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Steady uniform shear flow in a low density granular gas

J. J. Brey, M. J. Ruiz-Montero, and F. Moreno
Fı́sica Teo´rica, Facultad de Fı´sica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain

~Received 8 October 1996!

The steady uniform shear flow of a low density granular sytem is studied by means of a kinetic model
equation and also by direct Monte Carlo simulation of the Boltzmann equation. The former can be exactly
solved for arbitrary shear rate and dissipation. Explicit expressions for the one-particle distribution function
and the pressure tensor are obtained. Comparison of the results with those of previous theories is presented in
the appropriate limits. The simulation shows that the model reproduces fairly well the values of the stresses
and, in particular, the phenomenon of normal stress differences. The agreement is also very good for the
velocity distribution function in the thermal velocity region, although significant discrepancies appear for large
velocities.@S1063-651X~97!12803-3#

PACS number~s!: 05.20.Dd, 47.50.1d, 47.20.2k
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I. INTRODUCTION

The development of kinetic model equations describ
the dynamics of particles, which collide inelastically, see
to be an important step towards the understanding of
complex phenomena taking place in rapid granular flo
@1–3#. Nevertheless, the nonconservation of energy in co
sions introduces quite drastic changes in the physics of
problem, and the generalization of the existing theories
ordinary fluids is far from being an easy task. This refers
both the own derivation or proposal of a kinetic equation
the distribution function of the system and also to solving
equation to obtain consistent hydrodynamic-like equati
describing the macroscopic evolution. Although a hydrod
namic description, in terms of the density, the macrosco
flow velocity, and the granular temperature is suggested
analogy with normal fluids and also by experiments a
computer simulations, a derivation from a more fundamen
description of the system is needed.

In the last years, several kinetic equations for the o
particle distribution function of rapid granular flows hav
been proposed, extending the heuristic arguments leadin
the Boltzmann and Enskog equations for ordinary ga
@4–7#. In addition, a more basic approach to the proble
starting from the Liouville equation, has been presented@8#.
Nevertheless, even if it is assumed that these equations
relevant to the description of rapid granular flows, a fund
mental difficulty arises. The standard procedure of obtain
solutions to kinetic equations is by means of the Chapm
Enskog method@9#, in which an expansion in the gradien
of the hydrodynamic fields is carried out. For molecular fl
ids, the reference state about which gradients are consid
is the Maxwellian local equilibrium distribution. The corre
sponding reference distribution for inelastic particles is co
plex and has not been determined to date. As a consequ
the limit of small dissipation~i.e., the coefficient of restitu-
tion a close to 1! is usually considered. Nevertheless, ma
of the phenomena peculiar to rapid granular fluids are cle
associated to nonlinear and rheological effects and to
very small dissipation. This includes properties such as
nificant normal stress differences under shear@2,10,11#,
spontaneous formation of dense clusters surrounded by
551063-651X/97/55~3!/2846~11!/$10.00
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gions of low density@12–15#, and inelastic collapse@13#.
The reasons mentioned above indicate that it is instruc

to consider simple model kinetic equations of inelastic ga
which allow controlled and detailed analysis. Kinetic mode
have proven to be very useful in the study of far from eq
librium states of dilute molecular gases@16#. For many
physical situations, exact solutions to the models have b
derived, and comparison with numerical solutions of the
act equations obtained by computer simulation shows a fa
good agreement. Very recently@8#, two kinetic models for
systems of inelastic hard spheres have been proposed.
models are formulated as approximations of the revised
skog equation, but with different quantitative accuracy. H
we will consider the limit of low densities and large leng
scales as compared with the diameter of the particles. In
limit, the two models lead to the same equation, and beco
a kinetic model of the Boltzmann equation for inelastic ha
particles.

Most of the simplest far from equilibrium physical situa
tions correspond to steady states. In this paper, we stud
unbounded, steady, and uniform shear flow~USF!. While in
molecular fluids such a state is not possible due to visc
heating, in granular fluids this effect can be balanced
dissipation in collisions. The simplicity of the model allow
us to obtain the exact solution describing the steady USF
also all the physically relevant quantities. This is done wi
out introducing any expansion in the gradients or in the
elasticity of collisions. The results for the pressure ten
show anisotropy, i.e., normal stress differences.

