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Quick Computation of [C] and [L] 
Matrices of Generalized Multiconductor 
Coplanar Waveguide Transmission Lines 

Enrique Drake, Francisco Medina, and Manuel Homo, Member, ZEEE 

Abstract-An enhanced spectral domain quasi-TEM analysis of 
generalized coplanar waveguide transmission lines (GCPWTL) 
is presented. The analysis starts from the formulation of a 
convolution-type integral equation for the electric field at the 
slots. Chebyshev polynomials including Maxwell singularities are 
used as basis functions to solve the integral equation by the 
Galerkin method. Fast and accurate quasi-analytical formulas 
are used to calculate the Galerkin’s matrix entries, thereby 
significantly reducing the involved CPU time and increasing 
reliability and accuracy. These features make this technique 
useful and competitive as CAD tool for coplanar waveguide 
designs. 

I. INTRODUCTION 

OPLANAR waveguide (CPW) transmission lines are C becoming a competitive alternative to microstrip in many 
applications (including both hybrid and monolithic technolo- 
gies). A number of attractive features-location of the signal 
grounds on the same substrate surface as the signal line, 
low parasitic inductances, easy shunt and series connections, 
avoidance for the need of via holes, good isolation in direc- 
tional couplers, etc. [ I]-[3]-makes this transmission medium 
particularly interesting. Due to this fact together with the 
relative lack of design data iivailable for CPW structures (in 
comparison with the microstrip line), research on many aspects 
related to the characterization of CPW structures is still going 
on [4]-[7]. 

The computation of the propagation characteristics of CPWs 
has received some attention in old and recent literature (see, 
for example, [8]-[ 1 11, which include exhaustive bibliography 
sweeping a wide variety of analytical and numerical tech- 
niques). As it is well known, the evaluation of dispersion, 
radiation, higher-order modes or leakage phenomena requires 
rigorous hybrid-mode approaches. However, the quasi-TEM 
approximation can be expected to yield useful results in the 
frequency band whereon MIC’s usually operate today, at least 
for those structures and components which are not particularly 
frequency-sensitive [8], and even up to 40 GHz in the design of 
coplanar MMIC’s [9]. Since the quasi-TEM analysis requires 
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much less computational effort, it is more adequate for design 
purposes. In addition, quasi-TEM data could eventually be 
used as initial guesses in full-wave algorithms, thus improving 
their efficiency. 

The quasi-TEM analysis of certain particular CPW 
geometries has been already carried out in a very efficient 
way (suitable for CAD applications). For instance, a quasi- 
analytical method to deal with a single CPW embedded in 
a stratified medium is reported in [ l  11. In that paper the 
reader can find a list of references reporting other quasi- 
analytical methods to analyze a variety of symmetrical and 
asymmetrical single CPW geometries (most of them based 
on conformal mapping approaches). One of the most recent 
contributions based on conformal mapping can be found 
in [6]. However, more complex CPW structures involving 
multiple dielectric layers and coupled conductors have 
received less attention in spite of its obvious interest in 
practical applications (filter, couplers, etc.). Some analytical or 
approximate solutions for symmetrical coupled structures have 
been reported in the literature [l] ,  [12]. More sophisticated 
geometries have been considered in [13], [14]. A recent 
work [ 151 proposes an efficient Wiener-Hopi solution for 
a multiconductor CPW system (for application as interdigital 
transducer), but it is restricted to geometries symmetrically 
placed between two ground planes with homogeneous 
medium. The availability of quick and versatile multiconductor 
solvers is important from the designer’s perspective, since 
optimization processes involve the iterative evaluation of 
the parameters of a structure for a wide range of design 
variables. In this sense, extremely efficient algorithms have 
been already developed for the quasi-TEM analysis of 
general multistrip geometries [ 161-[ 181. However, as far as 
we know, a systematic and quasi-analytical treatment of a 
generalized coplanar waveguide transmission line (GCPWTL) 
system-including an arbitrary number of metallic strips 
between two ground planes embedded in a multilayer 
medium-has not been explicitly given yet. The current 
paper contributes to the computer-aided design of coplanar- 
type circuits by offering a quasi-analytical procedure to 
compute the quasi-TEM propagation parameters of the 
GCPWTL system in Fig. 1.  The multislot geometry of the 
GCPWTL system makes suitable to state the analysis in 
terms of the aperture electric field. Therefore, a convolution 
integral equation is proposed to connect the electric field 
at the slots with the free charge on the metallizations. The 
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Fig. 1, 
transmission line (GCPWTL). 

