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The influence of the heating mechanism on the kinetic energy densities of the components of a vibrated
granular mixture is investigated. Collisions of the particles with the vibrating wall are inelastic and character-
ized by two coefficients of normal restitution, one for each of the two species. By means of molecular-
dynamics simulations, it is shown that the nonequipartition of kinetic energy is not affected by the differential
mechanism of energy injection aside the usual boundary layer around the wall. The macroscopic state of the
mixture in the bulk is defined by intensive variables that do not include the partial granular temperatures of the
components.
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A fundamental issue for nonequilibrium physics is the
identification of the variables needed to characterize a given
macroscopic state �1�. Granular gases are a widely studied
example of out of equilibrium systems �2�. Due to the inelas-
ticity of collisions, they do not have an equilibrium state and,
in order to keep the granular medium fluidized, external en-
ergy must be continuously supplied in some way. An exten-
sion of the usual hydrodynamic equations for molecular
gases has proven to provide an accurate description of granu-
lar gases in many different contexts �3�. This description in-
volves the granular temperature, defined from the mean ki-
netic energy of the particles, just by analogy with the
definition of temperature in kinetic theory of molecular flu-
ids.

For granular mixtures, one of the consequences of inelas-
ticity is that the energy equipartition required in equilibrium
systems is not verified. The granular temperatures of the
components of a mixture defined from the average kinetic
energy of each species are different. This feature was pointed
out many years ago �4� and a systematic study of it has
started in the last years. Once established that the partial
temperatures of the several components of the mixture are
different, some important conceptual questions arise: should
they be incorporated into the set of intensive variables
needed to identify a given macroscopic state of a granular
mixture, replacing the single temperature field employed in
the description of one-component systems? If the answer is
negative, are the partial temperatures determined by the
usual set of hydrodynamic fields �including the temperature
of the mixture� and the properties of the two types of par-
ticles? It is important to realize that for ordinary mixtures,
the partial temperatures of the components are not included
in the hydrodynamic description. Moreover, kinetic theory
then implies that the temperature fields of all the components
are the same; i.e., equipartition applies locally �5�.

In the theoretical study of granular mixtures, it is usually
assumed that the temperature fields of each of the species are
not needed to describe the system �6�. In a kinetic theory or
statistical mechanics description, this implies that the tem-
peratures of the components can be determined from the
other macroscopic parameters, as indicated above, since the
�normal� distribution function of the system is assumed to be
determined by the hydrodynamic fields, so all the properties
of the system turn out to be functionals of them �1�.

Recently, Wang and Menon �7� reported the results of
some event-driven simulations of a granular mixture and
reached the conclusion that the heating mechanism affects
nonequipartition of energy even in the bulk of the system.
This would imply that the details of the driving used to inject
energy into the system cannot be ignored in describing mix-
tures of inelastic gases even far away from the energy
source. If this were actually the case, the generalized hydro-
dynamiclike equations for granular gases should include the
partial temperatures of the components and the existing deri-
vations of them should be deeply revised. In this paper, the
influence of the differential boundary heating on the viola-
tion of equipartition is reconsidered by means of molecular-
dynamics simulations. It is found that the details of the driv-
ing mechanism do not affect the relations between intensive
quantities aside from a boundary layer next to the energizing
wall.

In the event-driven simulations whose results will be de-
scribed below, the system is composed of two kinds of
smooth inelastic hard disks labeled 1 and 2. Both types of
disks have the same diameter � but different masses m1 and
m2. The number of particles of each species is N1 and N2,
respectively, being the total number of particles N=N1+N2
=420 in all cases. There is an external gravitational field
acting on the system, so that each particle i is subjected to a
force −mig0êz, where g0 is a positive constant and êz is the
unit vector in the direction of the positive z axis. The inelas-
ticity of collisions is modeled by constant coefficients of
normal restitution. There are three of them: �11, �22, and
�12=�21, where �ij refers to collisions between a particle of
species i and a particle of species j. They are defined in the
interval 0��ij �1. For the simulations reported here, �12
has been chosen as given by �12= ��11+�22� /2. The system
is open on the top and its width is W=70�. The latter value
has been chosen small enough so that the steady state with
gradients only in the vertical �z� direction is stable avoiding
the development of transversal instabilities �8–10�. To elimi-
nate undesired boundary effects induced by the lateral walls,
periodic boundary conditions in the horizontal �x� direction
have been employed.