It must be noted that our approach is quite different fro
others, in which a specific form is assumed for the on
particle distribution function describing a given state. F
instance, in the theory by Jenkins and Richman@17# a gen-
eralized Maxwellian is conjectured to model the distributi
function of the steady USF. The velocity-independent co
ficients are identified through the balance equation for
second order fluctuating velocity correlation tensor. T
theory, which in principle also keeps all orders in the sh
rate and dissipation, leads to normal stress differences w
are in good agreement with the results of molecular dyna
ics simulations. On the other hand, the model we use
been formulated for arbitrary conditions, and no specific
2846 © 1997 The American Physical Society
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55 2847STEADY UNIFORM SHEAR FLOW IN A LOW DENSITY . . .
proximation is introduced to apply it to the steady USF.
obtain the one-particle distribution function one has to so
the kinetic model equation under the appropriate conditio

Another interesting approach to the same problem@18#
has been carried out by expanding the Boltzmann equatio
Burnett order. The perturbative expansion method is spe
for the steady USF, and it is based on the observation tha
this state the shear rate scales asAe, wheree512a2. The
theory results in a prediction for the normal stress differen
which are very close to those of Jenkins and Richman, w
the latter are expanded to the same order of approximat

The direct Monte Carlo simulation method@19# was de-
velopped to obtain numerical solutions to the Boltzma
equation, and has been successfully applied to a great va
of situations. Since it is formulated for an arbitrary scatter
law, there is no difficulty in using it to study granular flow
@20#. Here we present results obtained for the steady U
and compare them with the predictions of the model kine
equation. For the components of the pressure tensor
agreement turns out to be very good over a wide range
values of the coefficient of restitution. Regarding the on
particle distribution function, the agreement is only sem
quantitative. This is not surprising, since the detailed Bo
mann collision operator is replaced in the model by a mu
simpler effective term, which is determined by the seco
moments of the one-particle distribution.

The structure of the paper is as follows. In Sec. II t
model is briefly discussed, and the basic equations are
sented. In addition, a further simplification to the formulati
in Ref. @8# in introduced. It consists of an evaluation of th
dissipation source term in the local equilibrium approxim
tion. We believe this is consistent with the spirit of th
model, and makes the calculations much simpler. The mo
kinetic equation is particularized for the USF in Sec. III, a
the steady pressure tensor is computed in Sec. IV. The re
are compared to the theories of Jenkins and Richman@17#
and of Sela, Goldhirsch, and Noskowitz@18#. Section V
deals with the one-particle distribution function, which
also compared with the above theories in the low dissipa
limit. In Sec. VI we discuss the Monte Carlo simulation r
sults and, finally, Sec. VII provides a short summary a
conclusions.

II. BASIC EQUATIONS OF THE MODEL

We consider a gas of identical smooth disks (d52) or
spheres (d53) of diameters and massm, whose collisions
are characterized by a constant coefficient of normal res
tion a in the interval (0,1#. The Boltzmann equation for th
one-particle distribution function,f (r ,v,t), is @7,8#

S ]

]t
1v1•“1D f ~r1 ,v1 ,t !5JB@r1 ,v1 ,tu f ~ t !#, ~1!

whereJB is the ~inelastic! Boltzmann collision operator
e
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JB@r1 ,v1 ,tu f ~ t !#5sd21E dv2E dŝ Q~g•ŝ!~g•ŝ!

3@a22f ~r1 ,v18 ,t ! f ~r1 ,v28 ,t !

2 f ~r1 ,v1 ,t ! f ~r1 ,v2 ,t !#. ~2!

In the above expression,ŝ is the unit vector pointing from
the center of particle 2 to the center of particle 1 at conta
Q is the Heaviside step function,g5v12v2, and

v185v12
11a

2a
~g•ŝ!ŝ, ~3!

v285v21
11a

2a
~g•ŝ!ŝ ~4!

are precollisional velocities leading after collision to veloc
ties v1 andv2.

The local particle number densityn, flow velocity u, and
temperatureT are defined in the usual way,

n~r ,t !5E dv f ~r ,v,t !, ~5!

n~r ,t !u~r ,t !5E dvvf ~r ,v,t !, ~6!

d

2
n~r ,t !kBT~r ,t !5E dv1

2m@v2u~r ,t !#2f ~r ,v,t !. ~7!

From Eq. ~1! the following evolution equations for thes
fields are easily obtained:

]n

]t
1“•~nu!50, ~8!

]u

]t
1u•“u1~nm!21

“•P50, ~9!

d

2
nkB

]T

]t
1
d

2
nkBu•“T52~¹u!:P2“•q2~12a2!v,

~10!

where

P~r ,t !5E dvm~v2u!~v2u! f ~r ,v,t ! ~11!

is the pressure tensor,

q~r ,t !5E dv
m

2
~v2u!2f ~r ,v,t ! ~12!

is the heat flux, and

v~r ,t !5
msd21

8 E dv1E dv2E dŝ Q~g•ŝ!

3~g•ŝ!3f ~r ,v1 ,t ! f ~r ,v2 ,t ! ~13!
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2848 55J. J. BREY, M. J. RUIZ-MONTERO, AND F. MORENO
is a source term describing the rate of dissipation in co
sions.

