponential asymptotic behavior of mild
solutions.
To start off we state some conditions which will be imposed later.
(C1) The closed and linear sectorial operator A € A%(wy, th) with 6y € (0,5] and
wo € R, generates an a-order fractional solution operator T,(t) and an a-
resolvent family S, (t), on the separable Hilbert space H with

ITa(t)] < Me™™, [ Sa(t)]] < Me™™(1+570), Vi >0,

where M > 1, Re (u) € R™.
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(C3) There exist two positive constants C'y and C,, such that, for any z,y € PC
and for all £ > 0,

Ellf(t,z) = ft. > < Colle —yllpe.  Ellg(t,z) — gt y)|I* < Cyllz — yllpe,

and

/ 2195 £ (s,0)[ds < oo, / 2105 g(s,0) [21ds < oo,
0 0
whereq>1and%+$:1.

(C3) In addition to assumption (Hz), also suppose that
/ 95| | h(s )H Yds < 0.
0

(Cy4) Under condition (Hjz), we impose an additional assumption on [, that is, for
all k e N,
E|I.(2)|* < biE||z||?, for all x € L*(;H).

Now we state the global existence of mild solution to problem ({3.1).

Theorem 3.16. Assume the conditions of Theorem and (Cy), then for every
initial value ¢ € PC, there exists a unique solution to problem , in the sense of
Definition [3.8, defined on [0, c0).

Proof. We derive the local existence and uniqueness of mild solution to by
means of the estimates in Theorem where My and Np are constants
depending on 7" which is finite. In order to extend the results to [0, 00), the constants
of the estimates must be independent of 7. For this aim, we modify the
estimates slightly by condition (C}), that is,

M = sup [[t(t)|]| < oo and N = sup Me " (1 +t'7%) < cc.
t€[0,00) t€[0,00)

Replacing My and Ny by M’ and N’ in Theorem and Theorem , respec-
tively, the results still hold. Now, we are ready to prove the global existence and
uniqueness of mild solutions to (3.4)).

By theorems |3 n and [3.14) we deduce that there exists a unique solution z(!)(¢)
to the initial value problem such that

o(t), te( 00, 0],
2 (1) = To(t)o /S (t —s)f(s,zV ds—l—/ So(t — s)g(s, VYdB(s)

/St—s s)dBH(s),  te[0,t]
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Arguing as in the proof of Theorem we derive the existence of #(?(t) satisfying
,x(l)(t)’ te (—OO, tl]v

t
@) = § Talt =0) (V) + 2V () + / Sult — ) f(5,22))ds

/S (t — s)g(s, z'?)dB(s /S (t — s)h(s)dB5(s), t € (t1,ta].

Continuing the procedure in this way, we obtain a unique global solution to problem
in the sense of Definition . This completes the proof. [

Motivated by the work of Caraballo et al. in [I3], we turn our attention in this
subsection to prove the exponential asymptotic behavior of the mild solutions to

problem (3.1)) in PC.
Theorem 3.17. Let conditions (Hy) and (C1)-(Cy) hold, assume that

v > 24,

and there exist two positive constants L and wy (which will be explicitly written in

the proof) such that
In wy

B

Then, every mild solution z(-) of system with the initial value g = ¢ € PC
satisfies

2uqg — L — > 0. (3.41)

ool < O+ |g][H)e @ =75 v >0, (3.42)
Proof. We split the proof into three steps.
Step 1. By Definition [3.8, (L.6), (1.9), (H4) and (C1)-(Cs), we obtain for ¢ €
[07 t1]>
t
Ella(t)[2 < 4Me ¢3¢ + 16nM% 2" / (L4 (1 — )2 2)ene
0
X (Cllzslpe + 11 (s,0)1*)ds + 16Tr(Q) M?e
t
- / (14 (t = 5)**72) e (Cyllzsllpe + [lg(s, 0)[*)ds
0
t
+8cH(2H — 1)172H1M262“t/ (1+(t— 8)2a’2)62“3\|h(s)\|éd5
0 (3.43)
= 4MPe™2 ||| + 16M e (nCy + Tr(Q)Cy)
t
< [ (= S o eds
0
t
+ 16M2€_2’“/ (L+ (t—s)** e (|| f(5,0)[* + Tr(Q) | g(s,0)[|*)ds
0

t
- SCH(2H — 1)n=1 M2e—2t /O (14 (£ — %22 ()| ds.
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In view of condition (C5), which ensures the existence of a positive constant Ly,
using Holder’s inequality, we derive

t
cH(2H — 1)772H—1/0 (1+ (t — s)**7)e||h(s)||5ds

<enort - ([ -y ([ emmonga)’ ¢

< L.

Observe that condition (Cy) ensures the existence of a positive constant Lo, by
Holder’s inequality, one has

/ (L4 (t — %25 (s5,0)[ 2ds

([ava—om 2%)%( I e?ﬂq8||f<s,o>u?qu)‘l’ (3.45)
Lo.

(3.46)

IN

IN

Analogously, one can prove that the following estimate holds true, thanks to condi-
tion (Cy), with a positive constant Lg,

/0 (L4 (t— 52 2)e2 g (5, 0)|ds

<([las oy % ([ elats o>||2%zs)3 (3.47)

< Ls. (3.48)

Replacing (3.44))-(3.48)) into (3.43]), by Holder’s inequality,

Ellz(t)||* < 4M?e || ¢||5e + 16M2e™*(nLy + Tr(Q)L3) + 8M?e 'L,

t D t q
+16M26-2“t<n0f+ﬂ<@>09>( / <1+<t—s>2a-2>pds) ( / ezwsuassué%ds)
0 0

t a
g4M2e‘2“t||¢||$>c+16M26—2“tL4+16M2e—2“tL5( / eQ“QSstH%‘%ds) ,
0
(3.49)

where we have used the notation

L
Ly= 71 +nLy +Tr(Q)Ls,

and

1 ,)72(a 1)p+1 »
Ly <27 nCr+T C _ .
<257 0 + TrQUC) (w4 5y ) <
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Note that e 249 < 1 (for § < 0) since v > 2. For t + 6 € [0, ], multiplying by

¢’ and replacing t by ¢ + 6 in (3.49)), one has

QR z(t 4 0)|? < 4Me D) )%, + 16 M2 e D0,

t+6 3
+ 16M26_2“(t+9)e”’9L5 (/ e2ras || s ||?;chs)
0

< AM?e | ¢||%e + 16 M2 e 2 L,

t q
+16M262“tL5(/ eQ“qust?fcds> ,
0

and
E|x(t +0)|* = e " IR | o(t + 0)]

< e M|gl2e < e 6l2e, f t46<0.

Therefore, for t € [0, ], (3.50) and (3.51]) lead to

lzel[pe < 4MPe™2]|@|5e + 16M%e ™ Ly

. 1
+ 16 M%e 2 g (/ 62“q8||x5||$3chs) q,
0

thus

el < 3 4T PeT2 || 5, + 31PN e L
t
+ 3q_142qM2q€—2Mthg / equHIESH%chS.
0

Multiplying both sides of (3.53]) by e?*4¢,

1 [ < 30 MAIM |7 + 3N 4RMLY
t

+ 3‘]—142qMQlILg/ QQMQSH«TSH%QCdS.
0

Gronwall’s inequality implies

lz:llpe < (37 14IMP| |5 + Lg)ePraPr,
where we have used the notation

Lg=3""49M> LY, L =3""42M*L1
and, consequently,

2pg—L t

Ellz(t)|? < (37 49M> | p||2L + Le)ie™ v " = (B])a.

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)
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Step 2. By Definition B.8 (L.6)), (L.9), (H4) and (C1)-(Cy), similar to (3.43)), we
obtain for t € (1, t] that

Ella(6)[* < 8M2e ™ (1t b)E|la(17)|[* + 16M2(1Cy + Tr(@Q)Cy)e )

t
X / (14 (t — 8)27 )1 |2 ||50ds + 16M2e71)
t1

X / (1+ (= 8?2 )| f (5,00 + Tr(@Q) (s, 0))ds

t1

¢
+ 8cH(2H — 1)772H_1M26_2“(t_t1) / (1+(t— 8)20‘_2)62“(5_“)||h(s)||2st.

t1

(3.57)

In order to prove the exponential decay to zero of solutions to problem ({3.1),

L
we need the results to the last two terms of 1) including e~ 2" _ For this
purpose, we do the estimates separately as follows. On the one hand, using the same

argument as in (3.44)), condition (C3) ensures the existence of a positive constant
which is still denoted by L; for simplicity, such that

t
CH(2H — 1)t / (14 (t — 5)22)eP=DE=ITE6E=0) ) (5) 12, ds

t1

t
< CH(2H — Dy @0 [ (1 (£ 02 () s

t1

t % t %
< cH(2H — Dy -leGrmn (/ (I+(t- S)ZQ_Q)pdS) (/ eQ“QSHh(S)HZfds)

t1 t1
—2u—E)t
<e q Ll-

(3.58)

On the other hand, similar to (3.46) and (3.48]), using the same technique as in

(3.58), by condition (Cy), there are two positive constants still denoted by Ly and
L3 respectively, such that

t

(14 (= 5)7 %) | f(s,0)|*ds

—

1

t % t g
< ([ spapas) s« ([ e o)
. b (3.59)

t % Qg t %
< ( / (1+(t—8)2a_2)pd8) xe ( / 62“q5||f(s,0)||2"d8>
t1

t1

_ 2[,LQ7Lt1
26 1

Y
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t
[ @ = e g(s,0)ds
t
1

t % t q
< ([aramsprrpas) s ([ ey o)
" " (3.60)

t S s [ :
< ( [a+e- s>2a—2>pds) ) ot ( / ezﬂq8||g<s,o>u%)
t1 t1

Z,uq—Lt

S L3€_ q '

Substituting (3.58 into , and using Holder’s inequality,
Ellz ()] < 8M2e 2 (1 4 b)) E|z(t])||? + 16M3(nCy + Tr(Q)C,)e 2=t

1

t t =
< [as s ([ aigas)
t1 t1
2 2uq7Lt

pa=L + 8M2e—2u(t—t1)L1€* ¢ U

+16M2e 2 (n Ly + Tr(Q) Ls)e™

2,uqut

< 8M2e Ut (1 4 b)) B2 (t])||> 4+ 16M2e 2t L e

1

t
+ 16M2e 2=t (/ 2rals—ty) ||:£s||$3chs) "

t1

(3.61)

Arguing as in the proof of Step 1, due to the fact that e"=2%¢ < 1, we obtain for
t+6 € (t1,ts] (where 0 € (—oo,()])

Rz (t + 0)]]? < 8M2e 20 (1 4 p Rz (t7)]|? + 16M2e 0=t 0

_2pg—L _ _
X Lye~ a4 16M2e 2 tH0-t) 10

t+6 1
<o [ et s )
t1
Q;Aq—Lt

< 8MZe 2= (1 4 b E||z(t7)||> + 16M2e 21 L e~ a1

. 1
+ 16M26_2“(t—t1)L5(/ 2uq(s—t1) ||xs||$fcds) q.

t1

(3.62)
It follows from ([3.55)) and (3.56|) that, for ¢ € (t1,ts] and ¢t + 6 < ¢y,
6 2 1 2 —2ua-Ly
Pt + 0)|2 < (371 4IM | gl[7 + Lg)ve s
= (39714902 §|[20, + Lg)ae & e w (h) (3.63)

1 L

< (Bi)heine i,
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Hence, (3.62)) and (3.63)) imply that for all ¢ € (¢, 1],
2/,Lq7Lt

e < (BMP(1+by) +¢57) (Bf)he 200 1607 21 o= 475
t o (3.64)
+ 16M26_2“(t_t1)L5(/ 2uq(s—t1) ||x8||3;chs)

t1

Thus

q
||$t||33qc < 30! <8M2(1 +by) + e%ﬂ) Bike—Quq(t—tl) + 3971420 \y2a o —2nq(t=t1)

: (3.65)
x Lie~Gra=bih 4 3a=1420 1200 =2uat=t) g / e |3 ds.
t1
Multiplying both sides of (3.65)) by e?*a(t—t),
e2uq(t—t1)‘|xt”$fc < 3971 (8M2(1 +by) + (ﬁ")q B+ Sq_142qM2qLZe_(2“q_L)tl
(3.66)

t
I RN VEDy. / 21510 | 120, .

t1

Solving the above Gronwall inequality yields
thHQq < <3q_1(8M2(1 +by) + e%n)qBT + L6e—(2uq—L)t1> e—(2/u1—L)(t—t1)7 (3.67)

and, consequently,

1

Ella(ts)|* < (37 (8M(1+by) + e 5")1B] + Lee Gra-tn ) (3.68)

Q=

> 6_%@2—1&1) _ (B;)

Step 3. The same reasoning as above implies, for ¢ € (¢, 1] with & > 2,
thH2q < <3q1(8M2(1 +by) + e%n)qBZ + LGe(Zqu)tk>€(2qu)(t1tk)7 (3.69)

and

1

Ellz(te)]* < <3q1(8M2(1 +b1) + eﬁn)qBZ + L6e(2“qL)tk> ’ (370
3.70

_2pg—L _ 1
x e e (i) — (Biya)®.