To keep the system fluidized, energy is continuously sup-
plied through the wall located at the bottom �z=0� of the
system. The specific way in which this wall is modeled has
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been chosen from a compromise between several consider-
ations. The physical issue of interest, unequally heating of
the two species, should be isolated, avoiding additional ef-
fects on the properties of interest induced, for instance, by
the oscillations of the wall. Also, the heating should be, as
much as possible, the �idealized� model of some experimen-
tal process. In this context, “thermal” walls in which the
velocity of a reflected particle is not related with its incident
velocity are not at all neutral for the “adjustment” of the
dispersion of the velocities of the two species, since they
destroy all the velocity correlations by definition. In addition,
it does not seem clear to which type of experimental bound-
ary condition for granular fluids they correspond to, if any.
Thus, a vibrating wall with a sawtooth velocity profile is
chosen, so that all the particles colliding with the wall find it
with the same upward velocity vW. Moreover, the wall is
supposed to move with an amplitude much smaller than the
mean free path of the particles in its proximity. Conse-
quently, an accurate description is obtained by considering it
as fixed at z=0 �11,12�. Therefore, the dynamics of this wall
does not induce any additional space or time dependence.
The mechanism for the differential heating must be now in-
troduced. It will be attached to the difference in the coeffi-
cient of normal restitution, �W1 and �W2, for the collisions of
the two types of particles with the vibrating wall. When a
particle of species i having a velocity v collides with the
wall, its component vx remains unchanged, while the z com-
ponent is instantaneously modified to

vz� = vz − �1 + �Wi��vz − vW� . �1�

Note that a collision of this kind is only possible if vz�0,
since the wall is treated as located at z=0. From Eq. �1�, it is
obtained that

vz�
2 − vz

2 = �1 + �Wi��vW + �vz����1 + �Wi�vW − �1 − �W��vz�� .

�2�

Therefore, when a particle collides with the vibrating wall,
its kinetic energy decreases as a consequence of the collision
if

�vz� � vc �
1 + �Wi

1 − �Wi
vW. �3�

When the average velocity of the particles of one of the
species approaching the vibrating wall is larger than vc, this
species loses energy in the collisions with the wall on the
average. Of course, the net balance of energy flux through
the vibrating wall when considering both species must be
positive since, in the steady state, energy must be continu-
ously supplied by the wall to compensate for the dissipation
in collisions. Note that this effect, cooling of one of the spe-
cies by the vibrating wall, is not possible when the particles
collide with the wall in an elastic way, as vc diverges in this
case. On the other hand, it can occur when thermal walls are
considered as made, for instance, in �7�.

Four differential drivings will be considered in the follow-
ing: �1� �W1=0.999 and �W2=0.5, �2� �W1=0.995 and �W2
=0.9, �3� �W1=0.9 and �W2=0.995, and �4� �W1=0.5 and
�W2=0.999. In Fig. 1 the density, ni�z�, and temperature,

Ti�z�, profiles for each of the two species in the steady state
are shown for each of the above drivings. In all the simula-
tions reported in the figure, �11=�22=0.93, m2=5m1, and
N1=N2. These are the same values as considered in Ref. �7�.
The velocity of the vibrating wall, vW, has been chosen in
each case such that the system remains in the dilute regime.
The specific values used for each of the above drivings are as
follows: vW /�g0�=7 for driving �1�, 4 for driving �2�, 5 for
driving �3�, and 6 for driving �4�. To illustrate how the
mechanism of energy injection actually affects each of the
two species, the average variation in the kinetic energy of the
particles when colliding with the vibrating wall in the steady
situation, ��ei	, has been computed for the two kinds of par-
ticles. The value of the ratio m1��e2	 /m2��e1	 for each of
the four drivings specified above is as follows: 0.19 for driv-
ing �1�, 0.47 for driving �2�, 0.85 for driving �3�, and −6.20
for driving �4�. The disparity in the above values clearly
shows that the input of energy per unit of mass for each of
the components depends very strongly on the particular dif-
ferential driving being used. The negative sign for driving �4�
is due to the partial cooling of species 1 upon colliding with
the vibrating wall, which corresponds to the possible sce-
nario pointed out above.

In Fig. 1, it is seen that the profiles of the hydrodynamic
fields are different for the different drivings everywhere in
the system. Actually, the same happens if the density ratio,
n2�z� /n1�z�, or the temperature ratio, 	�z��T2�z� /T1�z�, are
plotted. This is not at all surprising, since the hydrodynamic
profiles and also the density and temperature ratios are ex-
pected to depend on the boundary conditions. In monodis-
perse systems with an elastic vibrating wall, it has been
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FIG. 1. �Color online� Number density, ni, measured in units of
�−2, and granular temperature, Ti, measured in units of m1�g0, pro-
files for each of the two species of particles, along the vertical
direction. Height is measured in units of �. The masses of the two
kinds of particles are related by m2=5m1. There are 210 particles of
each species and the width of the system is W=70�. Four levels of
differential heating at the vibrating wall, labeled from 1 to 4, are
shown; they are specified in the main text. The density profiles for
species 2 �red� exhibit higher maxima than those of species 1
�black�. Each temperature profile for species 2 �red� is always above
the profile for species 1 �black� corresponding to the same driving.
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shown that vW
2 plays the role of a scaling factor for the am-

plitude of the hydrodynamic fields of the gas in the steady
state �13�. Mathematically, this property follows by realizing
that the energy injected by the wall into the system is 
W
=Nmg0vW /W and it is a consequence of the inelastic Navier-
Stokes hydrodynamic description. From this point of view,
the verification of the scaling in a region can be considered
as a signature of the bulk of the system.