Solving Eq.~1! for a given situation is a formidable task
Even in the case of ordinary gases, very little is known ab
solutions of the Boltzmann equation for far from equilibriu
states, and the presence of dissipation complicates in a
trivial way the structure of the Boltzmann equation. The si
plest physical situation one can think of for a granular fluid
the so-called homogeneous cooling state~HCS!, for which
the system is uniform and the time dependence occurs
tirely through the temperature. Although it has been sho
@7,21# that Eq.~1! admits a solution describing such state, t
exact form of the distribution function is not known. Fo
these reasons, it is worth looking for model kinetic equatio
similar to those which have proven to be so fruitful for o
dinary fluids@16#. The basic idea is to replace the Boltzma
collision operator with a simpler form, while preserving th
essential properties of the exact equation.

Very recently@8#, a kinetic model along the lines sketche
above has been proposed. The Boltzmann collision oper
is separated into two parts: one in the velocity subsp
spanned by 1,v, andv2, and the other one in the subspa
orthogonal to it. The first contribution is retained exact
while the second one is approximated by a single relaxa
time term. This guarantees that the balance equations~8!–
~10! are preserved by the model and that the fluxesP and
q, and also the source termw, are the same functionals of th
distribution function f as in the Boltzmann equation, i.e
they are given by Eqs.~11!–~13!. Since the details are de
scribed elsewhere@8,22#, we only give the result here. Th
Boltzmann collision operator is replaced by

JB→2n~ f2 f l !2
1

nkBT
f lc~V!~12a2!v, ~14!

where we have introduced the peculiar velocityV5v2u,

c~v!5
mv2

dkBT
21, ~15!

and f l is the local equilibrium distribution,

f l~r ,v,t !5n~r ,t !F m

2pkBT~r ,t !G
d/2

expF2
mV2~r ,t !

2kBT~r ,t !G .
~16!

Also, n@n(r ,t),T(r ,t)# is an effective local collision fre-
quency, specified in more detail below.

The model defined by Eq.~14!, although much simpler
than the original Boltzmann equation, is still too complicat
to allow exact calculations in most of the applications. T
is due to the nonlinear functional dependence ofv on the
distribution function. Then, we go a step further in the si
plification, and approximatev by its local equilibrium value,
i.e.,
-

t

n-
-

n-
n

s

tor
e

,
n

s

-

v~r ,t !→v l~r ,t !5
msd21

8 E dv1E dv2E dŝ Q~g•ŝ!

3~g•ŝ!3f l~r ,v1 ,t ! f l~r ,v2 ,t !

5~d21!S p

mD 1/2n2sd21~kBT!3/2. ~17!

In summary, our model kinetic equation is given by

S ]

]t
1v•“ D f52n~ f2 f l !2

1

nkBT
f lc~V!~12a2!v l .

~18!

Trivially, this equation also leads to the balance equatio
~8!–~10!, with the only difference that in the last of them th
source termv is replaced byv l . In the elastic collision
limit, the kinetic model reduces to the well-know
Bhatnagar-Gross-Krook~BGK! equation@23#.

Application of Eq.~18! to the HCS is very simple. The
solution is given by a Maxwellian with a time depende
temperature. The time evolution of this latter quantity
given by Eq.~10!, which for the HCS has the solution

T~ t !5T~0!S 11
t

t0
D 22

, ~19!

with

t0
215~12a2!

d21

d
sd21nS pkBT~0!

m D 1/2. ~20!

As we have already mentioned, the exact solution of
Boltzmann equation for the HCS is not known and, in p
ticular, it is easy to check that it is not a Maxwellian~except
in the elastic limit,a51). Nevertheless, both theoretic
studies@7,21# and Monte Carlo simulations@20# have shown
that deviations from Maxwellian are quantitatively small f
thermal velocities and Eq.~19! provides a very accurate ap
proximation for the time evolution of the temperature.

III. UNIFORM SHEAR FLOW

We want to study the uniform shear flow~USF!, which is
characterized by a constant linear velocity profile

u~r !5a•r , ~21!

where ai j5ad ixd jy , a being the constant shear rate. F
simplicity we consider an unbounded system. In addition,
heat flux vanishes and the densityn(0) and temperature
T(0) are uniform. For this flow, Eqs.~8!, ~9!, and~10! imply
that the density is constant in time, the pressure tenso
uniform, and the temperature obeys the energy balance

d

2
n~0!kB

]T~0!

]t
52aPxy

~0!2~12a2!v l
~0! . ~22!