For convenience, let w; = 3971 (8M?(1 + by) + e 4. 1t is obvious w; > 2 such
k 1 k—1

that Z; Zw] < o < wulﬁ_T < 2wt™% In addition, condition (H,) implies that

E—1< % and kB < t,. Then, for £ > 2, the mathematical induction method
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furnishes that

Bk < wlBk —(2ug—L)(tx—tr—1) +L e—(Q,uq L)ty
k—2
<U)1 lB* (2pg—L)(tg—t1) +L - (2ug—L)ts Zw{
j=0

In wl

< Bte (tk—t1) e~ (2pg=L)(tx—t1) +2L66_(2HQ_L)tkwlf_2

(3.71)
< BremCua-L=REht) | o o~ (@ua-Dik (k=2 un

In wq _ - - ty
B )tk t1)+2L6e (2pg L)tkeﬁ In wy

< Bje

< Bre —(2pq— ) (te—t1) 1 2Lge —(2pq—L— “wl)tk

Therefore, by (3.56), (3.69) and (3.71]) we deduce that, for ¢ € (¢, tx1] with k& > 2,

<y ( G e

1
;fl)tk>

In
% e 5 ) (t—tk) + L6€—(2uq—L—%)t

< w1(3q 14qM2q||¢|| + 3L ) (2uqu71“%)t

C(1+[|0]7)e s

which, thanks to (3.67)) and (3.55)), implies that, for all ¢ > 0,

2 90 \ (2 [ 0w
2|2 < C(1 + || |2, )6~ Brat="5")t,

This completes the proof. [J

3.4 Asymptotic behavior to problem (3.2

Now we study the long time behavior of the global mild solutions to problem ([3.2)),
first we enumerate some assumptions which will be imposed in our further analysis.
These assumptions here are similar than the above section of this chapter, but we
prefer to include them here to make this section more readable.

(C1) A: D(A) C H — H is the infinitesimal generator of an a-order fractional
compact and analytic solution operator T,(t) (¢ > 0) on a separable Hilbert
space H with

T, ()| < Me™#, Vt>0, M>1, peR".
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(C%) There exist two nonnegative continuous functions ki, ko € L'(R™), such that
the continuous function f : RT x PC — H satisfies

E[lf(t,2)[* < ki (t) + Ba(t) |2l
for ¢t € [0,00) and every x € PC.

(C4) There exist two nonnegative continuous functions ks, k4 € L'(R™), such that
the continuous function g : R x PC — L(K, H) satisfies

Ellg(t, )[I* < ks(t) + ka(t)l|2]5e,
for ¢t € [0,00) and every x € PC.

At this point some remarks are in order.

Remark 3.18. i) Notice that, under the Lipschitz condition (Hy), we can obtain the
local existence and uniqueness of mild solution to problem (see Theorem .
Howewver, in this section we are interested in analyzing the asymptotic behavior of
mald solutions to equation no matter how many solutions the problem may have
for each initial condition. Therefore, our analysis can be carried out without impos-
ing (Hy). Instead, in order to guarantee that we have mild solutions globally defined
in time, it is enough to assume conditions (C%) and (C%) as above. A well-known
conclusion is that conditions (C4) and (C%) hold automatically once we assume con-
dition (Hy) holds true. Henceforth, throughout this paper, we will assume either
condition (Hy) (when we need uniqueness of solution) or (Cy)-(Cs).

it) Due to the fact that the continuous functions k; € L*(R™) appearing in con-
ditions (C4) and (C}) are nonnegative, we will denote in the sequel

/ ki(s)ds == K; < oo, i=1,2,3,4,
0

where K; are positive constants.

Theorem 3.19. Assume hypotheses of Theorem[3.14 and (C}) hold. Then for every
wmitial value ¢ € PC, the initial value problem has a unique solution defined
on [0,00) in the sense of Definition[3.9

Proof. Thanks to assumption (C]), the estimates which are necessary to prove
Theorem [3.12] are independent of 7. This implies that the solution is defined in
(=00, T for all T > 0. More details can be found in Theorem [3.3] O

Next, we shall obtain the estimate of solutions which will imply that the solutions
are bounded uniformly with respect to bounded sets of initial conditions and positive
values of time. This also implies the existence of an absorbing set for the solutions
which is also a property on the ultimate boundedness of solutions.

Theorem 3.20. Assume (Hs), (HS), (Hy), (C1)-(C%) and

v > 24, (3.72)
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also, let

_ hl’Cl
B

2 >0, (3.73)

where
K1 =8M?*(N +1)(1 + Ls),

Ly = AM?*(nKs + Tr(Q)Ky) exp (4M*(nK> + Tr(Q)Ky)) .

Then every solution x(-) of problem (3.2) with xo = ¢ € PC, defined globally in

time, verifies
In KCq

laili3e < Cllolhee™ "5 + 0, W= 0.
Proof. For the sake of convenience, we split the proof into three steps.

Step 1. By (1.6]), (1.9), (3.4]), Definition the Cauchy-Schwarz inequality,
(Hy), (HY), (Hy) and (C7)-(C%), we obtain that for ¢ € [0, ],

Ellz(t)||* < 4M?e K[| ¢(0)||> + 4M3n /t e 079 (i (s) + ka(s)]|zsllpe) ds
0
FATHQ) [ ¢ (ko) + (o)) s
 AcH(2H — 1)2H /Ot 1Tt — ) 2l1h(s) |Bds
<AMP e p||pe + AMP(nEy + Tr(Q)K3) + Ly

IYE / (nka(s) + Tr(Q)ka(s)) e ¢ [, | Beds,
0
(3.74)

where we have used the notation

n
Ly = 4M?cH(2H — 1)p*"~! / |h(s)||5ds < AM?cH(2H — 1)np*" A,
0

By assumption (3.72), we have 2u < 7, then e~?#=7% < 1 holds immediately for
any 6 < 0. Multiplying (3.74)) by ¢ and replacing ¢ by t + 6, it follows

sup €"’El|z(t + 0)|”
0e(—t,0]

< AMP 2D 0|12, + AM2 (0K, 4 Tr(Q)K3)e" + Lie?
t+0
aar / (nka(s) + Tr(Q)ka(s)) e 2000, |2ods
0

< AMPe ||| pe + AMP (K1 + Tr(Q)Ks) + Ly

t
Har / (nka(s) + Tr(Q)ka(s)) e a,|peds.
0
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Note that
El|z(t +0)|* = e " IR a(t +6)|
<e"llpe < e Nollpe, VO € (—o0, .
Therefore,
e |welpe < 4M|[@lpe + 4M? (nKy + Tr(Q)K;) e + Lye®!

S0 [ (0hals) + Tr(@a(s)) € o peds.
0

Applying the Gronwall inequality, we have for ¢ € [0, ¢;] that
leelfze < AM2[9lc(1 + La)e " + Ly + LyLs, (3.75)

where we used the notation

Ly = AM?*(nk, + Tr(Q)Ks) + L,

Ly = AM?*(nKs + Tr(Q)Ky) exp (4M*(nK> + Tr(Q)Ky)) .
In particular,

Ellz(t)]]* < 4M?|¢||5c(1 + L3)e "' + Ly + LsL3 := Dj. (3.76)

Step 2. Similar to and in view of (H}), we obtain for t € (¢4, ts],
El|lz(t)]* < 4E[|To(t — t1)(x(t7) + La(t)))]?

n [T = BN ) s
+ATH(@) [ 17,00 = 9)PEllgts, ) s
1
FeHH = 1)~ 10" [ 1Tt~ PI)ds
t1
< SMP (N 4 1) Ella(t5)|P + AM2 (K + Tr(Q)K)
+4M? /t t (nka(s) + Tr(Q)ka(s)) e 29|z, ||%pds + L.

Arguing as in Step 1, we derive for ¢t + 0 > t; (where 6 € (—o0,0]) that

sup e"Ellx(t +0)]
0e(t1—t,0]

< M2 2=t (N 4 DE||x(t])]|2 4+ 4M2 (K, + Tr(Q)Ks)e

t+0
L AN [ k() + TrQU(s) I o Frods

t1

< 8MZe (N + DE||2(t7)|)? + AM2 (K, + Tr(Q)Ks) + Ly

+4M2/ (nka(s) + Tr(Q)ka(s)) €2 |z, | eds.

t1



96 3.4. Asymptotic behavior to problem 1}

It follows from (3.75)) and (3.76|) that for ¢ € (¢,t5] such that ¢ + 6 < ty,
Rz (t + 0) | < 4M?||¢[|Fe(1 + La)e e #4071 4 [y 4 Ly Ly

< (AM?|| |56 (1 + Ly)e 2 4 Ly + LoLg)e2#(tH0-1)

_ y*,—2u(t+0—t1)
= Dje .
Hence,

62“(t_t1)||xt||%c < 8M?*(N + 1)D} +4M?*(nK, + TT(Q)Kg)GQM(t_tl)

t
+ Ly ) 4 / (ka(s) + Tr(Q)ka(s)) €| || peds.

t1

Thanks to the Gronwall inequality, we deduce for t € (¢, to]
2|5 < 8M?(N 4 1)D;(1 + Lg)e =) 4 Ly + LyLs, (3.77)
and, consequently,
E||z(ty)]|? < SM?(N +1)Di(1 4 Lg)e 2274 4 [, 4 LyLs := Dj. (3.78)
Step 3: In a similar way, for t € (ty, tx41] with £ > 2, we have
|74||%e < 8M*(N + 1)Dj(1 + Ly)e 7% 4 Ly + Ly Ly, (3.79)
and
El|z(tp1)]|? < 8M2(N + 1)Dj(1 + Ly)e 21 =t) 4 [y 4 [yLs:= D}, . (3.80)
For convenience, let K; = 8M?(N + 1)(1 + L3), Ky = Ly + LyLs. Then, by using

the mathematical induction method, we obtain for £ > 2 that
D} = K1D271€*2N(tk*tk71) + Ky

k—2
< ’Cllclereme(tk*tl) + Ky Z ]C’fefz“(tk*tkfj)' (381)

=0
Noticing that (H,) implies that £ — 1 < % and k < t"_’#, it then follows from

(B-73) and (3:81) that

ot k—2 tp—tp_j
D; <K, B e*Qu(trtl)DT + IC2§ :Cl B o2ty —ty—j)
Jj=0

k—2
tp—t1 t—tk—j
— P an1€72u(t;€7t1)DT + ’CZ 2 :6 2 1nlC1ef2,u(tk7tk,j)

7= (3.82)

k—2
In g In Kq

ge—(%— 3 )(tk—tl)DI+]CQZe_<2H— L) (te—tr—y)
=0

6(2“_ ln[’;l )ﬁ

@(2“_%)6 — 1

In K¢

< o~ (273 )(tk’tl)DI + Ko
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Therefore, by (3.76), (3.79) and (3.82)), we deduce that for all ¢t € (tx,tx1] with
k> 2,

zel|pe < Kie Dy 4+ ICy

o218~ K1)

2uB—Inky) _ 1 + ICZ

InKC
< ,Clef(Zu*Tl)(tftl)DI + ]C1]C2€(

In KC

< Klem e g 4 C
In K

< K2e 5 )2 + C©

In KCq

= Cllolpee 5 4

which, on account of (3.75) and (3.77), implies

K1

ledlibe < Clldlzee "3+ ¢, for all ¢ > 0.
The proof is finished. [J

Remark 3.21. We emphasize that under assumptions (C%)-(C%) (instead of Lips-
chitz condition (Hy)), we may only have a general result ensuring that there exists
at least one mild solution to problem , i.e., as Theorem may not hold, the
uniqueness of solutions in Theorem[3.19 is not ensured. Hence, in Theorem[3.20 we
have proved that for any solution corresponding to the initial value ¢ € PC, this a
priori estimate holds true.