Cross-section of the generalized multiconductor coplanar waveguide 

method used to solve the electric field integral equation is an 
enhanced Galerkin spectral domain analysis (SDA). Quasi- 
analytical formulas are provided to compute the Galerkin’s 
matrix entries. A dual treatment of multistrip geometries 
in terms of the free charge density on the metallizations 
was successfully used and reported in [17]. High speed 
of computation and extreme accuracy could make the use 
of this method useful in the CAD of coplanar waveguide 
circuits. 

11. OUTLINE OF THE PROBLEM 

Fig. 1 shows the cross-section of the GCPWTL analyzed 
in this work. Translational symmetry in the propagation 
direction (z-axis) is assumed. The whole structure is 
enclosed into a rectangular box defined by the planes 
s = 0, J; = a, y = 0, and y = b. The lateral 
planes .I‘ = 0 and z = a are electric walls (e.w.). The 
planes y = 0 and y = b can be chosen to be electric 
walls, magnetic walls (m.w.) or open boundaries (0.b.). 
The substrate is a Ni-layered 1osslessAossy iso/anisotropic 
linear medium. An arbitrary number ( N )  of conductor 
strips-allocated between two grounded metal fins-are 
printed on the Mth interface. Let us characterize each of 
the N + 1 slots between these conductor strips by both 
its width (3%; z = 1.. . . , N  + 1) and the position (zcz; 
1 = 1,. . . , N + 1) of its middle point (with respect to the left 
lateral wall). This structure includes a large group of CPW 
geometries as particular cases. Moreover, the configuration in 
Fig. 1 accounts for possible technological constraints (upper 
and lateral shielding, conductor backing, and line-to-line 
coupling). 

As is well known, all the quasi-TEM propagation parameters 
of a N-conductor transmission line may be obtained from 
its capacitance, [C],  and inductance, [L],  per unit length 
(p.u.1.) matrices. The determination of [C] implies to solve 
an electrostatic problem. [L]  may be computed from the 
capacitance, [C’], of a related structure [19]. If the electrostatic 
problem is stated in terms of the surface free charge density 
on the conductors, each coefficient, C2,, of [C] or [C’] is 
identified as the free charge on the z-th conductor when the j-th 
conductor is set to voltage unity and the rest of the conductors 
are grounded (canonical voltage excitation) [ 171. However, the 
multislot geometry is more efficiently characterized in terms 
of the aperture electric fields than in terms of the charge 

distribution. Owing to this, it is more direct to calculate its 
coefficients of potential matrix [PI, i.e., the set of coefficients, 
Pi,, which linearly relates the potential V,  of any conductor 
to the free charges Q, on all of the conductors, including 
itself: 

N 

v, = Pi&), ( i  = 1,. . . , N ) .  
J=l  

Note that [PI = [GI-’. Each coefficient P;j may be defined 
as the voltage of the ith conducting strip when the j-th strip 
is charged with charge unity, and the rest of the strips are 
discharged (canonical charge excitation). The voltage of each 
strip is computed integrating the electric field 2-component 
along the slots existing between one of the grounded plates 
and that strip. Therefore, [PI (and its inverse, [C]) will be 
obtained if we compute the aperture fields for N independent 
canonical charge excitations. 

111. THE SLOT ELECTRIC FIELD EQUATION 

From the Green’s theorem, the electrostatic potential @(z) 
on the metallized interface of the structure in Fig. 1 is related 
to the free charge density o(2) by 

where G(z, z’) is the potential Green’s function associated to 
the hlth interface of the structure. This is the free charge den- 
sity integral equation usually solved when multistrip geome- 
tries are analyzed. However, we are now interested in using 
an integral equation for the slot electric field 2-component. 
Owing to the existence of electric walls in both z = 0 and 
z = a, the Fourier series expansion of G(z,z’) yields 

( 3 )  
where-from Fourier transform theory [20]--G,(a) is the 
spectral domain Green’s function (SDGF) associated to the 
laterally open structure, i.e., a + 30. Defining the following 
pairs of sine(cosine)-Fourier transforms: 

and using (3) ,  it is straightforward to convert ( 2 )  into 

(4) 

by sine-Fourier transform. Simple manipulations let us to 
rewrite (5)  in the following way: 
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where 

(7) 

Note that (6) may be identified as the cosine-Fourier transform 
of 

q(x) = .I” L(J,L’)E,(T’) ds’ (8) 

where Ez(r’) is the electric field 2-component along the 
metallized interface. q ( ~ )  in (8) is the amount of free charge 
allocated from d = 0 to T’ = L ,  i.e., 

r x  

q ( x )  = 4, O(d) dxl 

and L(2.z’) is 

(9) 

are used as basis functions in the expansion of the electric 
field x-component 

2 -7 

E+,  (L’) = { 2 [I - (*) ] Tq( *); .r‘ E S, 

(15) 
el sew here. 

