
Generating domain specific aspect code for navigation

from platform specific models in MWACSL

A. M. Reina Quintero1, M. Toro Bonilla1, y J. Torres Valderrama1

Department of Languages and Computer Systems
E.T.S. Ingenieŕıa Informática.
Avda. Reina Mercedes, s/n.

41007 Seville, Spain
{reinaqu, jtorres, mtoro}@lsi.us.es

http://www.lsi.us.es/~reinaqu

Resumen. MWACSL1 is an Aspect-Oriented and Model-Driven approach for soft-
ware development in the context of web applications. MWACSL uses domain specific
aspect languages for dealing with the different aspects of a system. In this context
one application is composed of a primary model and a set of aspect models, each one
expressed by means of a Domain Specific Aspect Language. Furthermore, MWACSL
is also based on Model-Driven Architecture as a way of separating the technological
details. If we look at the horizontal dimension of MWACSL, this paper is focused on
the platform specific level, while looking at the vertical dimension, the focus is on
the navigational aspect. The specific platform is Spring Web Flow, a framework that
has been thought for defining navigation flows. The main contributions of the paper
are the definition of a metamodel for Spring Web Flow and a set of model to text
transformations to generate web flows. These contributions can be considered as part
of the MWACSL approach.

Palabras clave: Aspect-Oriented Software Development, Model-Driven Software De-
velopment, Domain Specific Aspect Languages, Model to Text Transformations

1 Introduction

Model-Driven Software Development (MDSD) and Aspect-Oriented Software Development
(AOSD) are two new developmental paradigms that have come up in the last few years. One
approach for MDSD is the OMG’s Model Driven Architecture (MDA), which defines three
different levels of modeling: Computation Independent Models (CIM), Platform Independent
Models (PIM) and Platform Specific Models (PSMs).

Seminal works on AOSD proposed a series of Domain Specific Aspect Languages (DSALs),
such as COOL and RIDL [11], for describing the different aspects of a system. However, the
community opted for general-purpose languages, such as AspectJ, due to the problems that
arose while dealing with DSAL’s: the important effort necessary to implement a new DSAL,
the difficulty for extending the weaver made ad hoc for the concrete DSAL and, the inability
of combining weavers for different DSAL’s. Nowadays, thanks to the contributions and tools
provided by the MDSD community, many of the disadvantages of DSAL’s can be softened
by changing the technological space from grammarware to modelware [10].

In this context, MWACSL is an Aspect-Oriented, Model-Driven approach that proposes
the definition of different DSLs for each aspect at the Platform Independent modeling level.
The acronym MWACSL stands for: Model-driven, Web applications, Aspect-oriented and

1 This work has been partially supported by the Spanish Ministery of Science and Technology:
TIN2007-64119 and TIN-2007-67843-C06-03.

Proceedings of the 13th Conference on Software Engineering and Databases, JISBD 2008, pp. 385-390. ISBN: 978-84-612-5820-8 © Authors

385



Concern Specific Languages (a capital letter mix-up of those letters related to the main
areas that are combined in the approach). In MWACSL one application is composed of a
primary model and a set of aspect models, each one expressed in a different Domain Specific
Aspect Language (DSAL). We think that separation of concerns should be maintained as
far as possible, but sometimes, some concrete platforms imposed by customers don’t allow
a clear separation of concerns. This paper introduces how to deal with a concrete aspect
(navigation) at PSM and code. Spring Web Flow (SWF)2 is the concrete platform that has
been chosen because it is a framework that allows the definition and representation of user
interface flows in web applications in a clear and simple way and it offers a clean separation
between navigation and user interface.

The paper is structured as follows: Firstly, a general overview of MWACSL is given in
order to put the reader in context. Then, in Section 3, a running example is shown. After
that, the process of generating the web flow code is detailed focusing on two phases: the
Spring Webflow metamodel definition(Section 4), and the model to text transformations
(Section 5). Afterwards, the related work in areas such as aspect oriented modeling, domain
specific aspect languages and web engineering is analyzed. Finally, the paper is concluded
and some future lines of work are pointed out.

2 MWACSL

MWACSL is a model-driven, aspect-oriented approach for developing software in web envi-
ronments in which aspects are defined using DSLs. Thus, one application is composed of a
primary model and a set of aspect models (each one expressed in a different DSAL). AOSD
gives us a horizontal separation, while MDA provides a vertical separation thanks to its
different levels of modeling. At the PIM level, aspects are defined separately, each one in
its own language. These aspects should be defined separately as far as possible, but this is
not always viable. Let’s suppose that our customer wants us to implement the application
using the Java Server Faces (JSF) framework. The problem here is that JSF does not pro-
vide a clear separation between user interface and navigation. In this case, at the PIM level
MWACSL will deal with two different DSALs, one for navigation and another one for user
interface, while at the platform specific level, has to work with these two aspects mixed.