3.4.1 Existence of global attracting set: General case

A general result concerning the existence of a minimal compact set in PC which is
globally attracting for the solutions of our problem will be proved in this subsection.
To that end we first need the following compactness conclusion.

Lemma 3.22. Assume the conditions of Theorem [3.20. Then for any bounded
subset D of PC, any sequence {7,} with 1, — oo (n — 00), {¢,} with ¢, € D, and
any sequence of solutions {x"(-)} of problem with x{, = ¢, € D, the sequence
{22 } is relatively compact in PC.

Proof. Without loss of generality, we assume that ||¢||pc < d for all ¢ € D. For
any ¢, € D, we define u}} (-) : (—o0,0] — H by

¢n(Tn+9)7 Tn+0 S <_OO70]7
u (1, +6) = < To (1, + 0)9(0), o+ 6 €0, t4],
Ta(Tn + 0 — tk)(un(tl;) + Ik(“n(t;)))a Tn + 0 € (tkn tk+1]a

forall k=1,2,---



98 3.4. Asymptotic behavior to problem 1}

Let us do estimates likewise as in the proof of Theorem , by (C1) and (Hj)
we find that

[uz, l[pe < Ce™™|9]|pc. (3.83)

Next we define the function 2! (-) : (=00, 0] — H by

(

0, Tn+ 6 € (—00,0],
Tn—+0

Tn+0
T(r 40— ) (s, 2")ds + / T (r + 0 — $)g(s, 2)dB(s)
0 0
Tn+60
—l—/ Ta(Tn+9—s)h(s)ng(s), T, + 0 € [0,t],
0

2, +0) = Tn+0
(7 +6) <Ta(TnJr@—tk)(z“(t,;)+Ik(z"(t,;)))+/ : To(m0 +60 — ) f(s,2%)ds

173

Tn+6
—|—/ To(Tn + 60— 8)g(s,z2)dB(s)

ty

Tn+0
+/ Tt +0— s)h(s)ng(s), Tn+ 60 € (ty, thaq], k=1,2,---.
\ ti
(3.84)

It is important to observe that if 7 (-) satisfies the format of the mild solution
to problem (3.2), then 27 = u? + 2! for 7, € [0,00) since the impulse functions
I;; (k € N) are linear. In order to prove that {27 } is relatively compact in PC, by
the decomposition of 27 and (3.83)), it is enough to state {2 } is compact in PC as
Ty — 00.

Initially, we show that {z"(7, + )}, is equicontinuous on [—T7™,0] for any
fixed T* > 0. For such T* fixed, there exists nyg € N such that for all n > ny
the points 7, + 6 > r for all § € [-T* 0], for some r > 0. Then, to prove the
equicontinuity in the interval [—7™, 0], it is sufficient to assume that for each n > ny,
and 6,,05 € [T, 0] with 6 < 0, (with 65-6, sufficiently small), we have that 7,, +6;,
Tn + 05 € (tx, tgr1] N [r, +00), for some k € N and > 0. Once we have proved the
equicontinuity for this case, the possibility that the points 7, +61, 7,,+62 may belong
to different intervals can be handled by comparing with the values of the solution
in the impulse time t;, by using Theorem estimate (3.83)) and the properties
of the impulsive linear function I, in particular the fact that Ny — 0 as k — oo.
Consequently, given ¢ > 0, we assume that 7, + 0y € (ty, txr1] N [, +00) for all
01 < 0y in the interval [—T™*, 0], with ,-0; sufficiently small as we will determine
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below. From (3.84)) we can deduce, for all n > ny,

E|2"(1n + 62) — 2" (1, + 91)H2

S TNTo (7 + 03 — tg) — To(70 + 01 — tk)HQ]E”Zn(tlz) + fk(Z”(tz?))H?
7—'n.“!‘el 2
+7E / (Tt By — 8) — T (7 + 01 — 8))f(5,2™)ds

Tn+92 2
+7E / o(Tn 4+ 02 — s) f(s,2%)ds

Tn+01

2

Tn+91

LR / (02— 8) — Ta(m + 01 — 5))g(s, 27)dB(s) (3.85)
Tn+92 2

LR / (7 + 0 — 5)g(s,27)dB(s)
Tn+01
7'n"!‘el 2

+7E / a(Th + 6y —s) — T, (7, + 01 — s))h(s)ng(s)
Tn+02 2

+7E / To(Tn + 6y — s)h(s)ng(s)
Tn+01

= Il +IQ —l—Ig —|—I4+I5 +I6 —|—I7
Hereafter, we assume that k > 1, since the proof of the case k = 0 is similar.
Since ¢, € D, by Theorem |3.20| we find that for all s > 0 and n € N,
latli3e < Cllglbee™ @) 4 <0 (14 @55)) 0 (3380)

For every 0 < ¢ < 1, in view of (Hy) and Remark i1), we obtain from the
absolute continuity of the integral that there exists 0 < ¢ < € such that

t+o t+o
sup/ ki(s)ds <e, i=1,2,3,4, and sup/ 1h(s)||ds < e. (3.87)
t>0 Jt

>0

Moreover, by Lemma [3.6| (i) and (C7), we deduce that T,(s) is uniformly continuous
for s € [a, o0), i.e., there exists 0 < § < o such that for all sy, s5 € [0,00) with
|s1 — sa| < d, we have

| Ta(s2) — Ta(s1)]| < e. (3.88)

Hence, by (3.85)-(3.87)) and the fact that 27 = u? + 22, for all |§; — 6] <
and n > ng such that 7, + 6y, 7, + 6 € (tg, tg1] N[0, 00) (we choose r = o here), it
follows that

Ty < C||Tu(rn + 05 — ) — Tu(r + 61 — t)|[2e~ =510 < Ce. (3.89)

For the term Zy, by (Hy), (C)-(C%), (3.86)-(3.88]), and the Cauchy-Schwarz inequal-
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ity, we have for all n > ng and |0 — 61| < 6,

Tn+601—0
I, < 077/ [T (7 + b2 — 5) — To(70 + 01 — 8)|1? (ki (s) + ka(s)||22||3c) ds

ty

Tn+01
+ CO’/ 9 (G—QM(Tn-i-GQ—s) + 6—2M(Tn+91—8)> (k’l(S) + kQ(S)HZL‘ZH%C> ds
Tn+01—0

Tn+01—0
S C/ ||Ta(7—n + 02 - 3) — Ta(Tn + 01 — 3)”2 <k1(8) —I— CkQ(S)

ty

In Kq Tn+01
X (1 + e*(Q‘“T)S> )ds +Co (k1(s) + kao(s))ds < Ce.
Tn+601—0
(3.90)
Now, for Z3, thanks to (C])- , (3.86]), and the Cauchy-Schwarz inequality, we
find that for all n > ny and |91 | < 5,
Tn—+02
L<CW=0) [ ITulr+ 02— o) B f(s.a)lds
Tn+01
Tn—+02 n 3.91
< 0(82 . 81)/ €—2N(Tn+92—s) <k31(8) + C'kg(s) <1 + 6_(2u_1§1)s)>d8 ( )
Tn+601
< Ce
Analogously, (C1), . - and the Cauchy-Schwarz inequality im-
ply, for all n > nyg and \92 — 6] <9,
Tn+601—0
7, < C’/ | To (7 + 02 — 5) — To(1y + 61 — 5| (k‘g(s) + Cky(s)
t
k - o (3.92)
X (1 + e(2ﬂa)s>)ds + C/ (k3(s) + ka(s)) < Ce.
Tn+601—0
Using the same arguments as for Zs, by (L.6), (C1), (C}) and (3.85) we find that,

for all n > ng and |6, — 01| < 0,

Tn+02 InK,
I < cw(cg)/ T (7 + 03 — 5)||? (k:3(5) + Chay(s) (1 4 (25 ))) ds
Tn+01
Tn+62
<C e 2T H0279) (ko (5) + ky(s))ds < Ce.
Tn+01

(3.93)

To estimate Zg, we can see that (1.6), (Hy), (C7), (3.87)-(3.88) imply that, for all
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n > ng and |6y — 01| < 9,

Tn+01—0
Zs < C??/ | T (T + 02 — 5) = TulT + 61 — 5) || 1(5) ][5yl

ti

Tn+91
L O / 1T+ 02— 8) — T + 61 — $)|PIIA(s) B
Tn+601—0
Tn+01—0

< c/ 1T+ 62 — ) — Ta(m + 65 — $)|PI1A(s) [Bds

i o (3.94)
+ CO_QHI/ (672M(Tn+9178) + efZ,LL(TnJr@gfs)) Hh(5)||2Qd5

Tn+601—0

Tn+01—0
< C’/ T (Th + 6y — s) — To (10 + 61 —s)||2|]h(s)|]f?ds
ty

Tn+01
+ CU2H_1/ 1h(s)||5ds < Ce.

nt01—0

As for the last term Z7, by (1.6)), (3.87) and (C), we obtain that, for all n > ny and
|92 — 01| < 5,

Tn+02
Ir < C(fy — 6,)*! / ) T (70 4 02 = 8)|P[|h(s)]15ds
Tn+01 (3 95)
Tn+62 ’
< C(0y — 0,)*" ! / e 0279 n(s)|13ds < Ce.
Tn+91

Therefore, (3.89)-(3.95) show the sequence {z"(7, + -) : n € N} is equicontinous on
[—T%,0].

Next, we state that the sequence {2"(7,,+6)}°2, is relatively compact in L?(§2; H)
for each fixed 6 € [—=T",0]. Then, for such fixed § € [-T",0], there exists ng € N
such that for each n > ng, 0 < A < 7, + 6. Now, for a fixed n > ng there exists
k € N such that 7,, + 0 — X € (tg, tx+1] N [0, 00), and we can define

231 4+ 0) = To(N) (Ta(Tn +0—X—t,)(2"(t,) + Ik(z”(t,;))))

Tn+0—X\
—|—Ta()\)(/ To(th+60—X—s)f(s,2l)ds

123

_l_

Tn+0—X\
/ To(Tn +60 —X—5)g(s,27)dB(s)
ty
Tn+0—X\
+ To(70 460 — X — s)h(s)dBf (s))

ty

= TN 2P (T 4 0 — X) + Ta(N) 22 (70 + 6 — A).

On the one hand, if ¢, = 0, then this implies 2"(0) = 0 and Z" = 0. On the other
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hand, if ¢, > 0, then by (Hy), (C}]) and (3.86]), we deduce

B 27 (0 + 0 = MI” < 1 Ta(mn + 0 = A = ) IPEl|2" (8) + (=" (8 )]

and by (1.6)-(1.9), (H2), (Ha4), (C7)-(C%), (3.86) and the Cauchy-Schwarz inequality,

Tn+0—X\
E[Z5(rn +0 = N)|* < 377/ T (70 +0 — X = 9)IPE| f (5, 27) || *ds

123

Tn+0—X\
+ww0{/ I To(r 4+ 0 — A — )|PEllg(s, 2™ 2ds
ty

Tn+0—A
+3cH(2H — )" / ol + 0 = A= s)[IP[[n(s) [l ds

tg

Tn+0—X\ In Ky
< CMQ/ e~ 2T t-A=s) (k:l(s) + Chka(s) (1 +e(n"F )S>> ds

ti

Tn+0—X\ In Ky
+ C’MQ/ e~ 2T 0=A=s) <k’3(5) + Cky(s) (1 - e_(2“_TK)S)> ds

ty

Tn+0—X\
+CM? / e 2T h(s) |3 ds

ty

Tn+0—X
SO/ (k) + Fals) + Ka(s) + kals) + (o) 3) ds

173

<C.