The choice of this set of functions is suggested by the nature 
of the integral kernel. The application of the Galerkin method 
converts (12) and (13) into a system of algebraic linear 
equations for the coefficients aq,,, 

A7+1 

It IS obvious that q(x )  stands constant along each slot (s E U0,J = 0 
S, =. [L,, - s , / 2  5 .r 5 .rea t s , / 2 ] ) ,  and its value is J = 1  

i-1 

q(:r :€Si)=CQj; i = 1  . . . . ,  N + l  (11) 
j = O  

where Q j  (.j = 1,. . . , N )  is the total free charge on the 
j-th strip, and Qo, the total free charge on the left coplanar 
grounded fin. Since QO is not known, the total value of q(x) 
along a slot can not be computed when a charge excitation 
is imposed. However, when z skips from a given slot to 
the next one, the increase in q(x) is equal to the amount of 
free charge supported by the strip allocated between the two 
slots. Therefore, the electric field 2-component for the kth 
( k  = 1: . . . , N )  canonical charge excitation (charge unity on 
the kth strip keeping the rest of the strips discharged) fulfils 
the following condition 

1“ L ( z  E ,Si+l,x’)Ez(x’) d d  

where the entries A;:$ Or, = 0, . . . , nfi - 1; y = (I, . . . , r i , f ;  - 1; 
i , j  = 1,. . . , N + 1) of the system are: 

A;;{ = J’ d z  E x p , , ( x )  J’ d.c’ 
z c 2  +s, / 2  x,,+.r,!2 

s , , -s , /2  a , , - s , / 2  

x EZq, ,  ( d ) L ( X ,  d) .  (17) 

However L(x,z’)  in (17) is not known (except for special 
cases) in closed form. Fortunately, (7) shows that the spectral 
transform_, L(cv), of the kernel of (17) is related to the 
SDGF, Go(a), associated to the laterally open version of the 
multilayered configuration. Therefore, it is more suitable to 
obtain a spectral domain expression for the entries A;;:, and, 
then, take advantage from the efficient algorithm reported in 
[19], [21] for computing the SDGF of an arbitrary layered 
configuration. The spectral version of (17) may be deduced 
from Parseval and convolution theorems 

(12) where kz0 are the cosine-Fourier transforms of 
I I  

Ezq,, (d), Le., 
where b , k  is the Kronecker delta (1 if i = k, 0 if z # k ) .  In 

J ~ ( ? ) ( - I ) :  c o s ( a , . ~ , ~ )  
Jq(v)(-l)w sin(a,s,,]) 

if y is even 
if q is odd 

(19) 

addition, the grounding of the lateral fins makes the electric - 
field x-component fulfils E%,,(-) = 

1‘ Ez(2-’)dT’ = 0. (13) with J q ( - )  being the first kind Bessel function of order q.  
Once the system (16) has been solved, the coefficients of 

potential are directly computed from the expansion zeroth- 
IV. METHOD OF ANALYSIS order coefficients 

Probably, one of the best known techniques to solve integral 
equations as (12) and (1 3) is the Galerkin method. In this work, 

a 

,=1 
pzk = - i = 1, . . . , Lv kth excitation 

this method has been also chosen. The first kind Chebyshev 
polynomials, Tq(.) ,  weighed by the Maxwell edge singularity (20) 
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Fig. 2. Relative differences between the capacitance coefficients of a lat- 
erally closed three-conductor CPW-type transmission line (Ccl) and its 
corresponding open version (C‘,,p), Data: h = 0.635 mm, 1 = 2.4 mm, 
.sl = s 2  = sa = sq = 0.2 mm, .rrl = u/2-1.1 mm, .cc2 = a/2-0 .5  mm, 
.rp:< = a / S  + 0.5 mm, z,.4 = ~ / 2  + 1.1 mm, cZ*. = 13to,  Fyy = l o c o .  

since only the zeroth-order basis functions in (15) have non- 
vanishing integrals along their definition intervals. 