In this concrete paper, the focus is on the lowest levels, that is, PSM and code. Contrary
to the example introduced above, we will show an aspect that is clearly separated, even in
the lowest levels. This assumption has been made to focus only in the top-down generation
process, without any interference from the weaving process. In MWACSL the weaving process
implies the integration of several DSALs. As DSALs are defined by means of metamodels,
the aspect composition model is transformed into a metamodel composition problem, that
is out of the scope of this paper.

3 A running example

This section introduces an example to give a clear idea about the kind of web flows that can
be defined in this platform. Figure 1 depicts a flow for a simple e-shopping3 web application
that has been adapted from [2]. A flow defines a user dialog that responds to user events
and drives the execution of application code to complete a business goal. In the flow defined
in the Figure 1, users must fill in two consecutive forms for ordering a product, one with his
personal data and another one with information about the order itself. Thus, a flow with

2
See: http://opensource.atlassian.com/confluence/spring/display/WEBFLOW/Home

3
This model can be downloaded from: http://www.lsi.us.es/~reinaqu/org.mwacsl/springWF/

models/Shopping.springwf

386 13th Conference on Software Engineering and Databases



four states has been defined for implementing this dialog. The graphical notation used in
the figure is similar to the UML notation for state diagrams. The notation is explained in
more depth in [15]. The states have been stereotyped in order to highlight its type.

Fig. 1. A graphical Spring Webflow model for a simple e-shop application

The two first states represent two views corresponding to the two forms that users must
fill in. An annotation has been link to the first ViewState. The <<render>> stereotype
makes reference to the method that is in charge of setting up the personal data form. The
form is specified by means of the <<view>> stereotype. In this way, users are asked to
enter their personal data by filling in this form. When users trigger the event Submit by
pushing a button, the entered data should be validated. In this flow, the data binding and
validation is made by means of an action associated to the submit transition, that leads
to the orderDetailsView state, which displays the second form. In this form users are
asked for data related to the order. These data can be bound and validated with an action
associated to the buy transition. Before ending the shopping, a test is made to check if a
user has cancelled the operation. This test is executed by means of a DecisionState. If the
operation has been cancelled, the flow will be routed to the orderDetailsView state and
the process will be repeated. If the result of the test evaluation is false, then the flow ends
its execution. The EndState has also associated a view to report users the shopping result.

4 From PSM to Code: The Spring Webflow Metamodel

For space reasons only a general overview of the metamodel is given in this section. An
exhaustive explanation can be found in [14]. The Spring Webflow metamodel that has been
defined at the PSM level for code generation purposes and it has been implemented as
an Ecore metamodel4. The central part of the metamodel is the Flow metaclass, which
represents a navigation flow between web pages. A flow is composed of a set of states. These
states are modeled as the abstract State metaclass. One flow has only one initial state (where
the execution starts), but it can have more than one final state. The initial state is modeled
by means of the initialState reference which relates Flow and TransitionableState.

4 If the reader is interested, the metamodel can be downloaded from: http://www.lsi.us.es/

~reinaqu/org.mwacsl/springWF/metamodel/SpringWF1.0.ecore

38713th Conference on Software Engineering and Databases



The metamodel comprises four abstract metaclasses (Transition, State, Transition-
ableState and Action), whose aim is to structure the metamodel; twenty-one ordinary
metaclasses; one enumeration (ScopeType), to cope with the scope of variables and parame-
ters and three invariants that are linked as annotations to the Mapping, Variable and Tran-

sition metaclasses. Figure 2 shows these OCL constraints expressing that two attributes
cannot be used at the same time, for instance, the invariant in the Transition context
specifies that the properties on and onException can not be assigned simultaneously.

context Mapping

inv: (self.target = null or

self.target.size()=0)

xor (self.targetCollection = null or

self.targetCollection.size()=0)

context Variable

inv: (self.class = null or

self.class.size()=0)

xor (self.bean = null or

self.bean.size()=0)

context Transition

inv: (self.on = null or

self.on.size()=0)

xor (self.onException = null or

self.onException.size()=0))

Fig. 2. OCL constraints defined in the SWF metamodel

5 From PSM to Code: The Model to Text Transformation

The model to text transformation has been implemented with MOFScript5. The reasons for
selecting MOFScript are: firstly, MOFScript has been specifically designed for the transfor-
mation of models into text files; secondly, it can handle metamodel descriptions as Ecore
files; thirdly, transformations can be directly executed from the Eclipse environment; and,
finally, it provides a way of generating the output as text files.