.
This equation clearly shows the quite different behav

of elastic and inelastic fluids under shear. While for molec
lar fluids the USF is always a time-dependent state wh
temperature increases monotonically in time due to visc
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55 2849STEADY UNIFORM SHEAR FLOW IN A LOW DENSITY . . .
heating, in granular media the variation of the temperat
arises from the balance of two opposite effects: viscosity
dissipation in collisions. As a consequence, a steady sta
possible when both effects cancel each other. Our aim in
following will be to analyze such a state. It is worth me
tioning that sheared granular media posses multiple ste
states, depending on the initial and boundary conditions@24#.
Here we restrict ourselves to the USF as described ab
assuming that the system has reached such a state, and
out paying any attention to its stability. A detailed analysis
these questions will be published elsewhere.

Let us introduce position and velocities coordinates w
respect to a frame moving with the flow velocityu. We
define the Lagrangian coordinates by

R5L~ t !•r , V5v2a•r , ~23!

where

L i j ~ t !5d i j2ai j t. ~24!

In terms of these, Eq.~18! becomes

] f

]t
1L i j Vj

] f

]Ri
2ai j Vj

] f

]Vi

52n~ f2 f l !2
1

nkBT
f lc~12a2!v l .

~25!

Since the USF is macroscopically homogeneous in
Lagrangian frame, we expect the associated distribu
function, f (0), to have the same property, i.e., to be indep
dent ofR. Therefore, Eq.~25! reduces to

] f ~0!

]t
2ai j Vj

] f ~0!

]Vi
52n~0!~ f ~0!2 f l

~0!!2
1

n~0!kBT
~0! f l

~0!c~0!

3~12a2!v l
~0! . ~26!

This equation implies that

]^Vi&
~0!

]t
52ad ix^Vy&

~0!, ~27!

where the angular brackets denote averaging with respe
f . Therefore, if the initial state verifieŝV& (0)50, this prop-
erty is kept in time by Eq.~26!. In the following we will limit
our consideration to initial conditions of this kind. This is th
reason why, for velocities in the Lagrangian frame, we u
the same symbol as for the peculiar velocities introduced
Sec. II. Then the local equilibrium distribution appearing
Eq. ~26! has the form

f l
~0!~V,t !5n~0!S m

2pkBT
~0!~ t ! D

d/2

expS 2
mV2

2kBT
~0!~ t ! D ,

~28!

with all the possible time dependence occurring through
temperature.
e
d
is
e

dy

e,
ith-
f

e
n
-

to

d
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e

IV. PRESSURE TENSOR

By multiplying Eq.~26! byViVj and integrating overV, it
is straightforward to obtain the evolution equations for t
components of the pressure tensor in the USF,

]

]t
Pi j

~0!1aikPjk
~0!1ajkPik

~0!52n~0!~Pi j
~0!2d i j p

~0!!

2
2

d
d i j ~12a2!v l

~0! , ~29!

where p5( iPii /d5nkBT is the hydrostatic pressure. Fo
a51 we recover the equations for an ordinary gas un
USF in the BGK approximation, which have been exte
sively studied@25–27#. From Eq.~29!, in particular, one ob-
tains

]

]t
p~0!52

2

d
aPxy

~0!2
2

d
~12a2!v l

~0! , ~30!

]

]t
Pxy

~0!52aPyy
~0!2n~0!Pxy

~0! , ~31!

]

]t
Pyy

~0!52n~0!~Pyy
~0!2p~0!!2

2

d
~12a2!v l

~0! . ~32!

This closed system of equations has the trivial solut
Pxy
(0)5Pyy

(0)5p(0)50. A second steady solution, denoted
an asterisk, is given by

Pxy* 52
a

n* Fp*2
2

d
~12a2!

v l*

n* G , ~33!

Pyy* 52
n*

a
Pxy* , ~34!

a2

n* Fp*2
2

d
~12a2!

v l*

n* G2~12a2!v l*50. ~35!

For given values of the shear ratea, the number density
n, and the restitution coefficienta, Eq. ~35! determines the
value of the pressure~or temperature! at which the steady
state is possible. It is convenient at this point to specify
form of the effective collision frequencyn. Dimensional
analysis requires that

n5cnsd21S pkBT

m D 1/2, ~36!

wherec is a dimensionless constant. We are going to fix t
by requiring that the model gives the correct~Boltzmann!
value for the Navier-Stokes shear viscosity in the elas
limit a51. This leads toc516/5b, with b.1.016, for
d53 ~spheres!, andc52/b, with b.1.022, ford52 ~disks!
@28#. When Eq.~36! is used in Eqs.~33!–~35! they reduce to

P̃xy52H ~12a2!~d21!

c F12
2~d21!

dc
~12a2!G J 1/2,

~37!
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P̃yy52
P̃xy

ã
512

2~d21!

dc
~12a2!, ~38!

ã25
d~d21!~12a2!

dc22~d21!~12a2!
. ~39!