The computational step of the determination of [PI involv- 
ing most of the CPU time is precisely the sum of the spectral 
series in (18). Its direct sum is not advisable because of its 
very slow convergence. In this work, the Kummer’s method 
(extraction of an asymptotic tail) is used to improve the series 
convergence. The series of (18) are then split as follows: 

where < k  ( k  = M ,  + 1) is the permittivity (or the equiv- 
alent permittivity [E], [21] in the anisotropic case) of the 
k-th kyer. Since La, has the same asymptotic behavior 
than C for large an, the remainder series (first term at the 
right hand of (21)) converges very quickly. The asymptotic 
tails S;;: are extremely slow convergent series, but quasi- 
analytical expressions for them are provided in Appendix. 
The methods employed to obtain the formulas in Appen- 
dix have been already described in [17]; thus, we have 
just included in this Appendix the final formulas which ap- 
plies to the series involved in the analysis of GCPWTL 
structures. 

V. NUMERICAL RESULTS 

A FORTRAN program (MULTISLOT) has been devel- 
oped implementing the theory in this paper. The computer 
code runs on a PC/486/33 MHz. In order to validate our 
method, we have reproduced analytical data obtained by 
means of exact conformal mappings (which are available for 
some particular geometries). Good agreement has also been 
found with data reported for more complicated geometries 

which were obtained by numerical procedures. An interesting 
comparison has been carried out with the results reported 
in 1151. The method used in that paper is inherently very 
accurate (although, in principle, it is limited to homogeneous 
or symmetrical geometries). The results reported in 11.51 are 
the Fourier transforms of the surface charge distributions 
at the “active” metallization plane of several SAW (sur- 
face acoustic wave) structures for several electrode excita- 
tion conditions. We have reproduced their results with very 
good agreement and very few basis functions and short CPU 
time (typically less than one second on the afore-mentioned 
computer platform), Minor discrepancies were detected for 
large values of the Fourier variable, due to the different 
nature of the basis functions used in the expansions of the 
unknown functions (surface charge density or slot electric 
field). We believe our results are even more accurate since 
our basis functions incorporate the singular behaviour at 
the metallic edges and the results do not modify when the 
number of functions increase above a certain value (numerical 
stability). 

In addition, exhaustive convergence tests have been per- 
formed to identify the geometrical dimensionless ratios gov- 
eming the convergence of our codes. This kind of study 
increases our confidence in our results. The conclusions from 
these tests are analogous to the ones reported in [I71 for 
the multistrip case. We can summarize here the main points 
highlighted by this study: 

The residual spectral series (first term at the right hand 
in (21)) show exponential convergence. The main ge- 
ometrical parameter governing this convergence is the 
ratio h / a  ( h  being the thickness of the thinnest layer 
adjoining the metallized interface and a being the width of 
the enclosure). Therefore, the parameter a. should not be 
chosen unnecessarily large when laterally open structures 
have to be simulated, since this could increase the number 
of Fourier terms to be added. For judicious values of 
a just a few spectral terms are typically required. An 
example of the influence of the box width on the capac- 
itance coefficients is shown in Fig. 2. In this figure, the 
relative difference between the capacitance coefficients of 
a closed structure and its laterally open version is plotted. 
Note that from a practical point of view the box width 
does not need to be very large to simulate the open 
structure. 
It is important to highlight that the width of the slots/strips 
region (distance between the two coplanar ground planes) 
has not influence on the convergence of the residual spec- 
tral series, thus avoiding the typical convergence problems 
arising when force brute summation is used to analyze 
narrow slots/strips regions. These statements are illustrated 
with the example in Table I. Note the important CPU time 
savings for all of the geometries. 
The obtaining of the asymptotic tails, Si.:, involves a neg- 
ligible computational cost in comparison with straightfor- 
ward Fourier series summation. Nevertheless, it is useful 
to know which factor(s) may affect to the convergence of 
the power series or Gauss-Chebyshev quadratures shown 

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on July 17,2020 at 15:06:06 UTC from IEEE Xplore.  Restrictions apply. 