Our MOFScript transformation is named SpringWF2XML and it has an input parameter
that makes reference to an input model6. This model should conform to the Spring Webflow
metamodel defined in Section 4, and it is supposed to be error free, that is, if the model
has been generated by means of an editor, the editor should be in charge of doing all the
model checking process. Furthermore, if the model has been generated automatically from
an aspect model at the PIM level, then the model to model transformation has to produce
a correct model. One example of input model is the one depicted in Figure 1 7.

The result of executing the SpringWF2XML transformation is an XML file with the flow
definition. The starting point for the MOFScript transformation is the Flow metaclass. One
transformation comprises a set of rules, which are similar to functions. They can have a
context (that is, the metamodel element for which the rule is defined), a return value (the
context and the return value are optional), and a body that will contain a set of sentences.
In general, at least one rule has been defined for each metaclass. The rule is in charge of
generating the piece of XML code associated to the concrete metaclass. For example, the
rule associated to the DecisionState metaclass is in charge of generating the piece of XML
code shown in Figure 1. However, there are some metaclasses without any associated rule.
This is because the piece of XML that has to be generated from the metaclass can vary
depending on the path followed to reach the metaclass while navigating the metamodel.
Thus, for example, there are two different composition relationships that can lead us to a
Result: there can be a Result of an EvaluateAction, but also a Result can be referred to

5 Avalaible at: http://www.eclipse.org/gmt/mofscript/
6 For space reasons the transformation code has not been included in the paper, but the whole set

of rules can be downloaded as an .m2t file from: http://www.lsi.us.es/~reinaqu/org.mwacsl/

springWF/transformations/SWF2XML.m2t
7 In addition to the shopping model described in Section 3, some extra models for testing purposes

can be downloaded from: http://www.lsi.us.es/~reinaqu/org.mwacsl/springWF/models/

388 13th Conference on Software Engineering and Databases



a method in a BeanAction, and the piece of generated XML is different in both cases. The
solution is that the generation has been associated to the container metaclass in order to be
able to evaluate the followed path.

Rules also can have any number of parameters. In our transformation, all the defined
rules have a parameter named prof. This parameter is used for formatting purposes. It
indicates the depth level of the element, which will determine the tabulation spaces.

6 Related Work

There are related works in several areas of knowledge: aspect-oriented modeling (AOM),
domain specific aspect languages (DSALs) and web engineering (WE). AOM proposals can
be grouped into two families: those whose goal is modeling programs that have been imple-
mented in an aspect-oriented platform [8, 13, 4]; and those that are centered in structuring
models according to the different aspects that compose them [1, 5]. Our approach is more
aligned with the second family. However, as we think that current aspect-oriented languages
are another implementation platform, some of the proposals that belong to the first family
can be used in MWACSL at the PSM level, in order to, in a later phase, generate AspectJ or
HyperJ code. Furthermore, AO approaches can be classified into asymmetric and symmetric
approaches [9]. MWACSL is an asymmetric approach that it is very close to [5]. The main
difference is that they use a general-purpose approach for defining aspects.

In the area of DSALs, many of the published papers are focused on the specification
of a new DSAL that is specified in the grammarware technological space [10]. The most
important difference with our approach is that MWACSL deals with these aspects in the
modelware technological space.

Regarding to web engineering and navigation, it has to be highlighted that most of the
approaches tackle the navigation design separately. In general, it can be said that there
are two different views of navigation: a behavioral perspective and a structural perspective.
While the proposals that design navigation from a behavioral perspective are based on the
navigation operational semantics, the ones centered on a structural perspective are focused
on structuring information in contexts that represent coherent pieces of information that are
interconnected by means of links with meaning. The first ones are based on state machines,
and the second ones on the composition and structural relationships among the navigation
structures. The models introduced in this paper address the behavioral perspective because
it has been imposed by the implementation platform. Some proposals that deal with the
behavioral perspective of navigation are [18, 3].

Finally, there are also some proposals that are mixing AOSD, MDSD and WE [19, 16,
6, 17]. If we focused on the navigational aspect, [7] addresses the navigation routing code as
an aspect, while [6, 17] deal with navigational concerns during early stages.

7 Conclusions and further work

MWACSL is an aspect-oriented, model-driven approach for the web domain, based on the
modeling levels proposed in the OMG’s MDA approach. MWACSL also deals with differ-
ent DSALs. This paper is focused on a single aspect, navigation, at the Platform Specific
Modeling level. For implementing this aspect, a metamodel for Spring Webflow (the imple-
mentation platform) has been defined. A set of model to text transformations have also been
implemented, and some models for testing purposes have been created.

As further work, it has already been pointed out that we are working on defining a
spring web flow editor with the Topcased modeling framework in order to generate it. We
also want to address other aspects and frameworks, such as persistence and Hibernate [12],
respectively. Our idea is that users can count with a high level aspect library.

38913th Conference on Software Engineering and Databases



Referencias

1. S. Clarke and E. Baniassad. Aspect-Oriented Analysis and Design: The Theme Approach.
Addison-Wesley Professional, 2005.