By assumption, T, (t) is compact for every t > 0, the set {z}(7,,+0)}52, is relatively
compact in L?(Q;H) for every 0 < X\ < 7, + 6. Moreover, for all n > ng, there exists
a constant A > 0 such that 7, + 6, 7, + 0 — X\ € (tg, tg41] N [0,00) (k € N), thus we
have

E[[25 (7 + 6) — 2" (75 + 0)||” < 2E[|To(N) 27 (70 + 0 — A) — Z1(7 + 0)|)?
+ 2R To(N) 25 (10 + 0 — X) — Z5(7,, + 0)||> (3-96)
= G1 + Go.

Using the same argument as for (3.87)), by Lemma [3.6] (i4), (3.88) and (C}), we find
that there exists 0 < 6* < 0 such that for all 0 < X < 0*, we have

sup | Ta(N)Ta(t — ) — Ta(t)|| < Ct, (3.97)

te€[o,00)

where o and 0 are given in (3.87)) and (3.88)). When 7, + 6 € [0,t], it is obvious
that Z0(r, +0 — ) = Z"(1, +0) = 0and Gy = 0. When 7, +0, 7, +0 — X €
(tk, tgs1) N [o,00) (kK > 1), by (3.86) and (3.97), for all n > ng and 0 < A < §*, we
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have

G1 < Ol Ta(N)Ta(7a +0 = X = 1) = Talmn + 0 — )P Ell2" (t) + Te(2" (8))]1®

< O TN Ta(T + 0 — X = t3) — Ta(7 + 6 — )| (1 + e*(%%)tk)

< Ck,
(3.98)
and
Tn+0—A
G» <6FE Ta()\)/ To(mn +0 — X —3)f(s,20)ds
¢
Tn+60 ' 2
- / To(Tn +60 —s)f(s,2%)ds
t
’ Tn+0—A
+6E|(|To(N) / To(mn +60 — X —8)g(s,x7)dB(s)
12
? (3.99)

— /Tn To(T0 + 6 — 5)g(s, 2 )dDB(s)

tg

Tn+0—X
T.(N) / To(Tn +0—X— s)h(s)ng(s)

173

_ / (40— 5)h(s)dBL(s)

lk

+6F

2

= Go1 + Gao + Gos.

In what follows, we will do estimates for (3.99) one by one. By (3.86)), (3.97),

(Hy), (C7)-(CY%) and the Cauchy-Schwarz inequality, we obtain for all n > ngy and
0 < A<d,

Tn+0—0
Onr < c(/ IT0 )T (7 4+ 0 — A — 5) — To(r 4+ 0 — 5)|

ty

Tn+0—X\
+ (O' — )\) / (e_QW‘@_Q'“(T""'e_)‘—S) + e—2u(7n+9—5)) )
Tnt+0—0

x (kals) + Ohos) (14 ¢~ 520 ) as (3.100)

Tn—+6 Ky
+ C)\/ o 21(Tn+0-s) (/ﬁ(s) +Cl€2(s) (1 +6—(2u_1 Z; )s)) ds

nt0—2A

< Ce.

For Gao, in a similar way, by (1.6), (3.86), (3.97), (C}) and (Cj%), we find that, for
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allm > ng and 0 < A < 6%,

Tnt+0—0o
Gar < CTH(Q) / ITaTa (70 + 0 — A— 8) — Ta(ra + 0 — )|
tr
x (kg(s) + Clea(s) (1 + e—@“‘%)sw ds
Tn+0—X

+CT7’(Q)/ (672;1)\672;1(7'”«#97/\73) + 672M(Tn+978))
Tn+0—0

X <k3(s) + Cky(s) (1 + e_(Z“_%)S» ds

Tn+0 In Ky
o) [ e (o) + Oha(s) (140 Y ) s
TATn+60—X\
TnJrH*)\ Tn+9
< Ce+ C'/ (k3(s) + ka(s))ds + C’/ (k3(s) + ka(s))ds
Tn+0—0 Tn+0—X
< Ce.

(3.101)

For the last term Gag, it follows from (1.6)), (3.97), (Hz), (H4) and (CY) that, for all
n>ngand 0 < A < 9%,

Tn+0—0
Goz < Cp?! / TN Ta(T0 + 0 = A = 5) = To(1 + 0 — ) [*11(s) [ 5ds

tg

Tn+0—X\
+ C(U . )\)2H1/ (672/1)\672u(fn+97)\73) + 672y(7n+973)) Hh(s)”éds
Tnt+0—0
Tn+0 "
+ C’)\QH_I/ 6_2“(T"+6_8)||h(s)||2st
Tn+0—X
Tnt+0-—A Tn+0
< Ce + Ofo — M) / 1h(s)|3ds + CA2 ! / 1(s)||ds
Tnt+0—0 Tn+0—X\

< Ce.
(3.102)

Thus, (3.98)-(3.102)) imply
E||23 (7, +0) — 2"(1, + 0)||* = 0

as A — 0, uniformly for n. Hence, {2 (6)}>2, is precompact in L?(Q; H) for any
0 € [=T*,0]. By the Arzela-Ascoli theorem there exists a subsequence {Z?,/ (0)}>2,
and a function ¢ : R™ — L2(€2; H) which is the uniform limit of {2™ (-)} on every
interval [T, 0]. !

Eventually, let us show that 2% (-) converges to & in L?(;H). To do so, we
choose some n > ng such that 7, + 0 € (ty, tx11] N [0,00). In view of (L.6)-(L.9),
(Hy), (HY), (Hy), (C))-(CY), and the Cauchy-Schwarz inequality, together
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with the fact that 2! =wu? + 27 , the following a priori estimate holds,

EHZ”(Tn _,_9)||2 < CM2<N—|— 1) (1 + e—(2u_1n[l§1 )tk)
Tn+0 InKy
+ CnM? / e~ 2Hlrnto=s) (/ﬁ(s) + Cla(s) (1 + e—(%—%)s) )ds

tg

Tn+6 Ky
+ C’Tr(Q)Mz/ : e~ 2 (m+0=s) (kg(s) + Cky(s) (1 4 (=75 )S) )ds

ty

Tn+0
N anhmMz/ e W9 I p(s)||5ds < C, <0,
173

(3.103)

where we assumed that k& > 1, since the proof of the case k = 1 is similar. From
(3.103]), we know that

sup  eVE[27 (0)]? = sup PE[2" (1w +0)|? < C,
9e[—T*,0] " 0e[—T+,0]

and thus for every T > 0,

sup e’yeEHf(G)sz lim  sup ewEHzf;/(H)HZ <C, (3.104)
0c[-T*,0] =0 ge[—T*,0]

which implies that £ € PC on [-T*,0] and [|{||pc < C.
What we want to prove is z’j;/ (+) converges to & on (—oo,0]. That is, we need to
check that for every € > 0, there exists N(g) such that

27, = €llpe = sup eEll2,(0) —€£@)|* <e, 0> N(e). (3.105)
n 6 n

€(—00,0]

Thanks to (3.104), we have that 2z (-) converges to & on [~T*,0] for arbitrarily

fixed T* > 0. Therefore, we choose T* > 7/, where n’ > N(e) defined in (3.105)).
Obviously in order to prove (3.105)), it only remains to show that
sup  E|27 () —€@)|* <e,  n'>N(e), T"> 7. (3.106)
0€(—o00,—T*] "

Observe that for n’ > N(e), T* > 7,/, combining with (3.103[)-(3.104)), we have
sup  E|lz1,(6) — £(0)]°

0e(—o0,—T%]
< sup  VE (O)F+  sup  E[E0)]°
96(700,77’*] " GE(*OO,fT*] (3107)

< Ce " 4 lim  sup e'yaEHzf;,(H)Hz

/=00 ge(—o0,~T*]
< Ce.

On account of (3.105) and {) the convergence of {227:,(~)} to  in PC im-
Reca ep

mediately follows. 1 that t revious decomposition shows z7 = u? + 2.
Moreover, (3.83) implies that

o
i lpe = 0,
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since ¢, € D. Thus we have found the convergence of :E?/, to € in PC, and the proof
of this lemma is finished. [
Now we analyze the properties of the omega limit sets for our problem.

Theorem 3.23. Assume the conditions of Theorem [3.20. Then for any bounded
subset D of PC, the set

w(D) ={x : 31, = 00, ¢, € D and a sequence of solutions x" () of problem
(3-2) with xg = ¢, € D such that z! — x in PC}.

Proof. The definition of omega limit set and Lemma imply that w(D) is
nonempty and compact immediately. Now we show that w(D) attracts D. We
argue by contradiction, then if the result were not true, there would exist € > 0 and
sequences {7, } with 7,, = o0 (n = ), {¢,} with ¢, € D and solutions {z"(-)} of
(3.2) with initial values zy = ¢,, such that

dist(x] , w(D)) >¢e, VneN, (3.108)

where dist(-, -) is the metric for the topology of PC. By Lemma [3.22 we can ensure
that 27 is relatively compact and possesses at least one cluster point z € PC.
Obviously z € w(D), and this contradicts (3.108]). Thus this theorem is completed.
O

We are now ready to state the following key result.

Theorem 3.24. Assume the conditions in Theorem[3.20. Then the set

A= U{w(D) : D CPC, D bounded}

is compact in PC, and, moreover, is the minimal closed set that attracts all bounded
subsets of PC in the topology of PC. In other words, for any bounded set D C PC
and any € > 0, there exists t(D,e) > 0 such that for any ¢ € D and any solution
z(-) of with initial value ¢, it holds

dist(ze, A) < e, forallt>t(D,e).
Proof. Let us denote
A={w(D): D c PC, D bounded},

and let us first prove that Ais relatively compact, which will imply the compactness
of A. B

Indeed, let {£"}2°, be a sequence in A with " € w(D,), and ||D,|lpc =
supy, ep, |#nllpc < dn. Thanks to the definition of w(D), there exist sequences
{7} with 7, = 400 and

dn d?
e { e2nmn’  e(2u—InK1/B)mn } —0 as  n—+oo, (3.109)
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and {¢,} with ¢,, € D,, whose solutions {z"(-)} of problem ({3.2) corresponding to
the initial datum zf = ¢,, € D,, satisfy, for all n € N,

1
I, = €"lpe < (3.110)

Arguing as in the proof of Lemma , taking into account , one can prove
that {27 }>° is relatively compact in PC. Therefore, this result and imply
that {£"}°, is relatively compact in PC, and thus A is compact in PC.

Finally we show that A is the minimal closed set attracting any bounded set
D c PC. To prove this, notice that if A" is another closed subset which attracts any
bounded set D C PC, then by the definition of w(D), we have that w(D) C A’, and
thus (J{w(D) : D C PC, D bounded} belongs to A’. Since A’ is closed,

A= U{w(B) : B C PC, B bounded} C A,

and the proof is complete. [

3.4.2 Existence of the singleton global attracting set in the
case of uniqueness of solutions

In general, we cannot obtain much more information about the attracting set just
proved to exist in the previous section. In fact, such attracting sets may have
a complex structure, even of fractal nature as the vast literature on the theory of
global attractors has shown over the last decades. However, in the case of uniqueness
of solutions, we can provide more details of the geometrical structure of this set. In
fact, we will be able to prove in this subsection that it becomes a singleton, which
means the solutions are attracted by a single point in PC, which is not in general
an equilibrium point of the problem.
We start this section with the following a priori estimate.

Theorem 3.25. Let A € A®(wy, ty) with 0y € (0, 3]. Assume that (Hy), (Hj), (Hs)
and (C])hold and, in addition,

In wy

g

v>20 >R+ , (3.111)

(C%)

/ 25| £ (5, 0)[|ds < oo, / ¢8| g(s, 0)|[2ds < oo,
0 0

/ || h(s)||5ds < oo.
0

Then, for every ¢ € PC, there exists a unique mild solution to problem fulfilling

_ _ 7lnw1
|z:]2e < O+ [[p]2)e CrR75" ),

where
R = 8M?*(nly + Tr(Q)ly), w, = 8M?*(1 4 N) + ™.
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Proof. The proof of this theorem follows the lines of the corresponding Theorem
[3.171 Thus we only sketch it. The proof is split into three steps.