We have introduced the dimensionless pressure tensorP̃i j
and shear rateã in the steady state as

P̃i j5
Pi j*

p*
, ã5

a

n*
. ~40!

Equation~39! shows that in the steady state the ratio
the shear rate to the collision frequency depends only on
restitution coefficient. The simple dependence of the pres
tensor on the shear rate found here contrasts with the c
plex one found in the time-dependent uniform shear flow
ordinary gases@25–27#. Let us suppose we carry out a seri
of experiences, all of them in the same system, i.e., w
given values ofa and n, but with different values of the
shear rate, measuring the shear viscosity in the steady s
Taking into account that Eq.~39! implies thatT*}a2, it
follows from Eq. ~37! that the generalized shear viscos
h* is linear in the shear rate,

h* ~a![2
Pxy*

a
}a. ~41!

Of course, the proportionality constant in this expression
pends on the coefficient of restitution.

The other components of the pressure tensor are e
computed by means of Eq.~29!, particularized for the stead
state. One obtains

P̃xx511
2~d21!2~12a2!

dc
, ~42!

and, for a three-dimensional system,

P̃zz5 P̃yy , P̃xz5 P̃yz50. ~43!

Let us note that the reduced pressure tensor in the st
state is expressed as a function ofa alone, being indepen
dent, in particular, of the applied shear rate. Then, for
stance, for the normal stress ratios we have

Pxx*

Pyy*
5
dc12~d21!2~12a2!

dc22~d21!~12a2!
, ~44!

Pyy*

Pzz*
51. ~45!

Therefore, the model predicts anisotropy of the diago
terms of the pressure tensor in the shear plane, but not in
plane perpendicular to the flow. The existence of norm
stress differences in shear flows of normal fluids is very w
known. It is a viscometric effect which appears beyond
Navier-Stokes approximation@29#. For a low density USF
f
e
re
m-
f

h

te.

-

ily

dy

-

l
he
l
ll
e

they have been calculated using the BGK model@27#. There,
differences betweenPxx and Pyy but not betweenPyy and
Pzz were found.

As we have already mentioned, an approximated the
for the steady USF of smooth inelastic disks has been
mulated by Jenkins and Richman@17#. Their results for the
second velocity moments in the low density limit read, in o
notation,

ã~JR!25
~11a!~12a2!~723a!2

c2~917a!
, ~46!

P̃xy
~JR!52

4

2529a
@~917a!~12a!#1/2, ~47!

P̃yy
~JR!5

917a

2529a
, ~48!

P̃xx
~JR!5

41225a

2529a
. ~49!

Although these expressions may appear rather diffe
from the corresponding results obtained from our model
netic equation, Figs. 1 and 2 show that the discrepancies
quite small for low dissipation, and tend to vanish whena
approaches unity. Let us also mention that recent molec
dynamics simulations@24# have found that the values of th
steady temperature for a dilute gas of inelastic disks can
closely fitted by an empirical relation, which in our uni
reads

ã 225
16Ac2

p S 1

12a2 1BD , ~50!

with A.0.080 andB.20.54. The above expression has t
same functional dependence on the restitution coefficien
Eq. ~39!. In addition, from this latter equation one identifie
A.0.100 andB.20.511, which are surprisingly close t
the simulation values, taking into account that no exclud
volume effects are considered in our model, and also that
flow observed in Ref.@24# is highly nonuniform and it ex-
hibits time-dependent microstructures.

Sela, Goldhirsch, and Noskowitz@18# carried out a study
of a two-dimensional granular USF to Burnett order usi
the Boltzmann equation. They arrived at expressions for
steady temperature and the pressure tensor of the forms

ã 25C~12a2!1D~12a2!3/21O~12a2!2, ~51!

P̃xy5E~12a2!1/21O~12a2!3/2, ~52!

P̃xx511F~12a2!1O~12a2!2, ~53!

P̃yy511G~12a2!1O~12a2!2. ~54!

Here C, D, E, F, andG are dimensionless constants.
Table I we compare the values for these constants give
Ref. @18# with those obtained by expanding the expressio
derived in this section. Also given are the results obtain
from the expansion of the Jenkins and Richman theory. T
values from the three theories are very close and, in part
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FIG. 1. Reduced shear rateã as a function of
the coefficient of restitutiona for a two-
dimensional steady USF. The solid line corr
sponds to the present theory, and the dashed
to that of Jenkins and Richman.
e

ticle

lu-
e
in
the
lar, the agreement between our results and the Burnett
pansion of the Boltzmann equation is excellent.

V. VELOCITY DISTRIBUTION FUNCTION

The formal solution of Eq.~26! can be written as

f ~0!~V,t !5e2setai j Vj
]

]Vi f ~0!~V,0!