2. S. Devijver. Spring Web Flow Examined. JavaLobby, 2005.
3. P. Dolog and W. Nejdl. Using uml and xmi for generating adaptive navigation sequences in

web-based systems. In Proc. of UML 2003 - Sixth International Conference on the Unified
Modeling Language: Modeling Languages and Applic, number 2863. Springer-Verlag Lecture
Notes in Computer Science, October 2003.

4. J. Evermann. A meta-level specification and profile for aspectj in uml. In AOM ’07: Proceedings
of the 10th international workshop on Aspect-oriented modeling, pages 21–27, New York, NY,
USA, 2007. ACM Press.

5. R. France, I. Ray, G. Georg, and S. Ghosh. Aspect-oriented approach to early design modeling.
IEE Software, 151:173–186, June 2004.

6. S. Gordillo, G. Rossi, A. Moreira, J. Araújo, C. Vairetti, and M. Urbieta. Modeling and com-
posing navigational concerns in web applications. requirements and design issues. In Proc. of
the Fourth Latin American Web Congress, 2006. LA-Web ’06., pages 25–31, Oct. 2006.

7. M. Han and C. Hofmeister. Modeling and verification of adaptive navigation in web applications.
In ICWE ’06: Proceedings of the 6th international conference on Web engineering, pages 329–
336, New York, NY, USA, 2006. ACM Press.

8. Y. Han, G. Kniesel, and A. B. Cremers. A meta model and modeling notation for AspectJ. In
Omar Aldawud, Grady Booch, Jeff Gray, Jörg Kienzle, Dominik Stein, Mohamed Kandé, Faisal
Akkawi, and Tzilla Elrad, editors, The 5th Aspect-Oriented Modeling Workshop In Conjunction
with UML 2004, October 2004.

9. W. Harrison, H. Ossher, and P. Tarr. Asymmetrically vs. symmetrically organized paradigms
for software composition. In Lodewijk Bergmans, Johan Brichau, Peri Tarr, and Erik Ernst,
editors, SPLAT: Software engineering Properties of Languages for Aspect Technologies, March
2003.

10. I. Kurtev, J. Bézivin, and M. Aksit. Technological spaces: An initial appraisal. In CoopIS,
DOA’2002 Federated Conferences, Industrial track, 2002.

11. C. V. Lopes. D: A Language Framework for Distributed Programming. PhD thesis, College of
Computer Science, Northeastern University, 1997.

12. Red Hat Middleware. Hibernate web page, 2006.
13. I. Philippow, M. Riebisch, and K. Böllert. The Hyper/UML approach for feature based software

design. In Omar Aldawud, Mohamed Kandé, Grady Booch, Bill Harrison, Dominik Stein, Jeff
Gray, Siobhán Clarke, Aida Zakaria Santeon, Peri Tarr, and Faisal Akkawi, editors, The 4th
AOSD Modeling With UML Workshop, October 2003.

14. A. M. Reina Quintero. Spring web flow metamodel 1.1. http://www.lsi.us.es/~reinaqu/

org.mwacsl/springWF/doc/SWF_MM_1.1.pdf, February 2008.
15. A. M. Reina, J. Torres, and M. Toro. El metamodelado de un framework: Spring web flow.

Actas de los Talleres de las Jornadas de Ingeniera del Software y Bases de Datos (TJISBD),
1(3), 2007.

16. A. Schauerhuber, M. Wimmer, W. Schwinger, E. Kapsammer, and W. Retschitzegger. Aspect-
oriented modeling of ubiquitous web applications: The aspectWebML approach. In ECBS
’07: Proceedings of the 14th Annual IEEE International Conference and Workshops on the
Engineering of Computer-Based Systems, pages 569–576, Washington, DC, USA, 2007. IEEE
Computer Society.

17. P. Valderas, V. Pelechano, G. Rossi, and S. Gordillo. From crosscutting concerns to web systems
models. In Proceedings of the Web Information Systems Engineering WISE 2007, volume 4831,
pages 573–582. Springer-Verlag Lecture Notes in Computer Science, 2007.

18. M. Winckler and P. A. Palanque. StateWebCharts: A formal description technique dedicated
to navigation modelling of web applications. In J. A. Jorge, N. Jardim Nunes, and J. Falcão
e Cunha, editors, DSV-IS, volume 2844 of Lecture Notes in Computer Science, pages 61–76.
Springer, 2003.

19. G. Zhang, H. Baumeister, N. Koch, and A. Knapp. Aspect-oriented modeling of access control
in web applications. In M. Kandé, D. Stein, O. Aldawud, T. Elrad, J. Gray, and J. Kienzle,
editors, 6th International Workshop on Aspect-Oriented Modeling, March 2005.

390 13th Conference on Software Engineering and Databases