2332 IEEE TRANSACTIONS ON MICROWAVE THEORY A N D  TECHNIQUES. VOL. 42, YO. I ? ,  DECRMHER 1994 

TABLE 1 
NLHBEK OF TPRMS OF T H ~  SPECTRAL SERIES WITH ( ) I ,  ) AND WITHOUT 

OBTAIV T I E  CAPACITAYCE OF A CPW WITH 0.1% ACCURACY 
(ns) ASYMFTO~IC EXTRACTlOlV WHICH SHOULD BE ADDED TO 

(hi = >? = ttr, f = 9 9fo) RATIO OF CPU TIMES ( f r  / f a )  

[ T / T q T -  
0.01 0.2 0 28000 
0.05 0.2 1 
0.10 0.2 3 

10.25 1 0.2 1 3 E 
0.25 

0.10 

0.01 

3 
0 
3 
7 
15 
3 7 

__ 

__ 

5500 
2900 
1500 
700 
1500 
1500 
1500 
1500 
1500 

0.025 
0.046 
0.088 

0.086 
0.086 
0.086 
0.100 

in the Appendix. The elficiency of the computation of 
the tails is essentially controlled by the relative proximity 
between the slots, in such a way that when very tightly 
coupled slots (very narrow strips) are present more terms 
must be retained to add up the power series (24) and 
more quadrature points are necessary in Gauss-Chebyshev 
integrations (28). Nevertheless, very few power senes 
terms are required except for impracticable strip width, 
and the number of quadrature points do not need to 
be larger than the number of basis functions (although 
it can eventually be increased to account for extremely 
narrow strips). In any case, asymptotic extraction is al~vnys 
advisable, since direct summation has always much worse 
numerical performance. 

3) The number of basis functions, n f ,  ; i = 1,. . . , N +  1. to 
be retained over each slot is related to its width. Thanks 
to the appropriate features of the basis functions, no more 
than two or three of them have to be used on each slot 
in most cases. A typical convergence pattern is shown 
in Table 11. An interesting point to be emphasized here 
is that when the number of basis functions is increased, 
no numerical problems arise. On the contrary we have 
found numerical instabilities when direct summation of 
Fourier series is applied. As an additional advantage of 
our procedure, we can say that the expansion coefficients in 
(14) are computed with extreme accuracy. The slot electric 
field is then obtained in addition to the electrical param- 
eters. This is very difficult with force brute summation 
unless a prohibitively large number of Fourier terms is 
retained. 

In order to check the results of our computer program when 
applied to arbitrary multislot geometries-for which we have 
not found published data-we have compared with results 
generated with a program (MULTISTRIP) written to efficiently 
analyze multistrip structures, [ 171. When this code is used, 

TABLE 11 
CONVERGENCE OF THE CAPACITANCE COEFFICIENTS (NORMALIZED TO e l ) )  WITH 
THE NUMBER OF BASIS FUNCTIONS AT EACH SLOT. DATA: ?’HE STKUCTURE IN 

FIG. 2 WITH a = 40 mm, 11 = 0.635 mm, 1 = 5 . 2  mm, . ~ i ,  = .s.t = 1 .0 mm, 
.s2 = .s3 = 0.1 mm, :r<.I = 17.9 mm, .rC2 = 18.95 min, .r,3 = 21.05; 

= 1360, cy?, = 1060, nf:i = r j f ~ ,  n f4  = ) t f i  mm, .rr4 = 22.1 mm, 

TABLE 111 
CAPACITANCE COEFFICIENTS FOR THE EQUIVALENT MI I.TIS TRIP 

TRANSMISSION LINE (MSTL) AND COPLANAR WAVEGUIDE 
TRANSMISSION L I ~ E  (CPWTL) GEOMETRIES SHOWN IN ( A )  

AND (B). DATA ( I  = 20 mm, 11’1 = w? = 0 5 mm, 
i r 2  = 1.0; mm, 5 = 0 2 mm, h = 0 635 mm. = 9 G f o  

EO MSTL (A) 

a 

Canacitance coefficients for structurr A ! 