1E
0

t

dt8e2~s2s8!e~ t2t8!ai j Vj ~]/]Vi !Fn~0!~ t8!

2
1

n~0!kBT
~0!~ t8!

c~0!~V,t8!~12a2!v l
~0!~ t8!G

3 f l
~0!~V,t8!, ~55!

where
x-
s[E

0

t

dt8n~0!~ t8! ~56!

is a measure of the average number of collisions per par
between 0 andt, s85s(t8), and exp@tai j Vj (]/]Vi)‡ is a shift
operator in velocity space,

etai j Vj ~]/]Vi !h~V!5h@L~2t !•V#. ~57!

Of course, the time-dependent temperature in Eq.~55!
must be consistently calculated, i.e., it is given by the so
tion of Eqs. ~30!–~32!. Let us now consider the long tim
limit of f (0)(t). Assuming that the steady state discussed
Sec. IV is reached, we know that the temperature tends to
constant value given by Eq.~39!, ands diverges. The con-
clusion is thatf (0)(V,t) approaches the steady form
-
e-
nes
FIG. 2. The pressure tensor for a two
dimensional steady USF. The solid lines corr
spond to the present theory, and the dashed o
to that of Jenkins and Richman.
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f * ~V!5E
0

`

dt e2n* tetai j Vj ~]/]Vi !

3Fn*2
1

n~0!kBT*
c* ~V!~12a2!v l* G f l* ~V!,

~58!

with

c* ~V!5
mV2

dkBT*
21. ~59!

It can be checked that this expression reproduces the va
of the steady pressure tensor found in Sec. IV, and also
it gives a vanishing heat flux. Now we introduce dimensio
less quantities by

Ṽ5S 2kBT*m D 21/2

V, ~60!

f̃5
1

n~0! S 2kBT*m D d/2f * . ~61!

Then Eq.~58! reduces to

f̃ ~Ṽ!5p2d/2E
0

`

ds e2ses ãṼy~]/]Ṽx!

3F12
d21

c S 2d Ṽ221D ~12a2!Ge2Ṽ 2
, ~62!

where use has been made of Eqs.~17! and ~36!. In the case
of a system of hard spheres, the marginal distribution for
z component of the velocity is easily obtained,

f̃ z~Ṽz![E
2`

`

dṼxE
2`

`

dṼy f̃ ~Ṽ!5p21/2

3F12
2~12a2!

3c
~2Ṽz

221!Ge2Ṽ z
2
. ~63!

This expression shows a limitation of our model kine
equation, namely, that the distribution function takes u
physical negative values for large enough velocities. Nev
theless, the velocity values for which Eq.~63! is negative are
given by

TABLE I. Comparison of the values of the coefficients in e
pansions given by Eqs.~51!–~54! obtained with different theories
and in the present work.

Model
Sela, Goldhirsch,
and Noskowitz Jenkins and Richman

C 0.511 0.511 0.522
D 0 0 0
E 20.714 20.714 20.707
F 0.511 0.522 0.5
G 0.511 0.522 0.5
es
at
-

e

-
r-

Vz
2.F 3c

2~12a2!
11GkBT*m

, ~64!

and, therefore, the distribution function is positive in all t
range of thermal velocities, even in the limita→0. It is then
possible that Eq.~62! provides an accurate approximation
the solution of the Boltzmann equation in all the releva
region of the distribution function. This point will be ana
lyzed in detail in Sec. VI.

The marginal velocity distribution in the shear plane, a
for d53, is

f̃ xy~Ṽx ,Ṽy![E
2`

`

dṼzf̃ ~Ṽ!

5p21E
0

`

ds e2se2[ ~ Ṽx1s ãṼy!21Ṽy
2]

3H 12
4~12a2!

3c
@~Ṽx1sã Ṽy!

21Ṽ y
2#J .

~65!

In order to compare with previous theories, we have carr
out a perturbative expansion off̃ for d52 in powers of
12a2. The result is

f̃ ~Ṽ!5p21e2Ṽ2F12
Ṽ2sin2u

Ac
~12a2!1/2

1~122Ṽ21Ṽ2cos2u1 1
2 Ṽ

42 1
2 Ṽ

4cos4u!

3
12a2

c
1O~12a2!3/2G , ~66!

Here, we have introduced a polar representation for the
locity, Ṽ(Ṽ,u), where u is measured with respect to th
streaming directionx.

Jenkins and Richman@17# assumed that the steady distr
bution function has the form of a generalized Gaussian,

f̃ ~JR!5
1

pAuKu
exp~2Ṽ•K21

•Ṽ!, ~67!

whereK is a matrix which accounts for the anisotropy exis
ing in the USF. When the low density limit of the abov
distribution is considered and the result expanded to or
(12a2) one obtains

f̃ ~JR!~Ṽ!5p21e2Ṽ2F12
Ṽ2sin2u

A2
~12a2!1/2

1~122Ṽ212Ṽ2cos2u1 1
2 Ṽ

42 1
2 Ṽ

4cos4u!

