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Closed model for granular compaction under weak tapping
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A one-dimensional lattice model is formulated to study tapping dynamics and the long time steady distri-
bution in granular media. The dynamics conserves the number of particles in the system, and density changes
are associated with the creation and destruction of empty sites. The model is shown to be consistent with
Edwards’ thermodynamics theory of powders. The relationship with lattice models in which the number of
particles is not conserved is discussed.
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[. INTRODUCTION alization of the Einstein relation between diffusivity and mo-
bility, has been recently discussed and analyzed in a system
In the last few years, a great deal of effort is being madeof inelastic hard spheres by means of molecular dynamics
trying to understand the physical mechanisms leading tesimulations|[6].
compaction in weakly vibrated granular systems, and the On the other hand, the validity of Edwards’ theory has
properties of the steady state eventually reached in the lonigeen studied in the context of several simple models, with
time limit. This has been prompted and stimulated by thedifferent underlying physical mechanisms. It has been found
seminal papers of the Chicago group reporting experimentahat the results for Tetris and spin-glass modéls9| are
results of compactiofil—3]. Granular compaction consists consistent with the theory. In these systems, the number of
of the increase in the density, starting from an initial low- particles is fixed but most of the results are numerical, due to
density state, as a consequence of external excitations, usiire complexity of the models used. One-dimensional Ising
ally vertical shakes or taps. Every tap is followed by a freemodels, with or without kinetic constrains, have also been
relaxation, so that in the process the system goes throughansidered 10—-14, because they are simple enough as to
series of blocked configurations. allow a detailed analytical study in many cases. For weak
Starting from an “ergodic hypothesis” for powders, basedtapping, agreement with Edwards’ theory was found again,
on the extensive, global, character of the dynamics induceedlthough discrepancies show up in the limit of strong tap-
by shaking, Edwards and co-workdrs have formulated a ping. Quite interestingly, all the Ising-like models in Refs.
microscopic theory for the steady state of vibrated granulaf10—-14 have been formulated as open systems. The number
media that is similar to conventional statistical mechanicsof particles does not remain constant, but it changes along
Moreover, they assume that the steady state is fully charathe compaction process, as a consequence of adsorption-
terized by the volume of the system, which then plays a rolelesorption events from a theoretical particle reservoir in con-
analogous to that of the energy in the usual thermal systemgact with the system. Instead, it is the volume that is kept
This provides the “microcanonical” description. The associ-fixed, in this way leading to the variation of the density.
ated “canonical” probability distribution is obtained by Then, although it is true that the steady distribution of these
maximizing the statistical entropy under the condition thatmodels can be considered as a “grand canonical” ensemble
the average volume is given. Of course, the probability of egeneralization of the theory, it is also clear that it is not
given configuration depends only on its volume. The parameharacterized by the compactiviffemperaturg but by an-
eter conjugated of the volume, similar to the thermal tem-other parameter playing the role of the chemical potential.
perature, was namezbmpactivityby the authors in Ref4].  This difference is evidently relevant when trying to relate
Up to now, there has been no definite experimental test oiny of them with the characteristics of the vibration process,
the above thermodynamic theory of powders. The measure.g., its intensity. Beyond that, the distinction might become
of the compactivity, or the entropy, of a granular systemconceptually crucial when dealing with granular mixtures
seems a rather difficult task not only in real experiments butind segregation phenomena. In that case, each of the differ-
also in realistic models, although some procedures have be@mt species is going to have its own analogous of the chemi-
proposed. They are based on the determination of the avetal potential paramet¢i5]. Whether or not it is also needed
age volume and its fluctuations as a function of the controto consider different compactivitiggemperatures as it has
parameter of the shaking, e.g., the vibration intenglip]. =~ been suggested recenfly6], is a different question.
From these two functions, the compactivity can be obtained, The aim of this paper is to present a closed, constant
in principle, by integration, although this program is hard tonumber of particles, one-dimensional lattice model for com-
carry out in practice due to the uncertainty of the measurepaction. Again the model is simple enough as to be analyti-
ments. Another alternative way, this one based on the genecally tractable. During the tapping process, patrticles diffuse
and also empty siteéholes are created and destroyed in the
system, according to well defined rules. The latter are chosen
*Electronic address: brey@us.es to mimic, in a crude way, what happens in real compaction
"Electronic address: prados@us.es experiments. More precisely, the model tries to represent a
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vertical section of a vibrated two-dimensional system. Ina ()