Capacitance coefficients for structure B 
DC, I 16.6210 1-7.7423 1-0.2990 I 18.8537 

the GCPW geometry is simulated by using wide grounded 
strips to approximately account for lateral ground planes. 
Table I11 shows the capacitance coefficients of a three strips 
CPW structure when computed with MULTISLOT and when 
computed with MULTISTRIP. In the last case, the original 
structure is simulated with a five strip configuration with 
grounded extreme strips. The results of this simulation for 
several values of the widths of the extreme strips are shown 
in Table 111. Consistent results for the capacitance parameters 
have been found with both computer codes. However, the 
CPU time used by MULTISTRIP is ten times the CPU time 
used by MULTISLOT (0.12 seconds in a PC/486/33 MHz 
computer, including the computations for the structure in 
vacuum). This difference is due to the following fact: for 
this type of geometries the number of basis functions re- 
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TABLE IV 
CAPACII A N C ~  COE~FICIENTS OF THI: S tx  STRIPS COPLANAR WAVEGUIDE 

TYPE GEOMETRY SHOWN ui THE FIGURE. THE PLANE AA' Is 

w:! = 0.6 mm, w3 = 0.8 mm, 5 1  = "4 = 0.3 mm, s2 = 0.2 mm, 
s1 = 0.1 mm, hl = 0.2 mm, h l  = 0.2 mm, FI = 9 .6~0 ,  F Z  = 4 . 0 ~ 0  

A SYMMETRY PLANE. DATA: u = 20 mm, u'l = 0.4 mm, 

.-.- 
A 

-.- 
A' 

quired to approximate the surface charge density on the 
strips is much higher than the number of basis functions 
required to accurately approximate the 2-component of the 
slot electric field. 

As a final numerical example, we have computed the 
parameters of the six conductors geometry shown in Table IV. 
The horizontal symmetry plane (AA') is considered first an 
electric wall and then a magnetic wall in order to exploit 
the symmetry. Accuracy is set to four decimal figures for the 
normalized capacitance coefficients. This accuracy is achieved 
by using four basis functions at the 0.3 mm slots and three 
basis functions at the 0.1 mm and 0.2 mm slots. Total CPU 
time was 0.7 seconds on a PC/486/33 MHz. 

VI. CONCLUSION 

In this paper we have presented a technique to deal with 
the quasi-static analysis of multiconductor planar structures 
belonging to the family of coplanar waveguides. The method 
is based on the efficient solution of an integral equation for 
the electric field existing at the slots. Efficiency is achieved 
by means of analytical preprocessing of numerical series. The 
computer programs developed on the basis of this method are 
extremely accurate and numerically stable. In addition, CPU 
times are short enough to consider these programs useful in 
the frame of a computer aided design system. The electric 
field and surface charge density can be also computed with 
extreme accuracy. 

APPENDIX 

Two alternative formulation-which we have called spec- 
tral and spatial domain formulations respectively-have been 
used for the quasi-analytical determination of the asymptotic 
tails S,"::. 

A. Spectral Domain Computation 

The computation of Si;: in (22) implies the addition of 
slowly convergent trigonometrical series of the following type: 

where di = % and e$ = I (xc j  f 2 , i ) .  

These series have already appeared in the analysis of a 
multistrip configuration [ 17, (S)]. The residui calculus tech- 
nique may be used to convert (23) into a much more quickly 
convergent power series (see [17] for more details) 

23 

F [ - k ,  -p  - IC; q +'l; ( d j / f & ) 2 ]  

r(iE + i ) r (p  + IC + 1) 
X 

00 yp+4+2k-1 1 d y  sinh(7ry) . 

(24) 

where F is the hypergeometric function, and r, the gamma 
function. The hypergeometric function F [ - k ,  -y - k ;  q + 
1; ( d j / d ; ) 2 ]  is a k-degree polynomial in ( d j / d i ) 2  

cosh[(n - & ) y ]  ; p + q even 
; p + q  odd sinh[(n - c i j ) y ]  x 

F [ - k ,  -p  - k ;  q + 1; ( d j / d i ) 2 ]  

- 

k r ( k  + i ) r (p  + IC + i)r(q + i)(dj/di)2m - 
n=O 

(25)  

Two alternative closed form expressions are known for the 
integrals appearing in (24) 

where p = p + q + 2 k ,  p = 7r - e$, and < is the Riemann's 
zeta function. The first expression in (26) is used for the first 
few terms of the k-series. This suffices for most cases, but if 
larger values of k are needed, the second expression in (26) 
provides an alternative quick solution. 

The case p = q = 0 requires a slightly different treatment 

r ( 2 k  + 1 ) F [ - k ,  -k;  1; ( d 3 / d 2 ) ' ]  di 03 

(S,":,j)' = k=l ~ I C ~ ~ ( I C  + 1) ( J k  

x {+:$I + < [ 2 k , L $ ] }  

- In [sin ($)I - 111(2) 
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Note the necessary presence of the integration constant, ln(2), 
which was not calculated in [17] because in that case it 
canceled out when the definitive S,”:! was computed. 