Step 1: From Definition [1.6] (L.9)), (H:), (C}) and the Cauchy-Schwarz inequal-
ity, we obtain for ¢ € [0, #],

t
o0 < 407 olfbe + 8M2e (il + Tr(@l) | € freds
0
t
sarte [ (B (5,0 + TrQElg(s 0)[F) ds (3112
0
t
+4cH(2H — 1)772H_1M26_2“t/ 62“5||h(3)||2Qd3,
0

and condition (C}) ensures that there exist three constants R;, Re and Rs such
that

t
HH ~ 1" [ h(s)ds < Ry
0 (3.113)

t t
/ PHE| (s, 0)|%ds < R, / PHE | g(s,0)[%ds < R,
0 0

Replacing (3.113)) into (3.112) implies, for ¢ € [0, ¢4],
t
Ello(t)| < AMPe ol + 8MPe W Ry + 8NP Ry [ e,
0

where we have used the notation

R
Ry= (MRa+Tr(Q)Rs) + 71, Rs =nl +Tr(Q)ls.

An analogous argument to the one in Theorem to deal with the infinite
delay, together with the Gronwall inequality, show that

lzellpe < (AM2(|6]le + 8MPRa)e™ =7,
and, consequently,
Ella(t)l* < AM2||9]lpe +8MPRy)e” R0 = By (3.114)
Step 2: Similar to (3.112), in view of (Hj}), we find for ¢ € (t1, 5] that

Ellz(t)|* < 8M2e =) (1 + N)E[|z(ty)[|* + 8M3e R e BRI
t
+ 8M26_2“(t_t1)7€5/ 62“(5_t1)|]:1:8|]%6d8.
t1

We proceed now as in the proof of Step 2 of Theorem [3.17, combing the Gronwall
inequality. It then follows, for t € (1, ts],

2|20 < (8M?(1 4 N) 4 ™" Bf 4 8M*Rye~ 3 Ritio=Cu-R)t=t) = (3 115)
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and, therefore,
E||z(t)]|* < (8M*(1+N)4eR") B +8M*Rye~ PRt g=Cu-R)(t2=t) .— B (3.116)
Step 3: The same reasoning as above implies that for t € (tx, tg1] with k > 2,
2|5 < (8M2(1 4 N) + eR") By + 8M*Rye Gr=Rtk g~ (n=R)(=t) (3.117)

and

Ellz(te)]|* < (8M*(1+ N) + ") B;;
3.118
+ 8]\/[27346* 2u=R)tk o= 2u=R)(trr1—tr) . BZ-H' ( )
For convenience let w; = 8M?(1 + N) + €. Tt is obvious that w; > 2 so that
k—
S w] < ot Lor < 2w¥™?. In addition, condition (H,) implies that k — 1 < et
and k(5 < tk Then for £ > 2, the mathematical induction method furnishes that

B < Bre (2 RTE) (1 ) 4 16M2R e (o RTE e (3.119)

Therefore, by (3.114)), (3.117) and (3.119)), we deduce that, for € (t,tr+1] with
k> 2,

In wy
l24][pe < C(1+ ||¢||%C)ef(2"* E )t’
which, thanks to (3.116) and (3:119), implies that, for all £ > 0,
Inw
leelipe < COU+ lll3e)e 50

This completes the proof. [J
In order to show that the global attracting set is a singleton set, we first establish
the second moment exponential stability of solutions to problem ({3.2]).

Lemma 3.26. Assume the conditions of Theorem[3.25. Then, for any two solutions
x(t) and y(t) of problem corresponding to initial values v and ¢ in PC, we
have
In w
oo = willde < 3M2|Y — glfpee”*FF)L w0,

where R and wy are defined in Theorem |3.25].

Proof. It is straightforward that we are able to obtain global existence (without
uniqueness) of mild solutions to problem by the conditions of this lemma. An
analogous argument to that already applied in the proof of Theorem proves the
exponential asymptotic behavior with condition (C}), so we omit the details here.
O

Now we state and prove the main results of this subsection.
Theorem 3.27. Assume the conditions of Theorem |3.25. Then

(1) For any bounded subset D of PC, any sequence {t,} with 7, — +oo (n —
o0), {¢pn} with ¢, € D, and any sequence of solution {x™(-)} of problem
with o = ¢, € D, this last sequence {27 } is relatively compact in PC.
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(i) For any bounded subset D of PC, the set

w(D) =A{z:31, = 00,¢, € D and a sequence of solutions x"(-)of problem
(3-2)with x§ = ¢ € D such that x7 — x in PC}

18 a singleton set and attracts D.

(1ii) The set
A= U{w(D) : D CPC, D bounded }

18 a singleton set, and the minimal set that attracts all bounded subsets of PC.

Proof. (i) To prove {z] }°° is precompact in PC, we only need to state that {z7 }
is a Cauchy sequence in PC. Thanks to Theorem |3.25/ and Lemma [3.26| we deduce
that

27, — 27, lIpe < 3ll2%, — 27 [P + 3ll27, [7e + 3l e

< Cllbn — dl|Bpe” CHR5)m (3.120)
_Inwy

+ C(l + H¢m”%c) (6_(2“_R B )Tn + e—(2u‘7z_1n;vl)7m) '

Furthermore, as D is a bounded subset of PC then

ID]lpc := sup [|¢]|pc < d, (3.121)
¢eD

and hence and imply that {27 }>°, is a Cauchy sequence in PC as
n, m — 0.

(1) Now we need to prove that w(D) is a singleton set. If this were not the case,
then there would exist z, y € w(D) such that x # y. By the definition of w(D),
we see there exist sequences {7,} and {s,,} with 7, = (n — o0) and s,, =
(m — 00), {¢,} and {¢n} with 1, ¢ € D, the solutions {z"(-)} and {y™(:)} of
problem (3.2) with z{ = ¢, and y* = ¢, such that

7 —x(n—o00) and y' —y (n— o0).
Taking into account Theorem |3.25 and Lemma [3.26|, we derive that
127, = o5 e < 3lla7, — 7 e + 3147 pe + 3v2, 7
< Clln = dmlfpee #7750

Inwy

N ]

which implies that
22—y |3 — 0 as n, m — oQ.

Hence ||z — y||pec = 0, and this is a contradiction since x # y.
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(é4i) The set A is a bounded subset of PC thanks to Theorem[3.25] The assertion
(1) implies that w(B(0,p)) is a singleton for each p € Rt where B(0,p) = {z €
PC : ||z||pc < p}. From the definition of omega limit set we have that w(B(0,1)) C
w(B(0,2)) C --- C w(B(0,n))---, and as all of them are singleton sets, all of them
must coincide, i.e., w(B(0,1)) = w(B(0,2)) = --- = w(B(0,n)) = - --. Consequently,

A=|J{w(D): D cPC,D bounded} = | J {w(B(O,p))}

is a singleton set. Therefore, A is the minimal set attracting any bounded set
D C PC, and we have completed the proof of Theorem |3.27| [J






Chapter 4

Stochastic time fractional
2D-Stokes equations with delay

4.1 DMotivation and preliminaries

The well-posedness of flow problems in a viscous fluid is crucial for many areas of sci-
ence and engineering, for example, the automotive and aerospace industries, as well
as nanotechnology. In the latter case of microfluidic structures, we often encounter
flow problems at moderate viscosities which arise, in the study of the modeling of
various devices for the separation and manipulation of particles in microfluids sys-
tems [51], in the study of tumor tissue as a porous medium described by Darcy’s
law [36], B7, 43], etc. In applications such as these, the Stokes equations provide a
first approximation of the more general Navier-Stokes equations in situations where
the flow is nearly steady and slow, and has small velocity gradients, so the inertial
effects can be ignored.

P.M. Carvalho-Neto and G. Planas analyzed in [22] the following Navier-Stokes
model with Caputo fractional time derivative,

Dy — kAu+wu-Vu+Vp=f in RY, t >0,
V-u=0 in RY, t>0, (4.1)

u(0,z) = ug in RY,

where Dy is the Caputo fractional time derivative of order o € (0, 1) with respect
to t (see Definition , u is the velocity field of the fluid, x > 0 is the kinematic
viscosity, p is the pressure, f is the external force and wug is an appropriate initial
value, and N > 2. The authors in [22] analyzed the well-posedness of the problem,
the existence and eventual uniqueness of mild solutions as well as the regularity in
time.

However, in order to have a much better description of our model, it is sensible to
consider some other features in the formulation of the equations. On the one hand,
it is well known and accepted nowadays that, in physical systems of the real world,
the different stochastic perturbations that originate from many natural sources are
ubiquitous, most often, they cannot be ignored. This leads us to consider some

113
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randomness in the model which can be described by some kind of white or colored
noise or some other type of stochastic term. On the other hand, it is also obvious
that the future evolution of a system does not only depend on its current state,
its past history does determine its future behavior too. Also, on those problems in
which we intend to apply some control, it is very convenient to consider some delay
or memory term in the formulation [17, [18].

Motivated by the previous considerations, our model can be more realistic if we
introduce these both features in the formulation. Needless to say, there are many
choices in the type of noise, such as, Brownian motion/Wiener processes, fractional
Brownian motion, Lévy or Poisson ones, etc. In order to perform our analysis clearly
and show how it works, we prefer to consider the classical and standard Brownian
motion, because the problem can be easily handled mathematically, and serves as
guide for more complicated expressions. Based on these advantages, there has been
a growing interest in stochastic time-fractional partial differential equations with
delays. For instance, in more recent decades, the stochastic classical/time fractional
partial differential equations have been extensively studied theoretically [29] [56],
30, 82, 89]. However, there appear to be fewer studies in the literatures related
to the theoretical analysis of stochastic Stokes/Navier-Stokes equations driven by
multiplicative noise with time fractional derivative, and as far as we know, no one
dealt with delays. This is why we are strongly interested in the following problem

Df‘u—mAu—i—u-Vu%—Vp:f(t,uﬂ%—g(t,uﬁ%t(t) in RY, >0,

V-u=0 in RY, t>0,
u(t,z) = p(t, ) in RY, t € [-h,0],
(4.2)

where now f and g are external forcing terms containing some hereditary or delay
characteristics, and ¢ is the initial data in the interval of time t € [—h, 0], where h
is a fixed positive number, and W (t) is a standard scalar Brownian motion/ Wiener
process on an underlying complete filtered probability space {Q, F, {F:}+>0, P}.

Although our final and challenging goal is to analyze the well-posedness of mild
solutions and asymptotic behavior of time-fractional stochastic Navier-Stokes model
with delay (4.2), there are some difficulties/troubles which suggest us to start by an-
alyzing a linearized version first before we can tackle the complete problem. It is well
known that when we deal with the integer time stochastic Navier-Stokes equations in
the phase space L*(Q; C([0,T); X)), with the help of 1t6’s isometry and Burkholder-
Davis-Gundy’s inequality, a priori estimates can be handled smoothly. However,
for time fractional stochastic Navier-Stokes equations, if the same phase space were
adopted, we would face essential troubles: (a) It6’s isometry only holds true for the
integer time derivative rather than time fractional derivative; (b) Burkholder-Davis-
Gundy’s inequality cannot be used since the integral is not a martingale (the main
reason is the singular kernel appearing in the stochastic integral).

For this reason, in this first approach we will analyze the following time fractional
stochastic delay incompressible flow problems, i.e., the non-stationary 2D-Stokes
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equations,

DYu — kAu+ Vp = f(t,u) + g(t,ut)%t(t) in R? ¢>0,

V-ou=0 in R? ¢>0, (4.3)
u(t,z) = p(t, ) in R? t€[—h,0].