For the two-component system with differential heating
we are considering, it can be expected on physical grounds
that the relevant quantity characterizing the vibrating bound-
ary at a macroscopic level is again the injected energy flux,
and that in the low density limit it scales the hydrodynamic
fields in the same way as vW does in the one-component
case. Then, dimensionless temperature and density fields are
defined by

ni
� =

ni
W
2 �3

m1
2g0

3 �4�

and

Ti
� =

Tim1g0
2

�2
W
2 , �5�

respectively. Consistently, a scaled coordinate z� is intro-
duced by

z� =
zm1

2g0
3

�2
W
2 . �6�

The scaled density and temperature profiles in the new length
scale for the same systems as in Fig. 1 are plotted in Fig. 2.
The measured values of 
W for each of the four drivings,
measured in units of mg0

3/2�−1/2, are as follows: 74.62 for
driving �1�, 63.67 for driving �2�, 82.83 for driving �3�, and
81.00 for driving �4�. Although the curves do not overlap
perfectly, it seems fair to conclude that there exist well de-

fined scaled profiles for each of the components aside from a
boundary region next to the vibrating wall. Actually, the ob-
served discrepancies can be due to finite density effects,
similar to those found in �14�, since the maximum value of
total number density reaches values n�n1+n2
0.1, which
are not very low. In this context, it is worth to insist that the
scaling for one-dimensional systems only holds in the dilute
limit.

Now that the appropriate scaling to compare the hydrody-
namic profiles has been identified, it can be used to check the
hydrodynamic nature of 	, in the sense that, in the bulk of
the system, it is determined by local properties of the hydro-
dynamic fields of the mixture. In Fig. 3, the profile of 	 is
plotted as a function of the dimensionless scale z�. It is ob-
served that the curves corresponding to the four differential
heating mechanisms collapse in a wide region of the system,
actually in most of it, since the fluctuations for large values
of z� are due to the small number of particles present there.
This collapse is a very strong indication of the hydrodynamic
character of 	 and it shows that the departure from equipar-
tition is determined by the local properties of the mixture,
being unnecessary to introduce independent temperature
fields to describe the behavior of each of the two species. It
is important to realize the relevance of the scaling when in-
vestigating the bulk properties of 	. Although trivially it does
not affect the ratio, the value of z� following from a given z
depends not only on the parameters defining the system itself
but also on the differential heating being used, since both
determine the amount of power injected through the vibrat-
ing wall in the steady state. It can be wondered why the
collapse of the 	 profiles is clearer than the collapse of the
partial temperatures shown in Fig. 2. A probable reason is
that finite density effects are more relevant for each of the
component temperatures than for its ratio. The same kind of
collapse was obtained for other systems with mass ratio be-
tween 0.5 and 5 and with values of the coefficients of normal
restitution up to roughly 0.8. For smaller values of these
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FIG. 2. �Color online� Dimensionless number density ni
� and

granular temperature Ti
� profiles defined in Eqs. �4� and �5� for the

two species of particles along the vertical direction in the dimen-
sionless length scale introduced by Eq. �6�. The system and the
several differential drivings are the same as in Fig. 1.
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FIG. 3. �Color online� Temperature ratio profile, 	, for the two
species of particles along the vertical direction. The system and the
differential heatings are the same as in Fig. 1. The vertical z� coor-
dinated is measured in the dimensionless units defined in Eq. �6�,
which involve both the parameters defining the system and the par-
ticular heating being used.
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coefficients, the one-dimensional hydrodynamical profiles
become unstable and a more involved analysis is needed.

In summary, the simulation results reported here show
that when energy is supplied to a granular mixture through a
vibrating wall, the details of the collision mechanism for
each of the species do not affect the extent of nonequiparti-
tion beyond the usual boundary layer. This means that a mac-
roscopic description does not require introducing the partial
�granular� temperatures of the components. We expect a
similar conclusion to hold for other kinds of differential
boundaries and also for sheared granular fluids. Of course, a
different question is the theoretical prediction of the depar-

ture from equipartition measured, for instance, by the partial
temperature ratio. The theoretical studies carried out up to
now �6,15,16� refer to homogeneous systems with the excep-
tion of the dilute tracer limit in a vibrated system �17,18�,
although the results have been compared to experimental
data obtained in spatially inhomogeneous vibro-fluidized
systems and a relative qualitative agreement has been found
�19–21�.
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