3
12a2

4
1O~12a2!3/2G . ~68!

If we neglect the difference betweenc (;1.96) and 2, both
expressions agree to order (12a2)1/2. The terms of order
(12a2) have the same dependence on the velocity modu



ar

ty
s

55 2853STEADY UNIFORM SHEAR FLOW IN A LOW DENSITY . . .
FIG. 3. Time evolution of the reduced she
rate ā for a50.8, and different values of the
shear ratea. In all cases, the initial distribution
was homogeneous with a Maxwellian veloci
distribution in the Lagrangian frame. Time i
measured in units ofc„2Apn(0)…21.
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and also onu, but all the constant prefactors differ. In spi
of this difference, let us notice that both expressions~66! and
~68! make the same contribution to the diagonal part of
pressure tensor when the constantc is again approximated by
2. This can be verified by a direct calculation~see also Table
I!.

The distribution function for the USF of a two
dimensional granular gas has also been calculated at
same order by Sela, Goldhirsch, and Noskowitz in Ref.@18#.
There, a much more complicated dependence on both p
components of the velocity is found. By comparing with Je
kins and Richman results, the authors conclude that the
stants appearing as prefactors for the second harmonic
u in Eq. ~68! can be considered as rough averages of
corresponding functions obtained by them. We refer
reader to their paper for details.

VI. DIRECT MONTE CARLO SIMULATION

The direct simulation Monte Carlo method@19# has
proved to be a very useful tool to obtain numerical solutio
e

he

lar
-
n-
in
e
e

s

of the Boltzmann equation for molecular fluids. Very r
cently, it has also been applied to study the HCS of a l
density granular flow@20#. Since the details of the metho
have been extensively discussed in Ref.@19#, they will not be
given here.

We saw in Sec. III that the distribution function for th
USF becomes homogeneous in the Lagrangian frame.
consideration of homogeneous states allows a great simp
cation of the simulation. Therefore, we have carried out
simulation in the Lagrangian frame and restricted oursel
to solutions of the Boltzmann equation which stay homo
neous in that frame. In other words, we numerically solv
the equation@compare with Eq.~26!#

] f ~0!

]t
2ai j Vj

] f ~0!

]Vi
5JB@Vu f ~0!#. ~69!

Of course, this implies that the possibility of spontaneo
formation of spatial inhomogeneities is eliminated in t
ds
lts
FIG. 4. Steady reduced shear rateã as a func-
tion of the coefficient of restitutiona for a dilute
system of hard disks. The solid line correspon
to the kinetic model, and the symbols are resu
from the Monte Carlo simulation.
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FIG. 5. The same as in Fig. 4 for the reduce
pressure tensorP̃i j .
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simulation. Our aim here is to study the properties of
homogeneous steady state. Its stability will be analyzed e
where.

For homogeneous systems there is no need to split
system into cells and, consequently, the spatial coordin
of the particles do not play any role in the simulation.
addition, no boundary conditions must be introduced. In
simulation we have considered a three-dimensional sys
The number of particles isN51000, and the results hav
been averaged over 500 different trajectories. The time in
val Dt over which it is assumed that free motion, includin
the effect of the inertial force, and collisions, are uncoup
has been takendt50.025n0

21, where n05(2Ap/c)n(t),
with n(t) being the instantaneous value of the collision f
quency given by Eq.~36!. We considered a nonconstant tim
step in order to guarantee that it always remains m
smaller than the average time between collisions, in spit
the change of the temperature@30#. The initial velocity dis-
tribution in all cases is a Maxwellian.
e
e-

he
es

r
m.

r-

d

-

h
of

In Fig. 3 we present the time evolution ofā[a/n(t) for
a50.8 and four different values of the shear rate, name
a50.1, 0.25, 0.5, and 1. Time is measured in units
c„2Apn(0)…21, where n(0) is the initial collision fre-
quency. After an initial transient period, all curves conver
to the same steady value, as predicted by Eq.~39!. The same
qualitative behavior has been found for all the reduced co
ponents of the pressure tensorPi j (t)/p(t). Therefore, in the
following we will concentrate on the dependence of t
steady values of the reduced quantities on the restitution
efficienta, once we have checked they do not depend on
shear rate.