shake, the length of the section can increase because empty ooxo—t—-oxxo—*2 -o0x00
regions(holeg are created between the particles. These re- oxo00—* voxxo0—*2 . 50x0

gions can be used for the particles to diffuse. Afterwards,

once the shake has ended, the system tries to compact due to ®) 20 1/4,0XX00 O0X00
the action of gravity. This is accomplished in the model by ox0ox0 OXXXO%:ooxxo 00X0
means of the elimination of holes. But, because of the geo- (g

metrical constra}ins fqllowing from excludeq vqume_ effects 0Xx0 0}_0 XOXO

of the hard particles in the neighboring vertical sections, not ooxo—

all the holes can be destroyed in the free evolution. Only S

large enough empty regions can be reduced. As a conse- FIG. 1. Elementary rearrangements of the system |n§s_|ngle tap
quence of the combination of a tap and the next free relax@nd the following free relaxation in the weak vibration limit. The
ation, the length can increase in some regions of the Systef,ﬁajectories leading to a final state identical to the initial one are not

and decrease in others. The net balance determines the glolS3P""-

behavior of the system in the compaction process. of particles is conserved in the relaxation, but the length of

. The plan of the paper is as follows. In Sec. II, the model,e gystem, measured by the total number of sites, is in gen-
is formulated at the mesoscopic level of description byg .| feduced.

means of a master equation for the transition probability.  5q 5 consequence of the above dynamics for relaxation,

This equation is exactly solved for the steady distribution ing,e metastable configurations of the model are characterized
Sec. lIl, and the associated macroscopic description is digsy haying all the holes surrounded by two particles, i.e., the

cussed in Sec. IV, where it is shown to be in agreement with, a5 are isolated. In order to displace the system from one
Edwards’ thermodynamic description. The compactivity iS¢ these states, it has to be externally perturbed, for instance