B. Spatial Domain Computation 
Parseval and convolution theorems provide a second ef- 

ficient alternative to compute S;:: from the quasi-analytical 
integration of its spatial counterparts 

x , , + s , / z  Tp(-) 
:Si;: =/ dx-- 

x L L - s * 1 2  

X 

(28) 

27 7l 
= --In 4 sin -15 - .’I] sin [-(x + x 0 ] } .  

7r { 1:2: 2n 
(29) 

The square root in the denominator of the integrands in (28) 
makes the Gauss-Chebyshev quadrature formula to be spe- 
cially suitable for the computation of these integrals. However, 
direct Gauss-Chebyshev summation of the convolutions is not 
advisable because of the logarithmic singularity of &(x, x’) 
in 5 = 2’. Therefore, a previous extraction and separate 
integration of this singularity is very useful to increase the 
efficiency of the quadratures. When multistrip configurations 
are analyzed [17], the eventual proximity between the strips 
and the lateral walls introduces quasi-singular behavior of the 
integrand for z + x’ -+ 0 or x + x’ + 2n. In coplanar 
waveguide-type configurations there is no such possibility as 
a consequence of the presence of the two lateral grounded 
fins. Consequently, the “singular part,” S ( x ,  XI), of Lus(x ,  2’) 

should be defined as: 

(30) 
26 

S(z ,x ’ )  = --In Ix - J?I. 
7T 

If the kernel of (28) is split into the two following parts: 

&s(xr 2.’) = [&(z, x’) - S(X,  d)] + S(Z, z’) (31) 

the contribution of the first term (very smooth function) to 
the convolution integrals is computed with a low order Gauss- 
Chebyshev quadrature, and the contribution of the second term 
(singular part) can be analytically evaluated. Let [q ;  x] be 
the convolution integral of the “singular part” except a constant 
factor 

then, it can be demonstrated that for i # j 

(33) 

where sgn(-) is the sign function, and for i = j 

The last step for the computation of (28) is to carry out the 
inner products. Closed form expressions have been found only 
for the case i = j 

The rest of the inner products have been numerically evaluated 
by low order Gauss-Chebyshev quadratures. 

REFERENCES 

[ I ]  C. P. Wen, “Coplanar-waveguide directional couplers,” IEEE Trans. 
Microwave Theory Tech., vol. MTT-18, pp. 318-322, June 1970. 

[2] R. A. Pucel, “Design considerations for monolithic microwave circuits,” 
IEEE Trans. Microwave Theory Tech., vol. M R - 2 9 ,  pp. 51 3-534, June 
1981. 

[3] R. W. Jackson, “Considerations in the use of coplanar waveguide for 
millimeter-wave integrated circuits,” IEEE Trans. Microwave Theory 
Tech., vol. MTT-34, pp. 1450-1456, Dec. 1986. 

[4] A. A. Omar and Y. L. Chow, “A solution of coplanar waveguide with 
air-bridges using complex images,” IEEE Trans. Microwave Theory 
Tech., vol. 40, pp. 2070-2077, Nov. 1992. 

[ 5 ]  N. I. Dib, G. E. Ponchak, and L. P. B. Katehi, “A theoretical and 
experimental study of coplanar waveguide shunt dubs,” IEEE Trans. 
Microwave Theory Tech., vol. 41, pp. 38-44, Jan. 1993. 

[6] M. Gillick, I. D. Robertson, and J. S. Joshi, “Direct analytical solution 
for the electric field distribution at the conductor surfaces of coola- .~ 