We point out that in the deterministic case, the concept of weak (or variational)
solution for the Navier-Stokes problem without delay was also analyzed [88]. How-
ever, the proof of this deterministic problem relies on direct estimates involving the
time-fractional derivative as well as the Fourier transform, while the stochastic case
cannot be analyzed by similar techniques since the term containing noise only makes
sense in integral form. For this reason, we carry out a program based on a fixed
point theorem which is different also from the one used in the papers [22, [87]. We
highlight that it might be possible to perform the technique in [88] to handle those
cases containing a much simpler noisy term in which the stochastic integral does not
appear, for instance, when the noise has a special additive form. It is our objective
to analyze these problems in future works.

The results of this chapter can be found in [85].

In what follows, we present basic notations related to stochastic theory, collect
useful facts on Mittag-Leffler function and establish the definition of the mild solu-
tion to problem ([£.3), for more details, we refer to [211, 22, [60, 45] and references
therein.

To begin we fix a stochastic basis, that is,

S = (Q, F, {Fi}>0,P, W),

where P is a probability measure on 2, F is a o-algebra. In order to avoid unneces-
sary complications below, we may assume that {F; }+>o is a right-continuous filtration
on (Q,F) such that Fy contains all the P-negligible subsets and W (t) = W (w, 1),
w € Q is a standard 1-D Brownian motion defined on (2, F, P, {F; }+>0).

To set our problem in the abstract framework, we consider the standard
notation L? to describe the subspace of the divergence-free vector fields in L%

L2={uel?:V-u=0 in R?}

with norm |[|-||z2, where L? denotes the vector-valued Lebesgue space and for u € L?,

2
full: =3 [ luta) P
j=1

Besides, let S C R and X be a Banach space. We denote the space of continuous
functions from S to X by C(S; X) (equipped with its usual norm). L?(S; X') denotes
the Banach space of L? integrable functions u : S — X. H'(S;X) = WH%(S; X) is
the subspace of L*(S; X) consisting of functions such that the weak derivative %f
belongs to L?(S; X). Both spaces L*(S; X) and W'?(S; X) are endowed with their
standard norms.
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Consider a fixed T' > 0, given u : [—h,T] — L2, for each t € [0, T], we denote by
u; the function on [—h, 0] via the relation

u(s) = u(t + s), s € [—h,0],

where h > 0 denotes the delay, when h = oo, it denotes infinite delay. Furthermore,
let L*(£2; X) be a Hilbert space of X-valued random variable with norm ||u(-)||3, =
E||u(-)||?, where the expectation E is defined by Eu = [, u(-)dP.

We now recall some properties of Mainardi function [21], denoted by M,. This
function is a particular case of the Wright type function introduced by Mainardi in
[60]. More precisely, for a € (0, 1), the entire function M, : C — C is given by

Mo(2) = HZ:O n!T(1 — a(l+n))

Some basic properties of the Mainardi function will be used further in this chapter
to obtain most of the estimates.

Proposition 4.1. For a € (0,1) and —1 < r < oo, when we restrict M, to the
positive real line, it holds that

L(r+1)
C(ar+1)

The next results are classical computation done in the literature that study the
Mittag-Leffler operators, for instance [22]. To do this, let X be a Banach space
and —A : D(A) C X — X be the infinitesimal generator of an analytic semigroup
{T'(t) : t > 0}. Then for each a € (0,1), we define the Mittag-Leffler families
{Eq(—t*A) : t > 0} and {E, o(—t*A) : t > 0} by, respectively,

M, (t) >0 forall t>0, and / t" M, (t)dt =
0

E.(—t*A) = /OO M, (s)T(st")ds,

and -
E,.(—t"A) = / asM(s)T(st*)ds.
0

It is interesting to notice that the Mainardi functions act as a bridge between the
fractional and the classical abstract theories, this relation is based on the inversion
of certain Laplace transform in order to obtain the fundamental solutions of the
fractional diffusion-wave equation. Let us mention e.g., [21] 22, 56] and references
therein.

The following lemma compiles the main assertions of the theory of the abstract
fractional calculus.

Lemma 4.2. The operators E,(—t*A) and E, o(—t*A) are well defined from X to
X. Moreover, for x € X it holds,

(1) Eu(—t*A)z|i=o = x;

(1) the vectorial functionst — Eq(—t*A)x and t — Eqo(—t*A)z are analytic from
[0,00) to X.
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Let us rewrite the time fractional stochastic 2D-Stokes delay differential equa-
tions (4.3) in an abstract form

dt

D2y = —Au+ F(t,u) + G(t, u) 28 t >0, (4.4)
u(t) = ¢(t), t € [—h,0], '

where A = —PA = —AP, F(t,u;) = Pf(t,u;) and G(t,u;) = Pg(t,us). Here,
P : L[? — L? is the Helmholtz-Leray projector and A : D(A) C L2 — L2 is the
Stokes operator.

We end this subsection by recapitulating the properties of both families of
Mittag-Leffler operators, which furnish the essential tools used throughout the whole

article, see [22]146] for more details. Notice that the following lemmas hold true when
the dimension is N > 2.

Lemma 4.3. Consider o € (0,1), and rq, ro real numbers satisfying
l<r <rg<oo and 1ryN/(2ry+ N)<ry.
Then, for any v € L', there exists a constant C' = C(ry,re, N,a) > 0 such that
(7) |Ba(—t*A, 0| pre < Ct=W/M=NIr2)2) 15100 >0

and
(”) HEa,a<_taAr1)U”LT2 < tha(N/mfN/rz)/ZHUHL”’ £>0.

Remark 4.4. For simplicity we will consider the case N = 2 in our analysis, but
the results hold true for N > 2 (see Remark at the end of this chapter).

4.2 Well-posedness results with bounded delay

First of all, inspired by the arguments in [78] and references therein, we now make
precise the notations of the mild solution to problem (4.4]), which is given by a
fractional variation of constants formula involving the Mittag-Leffler families.

Definition 4.5. (Mild solution). Let S = (2, F,P,{F}i>0) be a fived stochastic
basis generated by a standard Brownian motion W, and T > 0. Consider o € (0,1)
and an initial function @, such that @(t,-) is a Fo-measurable random variable for
allt <0 (relative to S). A mild solution to problem on [—h,T] is a stochastic
process u such that u(t) = p(t), fort € [—h,0], fulfilling

u(t) = Eqo(—t*A)p(0) + / Eqo(—(t —s)*A)F(s,us)ds
. 0 (4.5)
+ /0 E,o(—(t—5)*A)G(s,us)dW(s), P-a.s.,  for everyt e [0,T].

Remark 4.6. Notice that, the Stokes operator — A s the infinitesimal generator of
an analytic semigroup {e=** 1t > 0}. Hence, both Mittag-Leffler families E,(—t*A)
and Eq o(—t*A) are well defined.
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Remark 4.7. It is worth mentioning that the analysis in this paper can be easily
extended to the case in which system 15 driven by Hilbert valued Brownian
motion/Wiener process in infinite dimensions, however we prefer to consider this
simpler formulation for the sake of clarity to the reader.

In this section, the crucial well-posedness of fractional stochastic 2D-Stokes equa-
tion with bounded delay

dt

Dou = —Au+ F(t,u,) + Gt u,) 2L t >0, (4.6)
u(t) = (1), t e [=h,0] '

will be justified, where h is a positive fixed constant (finite delay).

In order to apply the previous lemmas successfully, it is necessary to introduce
suitable Banach spaces, which aim to capture the essence of the problem.

For any o € (0,1) and fixed T' > 0, consider the Banach space X» which is the
set of continuous function u : [—h,T] x Q — L?(Q; L2) equipped with its natural
norm )

2
fulle = (5w Elutol:)
te[—h,T)
here we omit 7" in X5 but no confusion is possible.

Let us now state the hypotheses imposed on external forcing terms in our prob-
lem.

(Hy) There exists a constant L; > 0, such that the function F : [0, 00)xC/([—h, 0]; L?
(Q; L2)) — L*(Q; L?) satisfies

t t
[ EIFG) = Foolfads < Ly [ Bluts) = o),
0 —h

for all u, v € C([—h,T]; L*(Q; L?)).
(Hs) There exists a constant L, > 0 such that, the function G : [0, 00)xC/([—h, 0]; L?
(; L2)) — L*(Q; L?) satisfies

t t
[ EIGG 1) = Gl v lads < L, [ Bluts) = ulo)[fads,
0 —h
for all u, v € C([—h,T]; L*(Q; L?)).

Initially, we establish the local existence and uniqueness of mild solution to

problem (4.6) by a fixed point argument.

Theorem 4.8. Let o € (0,1). Assume that (Hy)-(Hz) hold, and initial value ¢ €
C([=h,0]; L*(2; L2)), such that ¢(t,-) is a Fo-measurable random wvariable for all
—h <t <0. Then there exists T > 0 (small enough) such that problem (@ admits
a unique mild solution u in the sense of Definition [4.5 on [—h,T].
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Proof. To start off, let us pick up an initial function ¢(t) € C([—h,0]; L*(Q; L?))
such that ||¢||c(-n,0;L2(;22)) is small enough compared with R, precisely, we choose

R such that e
(3(C + 1) + 2Ch L)l nopr2(:r2)) < 5
Define the following space B, with a € (0,1) and R > 0, for every ¢t € [0,T:

B = {u € C-0T L@ 12) s u(t) = o(0) W€ [-00) lull, < R},

As a preparation for our main result, with the choice of an initial value ¢ €
C([=h,0]; L*(2; L2)), let us define the operator £ on By as follows,

(o), te[-h0,
(Lu)(t) = Eab¢“A%p®)+§A Eoo(—(t — 5)A)F(s,u,)ds (47)

fﬁEwh@—ﬂ%W@%MW@,tGMH,PM.

Assertion 1: Lu € C([—h,T); L*(; L2)), for every u € C([—h, 0]; L*(Q; L?)).
Observe that, if ¢t € [—h, 0], then (Lu)(t) = ¢(t) and ¢ € C([—h,0]; L*(Q; L%)).
Therefore, we only need to check the continuity of Lu on [0, T|. For any ¢, t5 € [0, 7],
d > 0 small enough with 0 < |to —t1] < §. By slightly modifying the proof of the [22),
Lemma 11], with the help of the analytical property of the Mittag-Leffler operators
in time (see Lemma [£.2|i7)), the result holds immediately.
Assertion 2: ||Lul|x, < R, for sufficiently small T
To this end, we have to prove that, for any u € BY,

[1Lullx, = ( sup IE||(£U)(1t)||%z) <R (4.8)
te[—h,T|
For t € [—h, 0], we have
E[l(Lu)(®)IIZ: = Elle(®)|lz> < t S[UEO]EHSOG)H%Q- (4.9)
€l—h,

If t € (0,7], it follows

2

E[[(Lu)(t) % < BE|Ea(~t*A)p(0) % + 3EH [ Bealtt =5y Pls, 0

L2
2

= Il +IQ +Ig.