identifigd in terms of the parameters characte(izir]g the meby means of a tap. To complete the description of the dynam-
soscopic dynamics of the model. Also, the distribution Ofjcq ot oyr model in a compaction experiment, the possible
dom{;uns is derlved_ therg. Section V contains a detailed dis;nsitions taking place during a tap and starting at a meta-
cussion of the relationship between closed and open modelgyg e configuration, have to be identified and their probabili-
and between the compactivity and fugacity parameters. Thgog ghecified. Two kinds of elementary processes will be
paper ends with a short summary and some additional dissgngidered. Each of them will be discussed separately in the
cussions. following.
First, a particle can be transiently desorbed from the lat-
II. THE MODEL tice and po;teriorly adsorbgd in an empty sitg in thg neigh-
borhood of its previous position. This process is restricted by
We consider a one-dimensional lattice havidg-1 par-  the following rule. A particle can be desorbed from a site
ticles. The number of sites in the lattice is variable andduring the tap only if at least one of its nearest neighbor sites
changes with time accordingly with the rules to be specifieds empty. More precisely, the probability for these events is
below. Those sites that are not occupied by a particle are sajsroportional to the number of nearest neighbor holes of the
to be empty or, equivalently, being a hole. particle being desorbed. This restriction tries to naively
The dynamics of the system is defined trying to mimic model the short range constrains making difficult structural
tapping experiments for the study of compaction in granularearrangements in granular materials. Then, during a tap, the
media[1-3]. These experiments typically involve two differ- probability of desorption of a particle having only one near-
ent series of processes of quite different nature. The systemst neighbor hole ig, while it is 2« if it is surrounded by
is submitted to taps or pulses separated by time intervals fawo holes. Afterwards, the particle is reabsorbed either in its
which the system is allowed to relax freely, until being own original site or in any of the nearest neighbor holes,
trapped in a metastable configuration. Therefore, each tapith a probability that is proportional to the number of holes
starts in the metastable configuration reached in the previousext to the site considered. In Fig. 1, casasand (b) in-
free relaxation. The taps are characterized by their duratiomolve processes starting with the transitory desorption of a
and their amplitude. particle. Particles and holes are represented by circles and
Physically, the effect of the taps is to decrease the locatrosses, respectively. In the case referred tdlasin the
density in some regions of the system, moving grains fronfigure, the elimination of a hole happening in the next free
their metastable positions, and allowing a posterior reorderevolution has been also indicated. It is seen that the net result
ing in the free relaxation. We will specify first the dynamics of the series of events taking place during the tap and the free
during the relaxation processes, since it leads to identifyingelaxation is, in this case, the destruction of a lattice site,
the possible metastable, or blocked, configurations of thevith the consequent decrease of the lattice length.
model. It will be assumed that in the free relaxation, the During the tap, the creation of an empty site or hole is
system tries to reduce its length by eliminating some of thealso possible, but only between two nearest neighbor par-
empty sites of the lattice. More precisely, whenever there is @cles located at one of the ends of a domain of at least two
group of nearest neighbor holes, all except one are elimiparticles. The probability of the corresponding elementary
nated. These are the only processes taking place in the freents, referred to as cag® in Fig. 1, isB8. Note that these
relaxation, and have probability one. Therefore, the numbeprocesses of hole creation are just the inverse of those pro-
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TABLE I. Transition probabilities for the elementary rearrange- 1 oo
ments taking place in a single tap in the weak vibration regime.
Initial state Final state Probability 09 | |
O0OXO OX00 al2
OX00 O0OXO al2
OXOXO OX00 al2 08 r ]
OXOXO OOXO al2 P
OX00 OXOXO B
00XO OXOXO B 07 ¢ 7
ducing the destruction of a hole. 06 1
Furthermore, it will be assumed that only one transition
takes place at the most in every region on the system during
each tap, i.e., no site is involved into two different processes 0.5 ¢ T

10 10°

in the same perturbation of the system. Physically, this hy-
pothesis implies to consider the limit of weak and short taps
[10,14. In summary, the dynamics of the model in the shak- FIG. 2. Evolution of the density of particles, as a function of the
ing process is defined by the effective transitions given irscaled time defined in the text. The curves correspond to the pairs of
Table I, describing the combined events associated with a tagalues «=10"2, B=10° (circles, «=102 B=5x10°
and the next free relaxation. The transitions only affect thesquares and a=10"2, 3=5x10° (diamonds, while the solid
clusters shown, and their probabilities are independent of thkne is the best inverse logarithmic fit, EB), with the parameters
configuration of the remainder of the system. given in the text.

To formulate the model in a more mathematical languag

e, .. , .
and also to characterize the metastable configurations, it floting that any metastable configuration can be connected

. X : With the configuration characterized by having just a hole
con_vement to define a set of yar!abres{_nl, .- Nnj. The located next t% the right of a given fi>)</ed par?iclle. This is
variablen; takes the value unity if there is a hole next to the pac5 56 holes can be moved through particles by means of
right of particlei, while it vanishes if there is no hole, i.e., if yitusive events, so that the two consecutive holes can al-
particlesi andi+1 are in nearest neighbor sites. By defini- ways be located on both sides of the same particle. After-
tion, it is assumed that there is no hole to the left of particleyards, one of the holes can be eliminated by a typevent
1 nor to the right of particl&N+ 1. Both particles define the of Fig. 1. This procedure can be repeated until there is only a
boundaries of the system. It is easily realized that this prophole in the lattice, which can then be diffused to the desired
erty is preserved by the dynamics of the system under tapsite. This proves the above statement. But, since each effec-
ping, as defined above. Then, we have established a one tiwe transition have its inverse also with nonzero probability,
one relationship between a setMfvariables taking values 0 the above paths can also be reversed, concluding that all the
and 1 and the metastable configurations of the model. metastable configurations are connected. The irreducibility
The transition probabilities in Table | can be expresseddroperty of the Markov process implies that there is a unique
in terms of the n; variables. Denoting Rin  Steady probability distribution for the process7]. This dis-
={n,, ... R, ....ny}, with Rn;=1-n;, the probabil- tribution will be explicitly obtained in the following section.
ity W(n'|n) of the several events going from configuration In Fig. 2, the relaxation of the particle density is shown as