nar waveguides,” IEEE Trans. Microwave Theor?. Tech., vol. 41, pp. 
129-135, Jan. 1993. 
G. MazC-Merceur, S .  Tedjini, and J.-L. Bonnefoy, “Analysis of a CPW 
on electric and magnetic biaxial substrate,” IEEE Trans. Microwave 
Theory Tech, vol. 41, pp. 457-461, Mar. 1993. 
G. Ghione and C. U. Naldi. “Coplanar waveguides for mmic applica- 
tions: effect of upper shielding, conductor backing, finite-extent ground 
planes, and line-to-line coupling,” IEEE Trans. Micmwave Throry Tech., 
vol. MTT-35, pp. 260-267, Mar. 1987. 
S. S. Bedair and I. Wolff, “Fast and accurate analytic formulas for 
calculating the parameters of a general broadside-coupled coplanar 
waveguide for (M)MIC applications,” IEEE Trans. Microwave Theory 
Tech., vol. 37, pp. 843-850, May 1989. 
-, “Fast, accurate and simple approximate analytic formulas 
for calculating the parameters of supported coplanar waveguides for 
(M)MIC’s,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 41-48, 
Jan. 1992. 
E. Drake, F. Medina, and M. Homo, “Quasi-analytical static solution 
for the generalized boxed coplanar waveguide,” Int. J. Micmwzave and 
Millimeter-Wave Computer-Aided Engineering, vol. 4, pp. 163-174, 
Apr. 1994. 
J .  S .  McLean and T. Itoh, “Analysis of a new configuration of coplanar 
stripline,” IEEE Trans. Micmwave Theory Tech., vol. 40, pp. 772-774, 
Apr. 1992. 

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on July 17,2020 at 15:06:06 UTC from IEEE Xplore.  Restrictions apply. 



DRAKE et al.: QUICK COMPUTATION OF [C I AND [L] MATRICES OF GENERALIZED MULTlCONDUCTOR COPLANAR WAVEGUIDE TRANSMISSION LINES 2335 

T. Kitazawa, Y. Hayashi, and R. Mittra, “Asymmetrical coupled 
coplanar-type transmission lines with anisotropic substrates,” IEE Proc., 
Microwaves, Oprics Antennas, vol. 133, pt. H, pp. 265-270, Aug. 1986. 
T. Kitazawa and T. Itoh, “Propagation characteristics of coplanar-type 
transmission lines with lossy media,” IEEE Trans. Microwave Theory 
Tech, vol. 39, pp. 1694-1700, Oct. 1991. 
A. F. Molisch, A. R. Baghai-Wadji, and C. 0. Schiebl, “On the 
application of the Wiener-Hopf technique to electrostatic field problems 
in interdigital transducers,” IEEE Trans. Microwave Theory Tech., vol. 
41, pp. 318-324, Feb. 1993. 
G.  E. Howard, J. J. Yang, and Y. L. Chow, “A multipipe model 
of general strip transmission lines for rapid convergence of integral 
equation singularities,” IEEE Trans. Microwave Theory Tech., VOL.  40, 
pp. 628-636, Apr. 1992. 
E. Drake, F. Medina, and M. Horno, “Improved quasi-TEM spectral 
domain analysis of boxed coplanar multiconductor microstrip lines,” 
IEEE Trans. Microwave Theory Tech., vol. 41, pp. 260-267, Feb. 1993. 
-, “Un anilisis eficiente de lineas microtiras multiconductoras para 
PC’s,” Proc. of VII Symp. Nacional U.R.S.I., pp. 831-835, Milaga, 
Spain. 
M. Horno, F. L. Mesa, F. Medina, and R. Marquis, “Quasi-TEM 
analysis of multilayered, multiconductor coplanar structures with dielec- 
tric and magnetic anisotropy including substrate losses,” IEEE Trans. 
Microwave Theory Tech., vol. 38, pp. 1059-1068, Aug. 1990. 
S. Haykin, Communication Sysfems. New York: Wiley, 1983. 
F. Medina and M. Homo, “Upper and lower hounds on mode ca- 
pacitances for a large class of anisotropic multilayered microstrip- 
like transmission lines,” Proc. Inst. Elec. Eng. (Microwaves, Optics 
Anfennas), vol. 132, no. 3, pp. 157-163, June 1985. 

Enrique Drake was born September 4, 1966, in 
Montilla, Chdoba, Spain. He received the Licenci- 
ado degree in physics from the University of Seville, 
Spain, in 1990. He is currently following a Ph.D. 
program in Microwaves. 
He is Assistant Professor at the Department of 
Applied Physics at the University of Seville since 
1992. His research interest focus on the analysis of 
planar structures and multiconductor lines. 

Francisco Medina, for a photograph and biography, see page 1631 of the 
September issue of this TRANSACTIONS. 

Manuel Horno (M75), for a photograph and biography, see page 432 of the 
March issue of this TRANSACTIONS. 

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on July 17,2020 at 15:06:06 UTC from IEEE Xplore.  Restrictions apply. 