- 31[-«:‘
L2
(4.10)

/0 Eqo(—(t —5)*A)G(s, us)dW(s)

We now estimate each term on the right hand side of (4.10)). For Z;, by Lemma
[.3(7), it is obvious that

T; = 3E||Ea(—t"A)¢(0)|[7> < 3CE[l¢(0)|7- < 3C SEHEO]EH@(??)\@- (4.11)
te[—h,
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For Z,, by Lemmal[d.3[(i), (H;), the Cauchy-Schwarz inequality and Fubini’s theorem,
we obtain

2

t
T, — 31@’ / B o(— (£ — ) A)F (s, us)ds
0

L2

t 2
<3CE (/ B (—(t — s)aA)F(s,us)Hdes)
0
t t
< 6Ct </ E||F(s,us) — F(s,0)||72ds +/ EHF(S,O)H%QCZS)
0 0

t t
< GCLft/ E||u(s)|\%zds+60t/ E| F(s,0)|2.ds
h 0

0 t
<ocrt ([ Blo@lds+ [ Blu)aas) @12)

t
+60t/ E| F(s,0)|2ds
0
t
<oCnLst sup B0l + 601t [ Elu(s) s
te[—h,0] 0
+6C1t* sup E[F(s,0)]|7

s€0,t]

< 6ChLst sup E|p(t)]|72 + 6Ct (LfR2 + sup EHF(S,O)H%) :

te[—h,0] s€[0,t]

For T, by Lemma [4.3)(i), [td’s isometry and (H>),

2

7, = BE‘ /0 B (—(t — 52 A)G(s, us)dW (5)

L2

t
SSC/ E|G(s,us)|32ds
0
t t
< 60/ E|G(s, ;) —G(s,0)||%2ds+60/ E||G(s, 0)||2ds
0 0

0 t t
<6CL, Ellp(s)]|72ds + [ E|ju(s)||32ds | +6C | E|G(s,0)|7:ds
A 0 0 (4.13)

< 6ChL, sup E|¢(t)]3- —l—GCt(Lg sup Elju(s)||72
te[—h,0] s€[0,¢]

+ sup E\|G<s,o>uiz)

s€[0,t]

< 6ChL, sup E|¢(t)|3. +6Ct (Lng + sup IEHG(S,O)H%) :

te[—h,0] s€[0,t]
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Substituting (4.11))-(4.13]) into (4.10)), combining with (4.9)), it is obvious that
E[[(Lu)(t)||72 < 3((C + 1)+ 2ChLst + 2ChL,) sup Ellp(s)]|7-
0

s€[—h,0]

+6Ct <LfR2 + sup E|F(s, 0)||%2)

s€[0,t]

+6Ct | L,R* + sup E|G(s,0)]|32 | .
s€[0,¢]
Consequently, thanks to the choice of R, we can choose T small enough such
that

1
2

| Lu||x, = ( sup IEH(Eu)(t)H%z) < (3((C+ 1) +2ChL;T + 2ChLy)
te[—h,T]

X sup E\|<p(t)||%2+60T2(LfR2+ sup E||F(t,0)||2Lz> (4.14)

te[—h,0] t€[0,T]

te[0,7]

3
+6CT <L9R2 + sup E||G(t,0)||%2> ) <R.

Assertion 3: Operator L : Bf, — BY, is a contraction.
To this end, for any u, v € B, it follows that

N

lcu= Lol = sw BlCo0) - @O:) . (@1
te[—h,T|
For t € [—h,0], one has (Lu)(t) = (Lv)(t) = ¢(t). Thus, it is sufficient to
consider the case t € [0,7]. Observe that
2

E[(Lu)(t) — (o) (D)% < QEH [ Bttt = 1) (s — Fis. v

L2
2

+2]E‘ /0 B (= (t — ) A)(G(s, us) — Gs, vs) )V (s)

=T+ Je.

L2

(4.16)

For Ji, by Lemma(.3(i), (H2), the Cauchy-Schwarz inequality and Fubini’s theorem,

we obtain
2

/0 B o(— (£ — )" A)(F (s, us) — F(s,v))ds

T = QE'

L2

< 20E (/0 [Ba,o(—(t = 8)*A)(F(s,u,) — F<3’“S))”L2ds) (4.17)

t
< QC’Lft/ E|lu(s) — v(s)||32ds
—h
< 2CLs#* sup Elju(s) — v(s)|7z.
s€0,t]
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For J5, by Lemma[1.3(i), (H>) and 1td’s isometry, one has

2

7, = QE‘ /0 (= (t — 8)"A)(Gls, 1s) — Gls, v3))dW ()

L2

<2CL, Ellu(s) — v(s i2ds
| Elluts) = v(o)] .

t
=201, [ Blu(s) - o(s)|f-ds
0

<20 Lt sup Ellu(s) — v(s)][3z.
s€[0,t]

Hence, substituting (4.17))-(4.18)) into (4.16)), it follows that

1

1 — Lol < <2OT(L,«T L) sup Elult) - v<t>||%2)

te[0,7)

= Mu(t) — v(t)] 2,

where

M? = 2CT(L;T + L,).

Therefore, we can choose T' small enough such that 0 < M < 1, in other words,
we can choose T" small enough such that operator £ maps B, into itself, and it is a
contraction as well. The Banach fixed-point theory yields that operator £ possesses
a fixed point in Bf. Namely, problem has a unique local mild solution on
[—h,T], and the proof of this theorem is completed. [J

Proposition 4.9. Under the assumptions of Theorem[].8, the mild solution to prob-
lem (4.6) is continuous with respect to the initial data ¢ € C([—h,0]; L*(Q; L2)). In
particular, if u(t), w(t) are the corresponding mild solutions on the interval [—h, T,
to the initial data ¢ and v, then the following estimate holds

lu — wllx, < 3[[¢ = Pllo-norz@irz) expBC(Lst + Lg)t), vt € [0,T].

Proof. The result of this proposition is proved by the similar arguments to those
concerning the uniqueness of next theorem, so we omit the details here. [

In the following lines, a theorem will be considered to prove the global existence
and uniqueness of mild solution to problem (|4.6)).

Theorem 4.10. Assume the hypotheses of Theorem[{.§ hold. Then for every initial
value ¢ € C([—h,0]; L*(Q; L2)), the initial value problem ({.6) has a unique mild
solution defined globally in the sense of Definition[{.5

Proof. Initially, we assume that there exist two solutions, u and v on [0,7}] and
[0, T3], respectively to problem (4.6). Next let us prove that u = v on [—h, Ty ATs). Tt
is clear that u(t) = v(t) = ¢(t) on [—h, 0], so we only need to prove that u(t) = v(¢)
for any ¢ € [0, 71 A T3]. Notice that

lu—vl%, == sup  Elu(t) —v(t)|7.- (4.19)
tE[—h,Tl/\TQ]
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On the one hand, it has

2

Ellu(t) —v(®)|7: < 2E /0 E,o(—(t—9)A)(F(s,us) — F(s,vs))ds

L2
2

+9E /0 B o(—(t — 8)"A)(Cs, 1s) — G5, v3))dW ()

= Il + ]2.

(4.20)

For I}, by Lemma [4.3(i), (H;) and the Cauchy-Schwarz inequality, it follows that
¢ 2
L <2CE ( / [Baa(—(t — $)*A) (F(s, ;) — F(s,vs))Hdes)
0
t 2
<2CE (/ | F(s,us) — F(s,vs)Hdes)
°, (4.21)
< QC'Lft/ E|lu(s) — v(s)||52ds
0
¢
< 2C’Lft/ sup Elju(o) — v(0)|3.ds.
0 o€[0,s]

For I,, by Lemma [4.3(i), (H>) and Itd’s isometry, we derive
t
B <2 [ B[Bua(~(t — 5 A)(G(s.w) — Gls.v.)[ads
0
t
<201, / Eu(s) — v(s)|22ds (4.22)
0

t
< QC’Lg/ sup E|u(c) — v(o)|3.ds.
0

c€[0,s]

Substituting (4.21)-(4.22)) to (4.20)), it yields

Ellu(t) —v(t)||7: < 2C (Lst + Lg)/0 sup Elju(c) —v(0)|3.ds.

o€(0,s]

Denote by My = 2C(L¢(Ty NTy) + L), we have

ThWNT>
sup  Ellu(®) - v(o)fs < M [ <sup ||u<a>—v<a>||%2)dt,
0

tE[fh,Tl/\TQ} O‘E[*h,t]
the Gronwall Lemma implies that
[u = vllx, = 0.

Therefore, u = v on [—h, Ty A Ty] for every initial function ¢(t).
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Now we prove that for each given 7' > 0, the mild solution u to problem ({4.6])
is bounded with X5 norm. Taking into account Lemma [4.3|4), (Hi)-(H>), 1t6’s
isometry, the Cauchy-Schwarz inequality and Fubini’s theorem, we have

0
Bl <3C s Bl +0CE((Lyt+ L) [ letsllaas)

te[—h,0 _

+6CE((Lyt-+1,) [ uts)lFaae)

t
T / (15, 0)|Zads + | G(s, 0)122) ds

< 6C(1+ Lyth+ Lyh) sup Ello(t)]7,
te[—h,0]
+6Ct2 sup E||F(s,0)]% + 6Ct sup E||G(s,0)]2

s€l0,t] s€[0,1]

t
+60(Lft+Lg)/ sup Elju(o)|3.ds.
0

c€l0,s]
Therefore,
sup E|u(?)||72 <6((C+ 1)+ CLTh+ CLyh) sup E|jp(t)]|7:
te[—h,T] te[—h,0]
+6CT? sup E|[F(t,0)|3: +6CT sup E||G(t,0)]3-
te[0,T] te[0,7]

T
+6C(LfT+Lg)/ sup Ef[u(o)|2.dt
0

o€[0,]

T
= A(p, T, F, Q) +M2/ sup Ellu(o)|7.dt,
0

o€[—h,t]
where we have used the notation that

Alp, T,F,G) : =6((C+ 1)+ CL;Th+ CL,h) sup E|¢(t)]3-
te[—h,0]
+6CT? sup E||F(t,0)]]3. + 6CT sup E|G(t,0)]?-,
t€[0,T] t€[0,T]

and
Mg = 60(LfT + Lg)

Applying the Gronwall lemma, for any fixed "> 0 and all ¢ € [0, T|, we obtain
lullZ, < A(e, T, F.G) exp(MoT).

Because of the arbitrariness of T, together with the conclusion of uniqueness of u
on [—h, T}, it is straightforward that the mild solution u to problem (4.6 is defined
globally. The proof of this theorem is complete. [
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4.3 Well-posedness results with unbounded delay

Let us consider the well-posedness of mild solution to the following stochastic time
fractional 2D-Stokes equation with unbounded delay:

dt

Diu = —Au+ F(t,w) + Gt u) %52, t>0, (4.23)
ult) = o(b) t € (00,0} |

Before going a step further to prove the main results, we first introduce a suitable
space motivated by our unbounded delay. Let H be a separable Hilbert space, then
the space Cx on H is defined as

Cx(H) = {p € C((—00,0];H) : lim ¢(0) exists in H},

60— —o0

which is a Banach space equipped with the norm

[pllex = sup ]||90(‘9)||H-

0e(—o0,0

Let us denote R, = [0, 00) and enumerate now the assumptions on the delay terms
F and G. Assume that F', G : [0,00) x Cx(L?*(Q; L2)) — L*(2; L?), then

(H3) For any ¢ € Cx(L*(Q; L%)), the mappings [0,00) 3 t — F(t,&) € L*(Q; L%)
and [0,00) 2 t — G(t,&) € L*(£2; L2) are measurable.

(Hy) F(-,0) =0, G(-,0)=0 (for simplicity).

(Hs) There exist two constants L' and L, such that for all ¢ € [0, 00), and for all
¢ n € Cx(L*(Q; L7)),

| F(t, &) — F(t,ml 22y < LEIE = nllex z2@srz))s
1G(t,8) — Gt )l L2iz2) < LyllE — nllex 2osr2))-
At this point, some remarks are in order.

Remark 4.11. i) Notice that in this unbounded delay case, assumptions (Hy) and
(Hs) imposed on the delay terms are simply Lipschitz continuity while in the bounded
delay case we need to impose (Hy) and (Hy) which are some kind of integral Lipschitz
condition. The main reason is that in the current situation, we can use the estimate
supg<g ||ue(0)|lm < supg<g ||us(0)||lm, if s > t, while in the bounded delay case this is
not true. This will make our computations different in both cases. Also, this is why
we will include the complete details in this section.

i1) It is quite usual when dealing with unbounded delay differential equations, to
adopt a different space for the initial data ([83]), namely,

C(E) = {¢ € (o0, OF )+ sup f“!w)uH < +o0}.
0e(—o0,0
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Howewver, if we consider this space, then hypotheses (Hy) and (Hs) are not fulfilled
when the delay in F' or G is a variable delay one. For instance, F(t,u;) = Fo(u(t —
p(t))), where p is a measurable function taking nonnegative values and Fy : R? — R?
is a Lipschitz function. Therefore, this new space, although it is a bit more restrictive
than the usual one, allows us to consider more general delay terms in the functional
formulation.

At this point, we are in position to prove our main results on well-posedness of
mild solution to problem (4.23]).