to configurationn’ in the effective dynamics describing & function of the “scaled timer=an, wheren is the num-
shaking process are ber of taps before measuring the density for different values

of @ and 8. The initial state for all the curves was the least
o dense metastable configuratigns0.5, in which there is a
W(RR;,+1n|n)= E[ni(l—ni+1)+(1—ni)ni+1], (1) hole between every two particlgs. In all the reported_ cases
B<a, so that processes decreasing the density of particles are
only relevant when the system is near the most compact
a ) X
WRNIM= = (1 n+nn. O+ 8 (1—n: state,p=1. Moreover, aB<a<l1, there is a universal behav-
(Rinm) 2 (Ni-ali+ M)+ AN (170 ior up to a very large number of taps O(a™ 1), i.e., an
=(0(1). Forlonger times, when processes decreasing the
density become relevantn=O(B8~ 1), the system ap-
Equation(1) corresponds to diffusive events, while the first Proaches a steady state characterized by the o The
and second terms on the right-hand sidkes of Eq. (2) observed universal scaled curve is very well described by the
correspond to the destruction and creation of holes, respef@Ur-parameter empirical law
tively. The Markov process defined by these transition prob-

+(1=np)ni 4] 2

Ope
abilities is irreducible, i.e., all the metastable configurations p(t)=p,— P , 3
of the lattice are connected by a chain of transitions with 1+B In( 14 =
nonzero probability. To verify this property, we begin by Tc
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with p.,,.=1.04, 5p.,,=0.54,B=1.17, andr,=2.63. As it is

the case with the experimental df1j and also with numeri- f(Ny)=C
cal results from other simple mod¢1s0,18, the logarithmic

fit is not expected to give the correct asymptotic density offor N, =1, C being an arbitrary constant that will be taken
particles. In fact, in our case it is.>1, which is clearly  equal to unity. In this way, we have proven that the system

unphysical. A similar behavior gf.. was found in Ref[10].  has the property of detailed balance and that its steady dis-
Also, values ofp., larger than the random close packing limit tripution is given by

have been reported from the fit of experimental dafa

(10

ZB)NH

a

_NH
(=2
Ill. THE STEADY DISTRIBUTION pNH(n) Z '’ (1
To find the steady distribution of the Markov process de- N
scribing the effective dynamics of the model, we are going to Z=>, y Nu= > Q\(Ny)y M, (12)
assume it verifies detailed balance. Of course, this has to be n Np=1

justified a posterioriby showing that such a distribution ex- i
ists. Therefore, we look for a time-independent distributionhere y=a/2 and Qy(Ny) is the number of metastable

p(n) having the property configurations of the lattice havirgy holes and, of course,
N+1 particles. It is worth remarking that no approximation
W(n'[n)p®(n)=W(n|n")p(n’) (4)  has been done in order to derive the steady distribution, Eq.