The results obtained for the steady reduced shear raã
for different values ofa are shown in Fig. 4. The statistica
errors are smaller than the symbols used to represent
data. Also plotted is the prediction of our model kinet
equation, i.e. Eq.~39! with d53. It is seen that the agree
ment is remarkable at low dissipation, although the discr
ancy increases as the restitution coefficient decreases.
ar
the
a-
FIG. 6. Marginal velocity distribution func-
tion in the direction perpendicular to the she
plane. The symbols are simulation data, and
solid line corresponds to the model kinetic equ
tion. The restitution coefficient isa50.8.
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FIG. 7. Marginal velocity distribution in the
shear plane. The symbols are simulation data, a
the solid lines results from the kinetic model. Th
distributions are shown vsṼx for three different
given values ofṼy , namely, Ṽy50.019, 0.75,
and 1.37, from top to bottom. The coefficient o
restitution isa50.8.
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have verified that all the numerical data are fitted if one ta
c'2 in Eq. ~39!. Therefore, it is tempting to conclude th
the functional form given by the model is correct, and th
the observed discrepancy follows from the value given to
constant in the collision frequency. Our choice emphasi
the role of the shear viscosity. In Fig. 5, we present
measured values for the components of the pressure te
and compare them to the model expressions, Eqs.~37!, ~38!,
~42!, and ~43!. The theory reproduces very well the resu
for the normal stressP̃xx and the shear stressP̃xy . On the
other hand, the simulation shows that there is anisotrop
the plane perpendicular to the flow velocity, bein
P̃zz. P̃yy , while the kinetic model leads toP̃yy5 P̃zz. The
same kind of anisotropy has been found in molecular dyn
ics simulations of shear flows at low density, although
inequality changes in sign at high densities@11,31#. It is
observed that the theoretical values are in between the
numerical ones, as expected for consistency. Neverthe
s

t
e
s
e
sor

in

-
e

o
ss,

let us note that the relative normal stress differences in
plane are about 3% fora50.7, and that they decrease as t
restitution coefficient increases. We conclude that the mo
kinetic equation we are considering gives a fairly good a
proximation of the pressure tensor for a granular dilute
under steady USF.

Let us now check at what extension the above conclus
also holds for the velocity distribution function. We hav
verified that, once the steady state has been reached
shape of the distribution is determined only by the coeffici
of restitution, according to the predictions of the model. F
ure 6 depicts the marginal distributionf̃ z(Ṽz) for a50.8.
The agreement is quite good in the velocity range sho
although a discrepancy is observed in the height of the m
mum at Ṽz50. In addition, the agreement becomes mu
worse if larger velocities are considered. In fact, one can
expect a single relaxation approximation to be able to ac
rately describe velocities beyond the thermal region, si
nd
e

f

FIG. 8. Marginal velocity distribution in the
shear plane. The symbols are simulation data, a
the solid lines results from the kinetic model. Th
distributions are shown vsṼy for three different
given values ofṼx , namely, Ṽx50.019, 0.75,
and 1.37, from top to bottom. The coefficient o
restitution isa50.8.
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the evolution of the distribution function is given in terms
only the first five moments. The same comment applies
the results presented in Figs. 7 and 8. There, the marg
distribution function f̃ xy(Ṽx ,Ṽy) is plotted as a function o
Ṽy for several fixed values ofṼx and as a function ofṼx for
fixed values ofṼy , respectively. Again, all distributions cor
respond toa50.8. It is clearly observed that the asymme
of the distribtion function increases as the distance from
absolute maximum increases.

VII. CONCLUSIONS

The steady state of USF for a low density granular fl
has been studied by means of a kinetic model, and also
using the direct Monte Carlo simulation technique. T
simple form of the collision term in the model allows th
construction of an exact explicit analytical solution, witho
restriction to small shear rate or low dissipation. Therefo
no other scale separation than those implicit in the own
netic equation is assumed. To Burnett order, the results
the pressure tensor are very close to those recently der
by expanding the Boltzmann equation for a system of h
disks @18#. They also agree with the predictions of the Je
kins and Richman theory@17#, which is based on the hypoth
esis that the distribution function can be written as a gen
alized Gaussian.
da
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,
i-
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d
-

r-

Comparison with the simulation data shows that t
model describes fairly well the dependence of the press
tensor, including the normal stress differences, on the c
ficient of restitution. Regarding the complete velocity dist
bution, the model gives accurate results for small velocit
but significant discrepancies appear in the high-velocity
gion. This is consistent with the expectation that a BGK-li
model is a good approximation of low moments of the d
tribution, but fails for high moments. Let us note that a
perturbative approximation of the Boltzmann equation fo
nonequilibrium situation is also expected to break down
large enough velocities.

Finally, let us mention that the work presented here c
be extended in both aspects, modeling and simulation, to
revised Enskog equation@8#, where many of the phenomen
mentioned in Sec. I, and that occur at higher density, can
studied. Also, the very interesting problem of the stability
the steady USF state considered here and the possible e
ence of other steady states can be addressed.
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