Theorem 4.12. Let a € (0,1), F and G satisfy assumptions (Hs)-(Hz). Then
for each initial function ¢ € C((—o0,0]; (L*(Q; L2))), such that o(t,-) is a Fo-
measurable random wvariable for all t < 0, problem admits a unique mild
solution w in the sense of Definition on (—oo,T], for T > 0 small enough.

Proof. To start off, let us pick an initial function ¢(t) € C((—o0,0]; L*(Q; L?))
such that ||¢||c,(z2(;z2)) is small enough compared with R, namely, we choose R

such that
2 R?
3(C+Dllelley z2@irzy < 3

Define the following space Vj; with a € (0,1), R >0
Vi = {ue Cllooe, 0 L 12 0lt) = p(0) o 0 € (0

and u; € Cx(L*(; L2)) for t > 0, satisfying |Ju||c, < R.}

As a preparation for handling the main result, with the choice of an initial value
o(t) € C((—o0,0]; L*(2; L2)), let us define the operator K on V§ as follows,

(o(t),  te(—00,0]
(Ku)(t) = { Ea(=t"A)p(0) + /O Eoo(=(t =) A)F(s, us)ds (4.24)

+ / B (—(t— 52 A)G(s, u)dW (s), t€[0.T], Pas

Assertion 1: Ku € C((—oo,T); L*(Q; L2)), for all u € C'((—o0,0]; L*(2; L?)).

Observe that, if ¢ € (—o00,0], then (Ku)(t) = ¢(t). Therefore, we only need to

check the continuity of Ku on [0,7]. For any ¢, to € [0,7], § > 0 small enough

with 0 < |ty — t1] < 0. By slightly modifying the proof in 22, Lemma 11], with the

help of the analyticity of Mittag-Leffler operators in time (see Lemma (7)), the

result holds immediately.

Assertion 2: ||(Ku)ilcy 22y < R, for all t € [0, 7] with sufficiently small T'.
For every u € V};, we have to show that

1
2

[(Kw)ellex 2@z 22( sup E\!(Ku)(t+9)\!%2> <R.

0e(—00,0]
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For t € (—o0, 0], we have

E||(Ku)®)]7> =Ele®)lz: < sup Elp()][7.. (4.25)

te(—o00,0]

If t +6 € (0,7, then it follows that

2

E[|(Ku)(t)[Z> < 3E[Ea(—t*A)p(0)]IZ> + 3E' /0 Eqo(=(t —5)*A)F(s, us)ds

L2
2

+ 3E

’ /Ot Eoo(—(t — 8)*A)G(s,us)dW (s)

L2
=T'+1°+1°
(4.26)
We will do estimates one by one. For Z', by Lemma [4.3(4), it is obvious that

T' = 3E||Ea(—t*A)p(0) 7> < 3CE[p(0)[|7 < 3C sup Ellp(t)[72.  (4.27)

te(—o00,0]
For 7% by Lemma (z), (Hy), the Cauchy-Schwarz inequality and Fubini’s
theorem, we obtain

2

t
7? :BEH / Eoo(—(t —s)*A)F(s,us)ds
0

L2

< 3E (/Ot [ Ea,o(—(— S)O“A)F(s,us)lleds)2

' 4.2
< 3C’t/ E||F(s,us) — F(s,0)||72ds (4.28)
0

t
< 3C’L}t/0 Hust’X(B(Q,Lg))dS
< 3CLt |ludllZy 120,02 < 3CLYt*R™.

For Z°, by Lemma [4.3(i), It0’s isometry and (Ha),
2

70— 3E’ /Ot B (— (£ — ) A)G (s, 1) AW (s)

L2

t
<3C | E|G(s,us) — G(s,0)|*=d
<3C [ BIG(s.u) = Gls.0)[Fads o0

t
< 30%/0 lusllEy 202 ds
< BCLLtuelleyz2(esr2)) < BCLLR?.

Replacing (4.27)-(4.29)) into (4.26)), combining with (4.25)), it is obvious that

B (Ku)72 < 3((0 +1) sup Ele(t)]7. + Ct*LR* + CtL;R2).

te(—o00,0]
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Consequently, due to the choice of R, we can choose T" small enough such that

1€ ey 22 ety = ( sup  E||(Ku)(t + 0>||%2)
c

0e(—00,0]

Jun

2

3((C+ DleOlexunauny + CTL R+ CTL )
< R.

Assertion 3: Operator K : Vi, — V}, is a contraction.
To this end, for any u, v € Vi, it follows that

|(Kw)e — (v)ellex (2s02)) = < sup El||(Ku)(t+6) — (Kv)(t + 9)||2Lz> y (4.30)

0e(—o00,0]

For t € (—o00,0], one has (Ku)(t) = (Kv)(t) = ¢(t). Thus, we only need to
consider the case t € [0,7]. Observe that

2

E [(Cu)(t) — (ko) (8)|Ps < 2E'

/0 B (— (£ — )" A)(F (s, us) — F(s,v))ds

L2
2

+2E‘ /0 o= (£ — 8)*A)(G(s, us) — G5, v3) )W (s)

L2
=J"' + J>
(4.31)

For J', by Lemma [£.3(i), (H2), the Cauchy-Schwarz inequality and Fubini’s
theorem, we obtain

2

T = QE‘ /0 B (= (t — ) A)(F(s, us) — F(s,v))ds

L2

<2E (/Ot [Eaa(=( = 5)*A)(F(s,us) = F(s, vs))Hdes)2

(4.32)
t
S QCY[J‘/ft/Ov Hus - ,USH(ZZX(LZ(Q;L?,))dS
< 20Lt luy — vl r2aizy)-
For J2, by Lemma [4.3(i), (H2) and It6’s isometry, one has
t 2
J? = 2]EH / E,o(—(t—9)"A)(G(s,us) — G(s,vs))dW (s)
0 L2

(4.33)

t
< 2(;*L’g/O s = valley (z2srzy s

< 20Lytllue — vellg 22y
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Hence, substituting (4.31))-(4.33)) into (4.30)), it follows that

1

2
[(Kw)e — (Kv)ellex z2irz)) < (QC (LYT? + Ly T) e — vtll&(ﬂ(ﬂﬂ.)))

= Wllu(t) = v(t)lex z2@ir2)),
where
W? = 2C(LT? + L,T).

Therefore, we can choose T small enough such that 0 < W < 1, which means that,
the operator I maps Vj, into itself, also it is a contraction. The Banach fixed-point
theorem yields that operator K has a fixed point in V. Namely, problem (4.23)) has

a unique local mild solution on (—oo,T]. The proof of this theorem is completed.

0

Proposition 4.13. Under the assumptions of Theorem the mild solution to
problem is continuous with respect to the initial data p € C((—o0,0]; L2(2; L2)).
In particular, if u(t), w(t) are the corresponding mild solutions, on the interval
(—00,T], to the initial data ¢ and v, then the following estimate holds

lue — willey p2@sr2)) < 30N — Vlley r2@sr2)) exp(3C (Lt 4 Ly)t), vt € [0,T].

Proof. The result of this theorem is proved by the similar arguments to those
concerning the uniqueness of next theorem, so we omit the details. [

The following result is concerned with the existence and uniqueness of the global
mild solution to problem (4.23]).

Theorem 4.14. Assume the hypotheses of Theorem[[. 13 hold. Then for every initial
value p € C((—o0,0]; L*(; L2)), the initial value problem has a unique mild
solution defined globally in the sense of Definition[{.5

Proof. Although the proof of this theorem follows the same lines as the case of
bounded delay in Section 3, but with differences in the estimates, we prefer to
include it here because the proof of Proposition is similar to the uniqueness
below.

Assume that there exist two solutions, u and v on [0, 7}] and [0, T3], respectively
to problem (4.23). Next let us prove that u = v on (—oo, Ty ATs). It is notable that
u(t) = v(t) = ¢(t) on (—o0,0], so we only need to prove that u(t) = v(t) for any
t € [0, Ty A Tz). Observe that

lu =gy 2z = sup Efu(t) —v()]Z.. (4.34)
te(—o00,T1AT5]
On the one hand, it has
2

Ellu(t) — v(t)]|7. < 2E /0 Eoo—(t—8)*A)(F(s,us) — F(s,vs))ds

LQ
2

+9E /0 B (= (t — ) A) (G5, us) — Gls, vs) )W (s)

12
=TI+ 1"
(4.35)
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For I', by Lemma [4.3(i), (H;) and the Cauchy-Schwarz inequality, it follows that

¢ 2
I' <2E </ |Eq.o(—(t —8)*A)(F(s,us) — F(s,vs))Hdes)
0
t 2
< 2CE (/ | F(s,us) — F(s,vs)Hdes) (4.36)
0
¢
S QOL/ft/O ||’LLS - USH%'X(LZ(Q;Lg))dS'
For 12, by Lemma [4.3(i), (H2) and Ito’s isometry, we derive
¢
I* < 2/ E||Bo.o(—(t — 5)"A)(G(s,us) — G(s,vs)) | 12ds
0

t (4.37)
< QC’L;/O lts = vsllé (r2qaun2))ds-

Substituting (4.36))-(4.37)) to (4.35)), it yields

t
Ellu(t) — v(t)||7. <20 (Lt + L)) / s = V31 (z2(0;12))d5-
0

Denote by Wy = 2C(L,(T1 A'Ty) + L), we have

TiNT>
2 2
Il = vlley iz < W1/O s = vslley z2@izzy dt-

The Gronwall Lemma implies that

v —vllex(z2@irzy) = 0.

Therefore, u = v on (—o0, Ty A Ty] for every initial function ().

Now we prove that for each given T > 0, the mild solution u to problem is
bounded with Cx(L?(§2; L2)) norm. Taking into account Lemma [4.3(), (H;)-(Hs),
[t0’s isometry, the Cauchy-Schwarz inequality and Fubini’s theorem, we have

2

t
Elfu(t)|2 < 3E [Ea(—t* A)p(0)||%, + 3E / B (— ( — ) A)F(s, u5)ds
0

L2
2

+3E ‘ /0 t Eoo(—(t — 8)*A)G(s, us)dW (s)

L2

t
< 3C||90||2X(L2(Q;Lg)) + 3CL}75/ ||Us||gX(L2(Q;Lg))dS
0

t
#5301 [l oz ds

t
< 3C||90H(2:X(L2(Q;Lg))+3C(L/ft+ng)/O “uSHgX(LQ(Q;Lg))dS'
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Applying the Gronwall lemma, for any fixed 7' > 0 and all ¢ € [0, 7],
2 r2qurzy) < BC + DlllZ, r2(urzy) exp(BC(LYT + Ly)T).

Because of the arbitrariness of 7', together with the conclusion of uniqueness of u on
(—o0,TY, it is straightforward that the mild solution u to problem (4.23)) is defined
globally. It finishes the proof of this theorem. [J

Remark 4.15. The well-posedness results to problems (@) and can be mod-
ified to the case that the driven process is an additive fractional Brownian motion,
which is L2-value. Of course we need to redefine G(t,-) and impose certain assump-
tions similar to (Hs)-(Hs), see [83)], for example.

Remark 4.16. Although we have performed our analysis for the stochastic time
fractional 2D-Stokes delay differential equations, the results of sections 3 and 4
still hold true when the phase spaces are extended to C([—h,0]; L*(2, LY)) and
C((—o00,0]; L*(Q, LY)) respectively, where N > 2 ([23)]).

We end this chapter with the following conclusion. In this chapter we have
considered a quite general time-fractional stochastic Stokes model with finite and
infinite delay and multiplicative Brownian motion. As we said, this is only a first
approach to our goal concerning the case of stochastic time fractional delay Navier-
Stokes with multiplicative noise. But, to that end, a new technique has to be
designed because the fixed point theorem used in our proofs is not appropriate to
handle the nonlinear term: the appearance of expectation in the norm does not allow
us to bound that term in an appropriate way as it is done in the deterministic case,
specially for the contraction property. Therefore, this is a challenging problem to be
analyzed shortly. However, it is not surprising that the problem cannot be analyzed
with this technique since, to the best of our knowledge, even the non-fractional time
derivative system has not been solved for the multiplicative noise case, but only for
the additive one.
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