(11), i.e, it is valid for any value ofy. The steady average
for all configurationsn andn’. A direct first consequence of number of holes and its dispersion can be evaluated #om
this equation is that all the metastable configurations with théy
same number of holes have the same probability in the
steady state. This follows from the fact that they are con- dinz

= (s) - _
nected by diffusive events and diffusion is isotropic in the <NH>S_; NHpNH(n)_ dlny’ (13
effective dynamics, as seen in Table |. Therefore, the distri-
bution function verifying Eqg.(4) can only depend on the 2InZ H(Ny)
number of holes AN)2Y=(NZ).— (N )2= =— =
((ANB=(NGYs—(Nups=— =2 == 0
N (14)
NH:E. n;, (5) ) . . .

I A simple combinatorial argument gives

in the configuration, but not on their spatial distribution. So, N!
ec ite Qy(Ng) =———— 15
we can wri N(NH) Ny!(N—=N)! (15
pﬂ(n): f(gH) ' (6) and substitution of this expression into EG2) yields
N
where the number of holed|, , in the configuratiom has Z=|1+—| —1. (16)
been made explicit in the notatioh(N,,) is a function to be Y
determined, and denotes a normalization constant, Therefore, it follows by application of Eq13) that, in the
limit of large N,
z:; f(Ny). 7 \
<NH>s:1Ty- 17

Still remains to be analyzed, if E¢6) can be made compat-

ible with Eq. (4), when particularized for effective events The right-hand side of Eq17) is a monotonic decreasing
increasing(and decreasingthe number of holes. The latter fynction of y for fixed number of particledl, i.e., the length

reads of the system decreases aéncreases. Thereforg, ! plays
a role similar to the vibration intensity in real granular ex-
Bp¢) (n)= fp(Ns) L4(n") (8)  Periments of compaction in the model. It follows that, in the
H 2 "Ny ’

physical image depicted by the present model, the probabil-
ity of diffusion processy is expected to grow faster with the
vibration intensity than the probability of creation of holes
B, at least in the weak tapping limit.

Heren'’ is a configuration differing fronm by the creation of
a hole. Use of Eq(6) gives

f(Ng+1) 28 . The length(volume of a configuration is given by
f(Ny)  « © L=Ny+N, (18)
and, by iteration, and the average particle density is
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FIG. 3. Comparison between the numerical values of the steady FIG. 4. Comparison between the numerical evaluation of the

density of particles and the theoretical prediction given by(E§). length fluctuations and the theoretical prediction given by (E4).
N N 1+y is the so-called compactivity. It is the conjugated thermody-
p(5)=<|_> = Nyt N =57 5 (19 namic parameter of the volume in gently vibrated granular
S H/s

systems, in an analogous way as the temperature is the con-
: . . jugate of the energy in usual thermal systems. Note that, in

In Fig. 3, the numerical values for the steady density of par; : ; )
ticles, obtained by Monte Carlo simulation of the model, areEq' (22), the ratioNy; /X can be replaced in both the numera

compared with the theoretical prediction, EG9), and an tor and the denominator dy/X, whereL is the length(vol-

excellent agreement is found. The specific length per parl—Jme of the configuration, as defined in EQ8). The struc-

. o o . ) ! ture of the above steady distribution is consistent with the
ticle, in site units, is the inverse of the particle density, two main ingredients of Edwards’ theory, namely, that the

N+ (Ny)e 2+ measure over metastable configurations is flat, and that there

(e= = ) (20) is a unique parameter the volume, characterizing the macro-
N 1+y scopic state of the system. Let us point out that, very re-
cently, the theory has been extended to include several mac-
Its dispersion is obtained from Eqgd4) and(16), roscopic control parameters, in an effort to explain the
discrepancies observed in some models with strong tapping
N((AD?)s=(2—(1)s)((1)s— 1), (21)  [12,19, and also segregation patterns in binary mofee.

It is clear that such an extension does not apply to our model,
presenting a maximum fafl)s=3/2, i.e., when the average which is designed to describe compaction in one-component
number of holes isN/2 and the density of particlep® systems under weak tapping. In the same context, the expres-
=2/3, i.e.,y=1. The numerical evaluation of the length fluc- sion of the compactivity in Eq(23) deserves some com-
tuations is compared with the theoretical prediction, as givemnents. AlthoughX can be formally negative, for valugs<1,
by Eq.(21), in Fig. 4. Again, a very good agreement is ob- it is quite doubtful that this fact be physically relevant, since
served for the range of “vibration intensitiesy ! plotted.  this range of values of corresponds to strong tapping, lead-
Outside this window of vibration intensities, the length fluc- ing to low stationary densities, namely, with an average num-
tuations are very small and, therefore, rather hard to measutser of holes(Ny)s>N/2. The possibility of negative values

in the simulations. of the compactivity has been also found in other simple mod-
els[10,20, and it is associated with the existence of a maxi-
IV. THERMODYNAMIC DESCRIPTION mum length for the metastable configurations.

. _ In the limit y—<, i.e., asymptotically weak tapping, the
Following Edwards and co-workers idepd, the steady steady concentration of particlgs’®, given by Eq.(19) can
distribution (11) can be expressed in the canonical form be approximated by

e Nu/Xx 1
PRAM="7—" Z=2 Ou(Nwe ™", (22 pO=1-—, (24)
where and, using the definition in Eq23),
X=(lny)~1 (23 X l=—In[1-p®¥]. (25)
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This relation between the compactivity and the steady den- *
sity has also been found in a model with facilitated dynamics Z P(r)=1. (33
having a variable number of particles and fixed volUrh@], r=1
and a similar behavior has been reported from the analysis
experimental dat@3].

An “entropy” S associated with the distributiop(® can
be defined in the usual way,

q{ is instructive to express the distribution of domain sizes in
terms of the average length per particlB,s. This is easily
accomplished by means of E0), obtaining

P(r)=(2— (1) *((I)s—1). (34)
S=-2> p®(n)inp®(n), (26)
n V. RELATIONSHIP BETWEEN CLOSED AND OPEN

. MODELS FOR COMPACTION
and use of Eq(22) gives

In the preceeding section, we have introduced the com-

(Np)s pactivity X from the canonical form of the steady probability
S= X +inZ. (27) distribution, Eq.(22). In the Edwards and co-workers formu-
lation of the granular thermodynamic the#), the compac-
Taking into account Eq(13), it is easily verified that tivity was defined by
S
) JS 1 —1_1[ 22
am i, (2.
HL)s a(Nps X N

consistently with the physical meaning of the compac’[ivityWhere the entropiBis given by

as discussed above. Given that the macroscopic state of the S=InQy, (36)

system is characterized by a single parameter, it is possible to

express the entropy in terms of only the density of particles(), being the number of blocked configurations or, in the

or the intensity parametey, or the compactivity. Then, for language used in this paper, metastable states. (3.

instance, in the limit of largé the entropy can be written as the number of particles in the system is kept constant. The
guantity Q1 for the model considered in this paper is given

1 1+etX - by Eq.(15) and forN>1, N,>1, Eq.(35) leads to

+In . (29
X(1+e'™) eX -1 N—Ny
N,

S
N

=In

(37)
In addition to the global properties considered up to now,
it is also possible to obtain information about the domainThis is the microcanonicakonstant volumeversion of the

structure of the steady configurations. In particular, we arganonical(constant compactivityexpressiong17) and (23).

going to derive here the probability distribution for the num- |, fact, combination of these two latter expressions gives
ber of particles in a domain. A domain of sizés defined as
N-— <NH>S

a cluster ofr particles, i.e., two holes witl particles in .
between. First, we consider the probabilﬁw of finding a X =Inm. (38)
local domain of size,
The expression equivalent to E(6) in the canonical en-
FO=(n(1-ni 1) (1= Ngsr—)Nksr)s, (30 semble is Eq(26). It is evident that, in the limit of large
systems, it is consistent with the definition X¥fin Eq. (35).

with r<1. Use of Eqs(11) and(15) yields In several proposed models for compaction, lattices with a
fixed number of sites, i.e., fixed length, have been consid-
Nt y |\t ered. The dynamics is defined involving elementary pro-
F§S)=z NEO Qo r(Ny)y 2 M=y 72 Ty cesses associated with the adsorption and desorption of par-
o~

ticles in such a way that the number of particles in the lattice
changes along the shaking experiment. This is the mecha-
nism for which the density in the system varies with time. In
particular, several models leading to similar kind of meta-
stable configurations as in the model in this paper have been
discussed in detail10-12,19,14 Then, aside from details
that are irrelevant for the following analysis, the number of

(31

where the limit of largeN has been considered once again.
Then, the probability of a domain of sizeP(r), is given by
the conditional probability of finding a cluster ofconsecu-
tive particles plus a hole to the right of a given hole, i.e.,

(s) N r—1 blocked configurations is given by E@L5), which we re-
P(r)= ——= ©__" _ (32) write in the form
(s (Np)s ' (1+ )"
QL (Ny) = =Nt 39
This distribution is correctly normalized: L(Nk)= Ny!(L—2Ng)!’ (39
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where the number of sites of the latticeds now considered
as fixed and./2=Ny=1. Moreover the steady distribution,
in the weak tapping limit was found to have the form

-N
, n H
p@’ (n)=—-, (40)
with
L/2
Z'= > On(Ny) 7 N, (42)
Np=1

PHYSICAL REVIEW E 68, 051302 (2003

VI. CONCLUSION

In this paper, a one-dimensional model for compaction in
granular media has been presented. One of its main features,
as compared with previous Ising-like models, is that the time
evolution under tapping conserves the number of particles in
the system, while it is the volume that changes in the com-
paction process. This is in fact what happens in compaction
experiments. Consequently, the steady distribution is charac-
terized by the compactivity instead of a generalized fugacity.
The steady distribution function has been derived and the
compactivity identified in terms of the parameters defining

and is a given parameter, depending on the specific modefh® mesoscopic dynamics of the model. It has been found
and characterizing the dynamical events in the system undépat the results are consistent with Edwards’ thermodynami-

shake. Then, from Eq40) a compactivityX’ was identified
as

X'=(Inp L (42)

This definition is equivalent to

InQ (Ny) (as
r=1_ = | —
X ( INy )L ON L’ (43
or, using Eq.(39),
(N=Ny)?
=1 _
X —In—NHN (44)

This expression differs from E¢37) except in the limit of
high densityN, /N<1, in which both reduce to IhN/Ny),

cal theory of powders. Nevertheless, since the model is for-
mulated in the context of weak and short tapping, it is in fact
quite doubtful that the same conclusions were reached from a
generalization to stronger tapping processes. Let us point out
that this would require to modify the formulation of our
model by including the possibility that a lattice region would
experiment several elementary excitations during the same
tap.

The relationship between closed and open models, and
between compactivity and fugacity, has been discussed. At
the mesoscopic level of description used in this paper, the
expression of one of them in terms of the transition rates
cannot be inferred from the expression of the other. Never-
theless, it is true that they correspond to different derivatives
of the same entropy function, like in usual thermal systems.

The model presented here can be easily generalized to

but this only indicates that the same density is obtained imixtures of several kinds of grains, then allowing the study

this limit if X=X'. Nevertheless, it must be stressed K

of segregation phenomena. Also, it can be useful to investi-

associated to tapping processes at constant number of pgate the validity of the Edwards theory in this case, and
ticles, while X’ describes processes at constant volumeeventually its possible generalizations, for instance, by ex-

Equivalently,X characterizes ensembles with fixddandX’

tending the number of parameters needed to characterize the

ensembles with fixedl. In this context, their physical nature steady state of the mixture, as has been recently proposed

is rather different. The paramet®ris the compactivity in-

troduced by Edwards and, on the other hand}, related

with X’ by Eq. (42), plays the role of a fugacity for the
particles. In terms of the entrop}{ and X' are related by

S

—1_yr—1
X X'+ N

(49)

Ny

(16,185,
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