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Transversal inhomogeneities in dilute vibrofluidized granular fluids
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The spontaneous symmetry breaking taking place in the direction perpendicular to the energy flux in a dilute
vibrofluidized granular system is investigated, using both a hydrodynamic description and simulation methods.
The latter include molecular dynamics and direct Monte Carlo simulation of the Boltzmann equation. A
marginal stability analysis of the hydrodynamic equations, carried out in the WKB approximation, is shown to
be in good agreement with the simulation results. The shape of the hydrodynamic profiles beyond the bifur-
cation is discussed.
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[. INTRODUCTION direction perpendicular to the energy flux. No theoretical ex-
planation for this phenomenon is provided in Ri], al-
Granular materials are assemblies of macroscopic pathough the effect of the different parameters controlling the
ticles dissipating their energy through inelastic collisiphs  behavior of the system is discussed in detail, on the basis of
They exhibit a very rich phenomenology that is only partially the simulation results. For a two-dimensional closed system
understood. One of the most peculiar behaviors of granulain the absence of gravity, a transversal continuous spontane-
systems, which has attracted a lot of attention in recent yearsus symmetry breaking has also been preditféd\ot at all
is their tendency to spontaneously develop strong spatial insurprisingly, the gradients are now sharper next to the elastic
homogeneities. In many different situations, the densitywall, opposite the energy source. This is consistent with the
shows a sharp profile that is not induced by the boundarypositions that the holes must have in systems with a separat-
conditions. This phenomenon is often referred to as a clusng wall in order to observe symmetry breaking with and
tering effect[2], since high density regions coexist in the without a gravitational field acting on the system. The work
system with regions where the density is very low. by Livne et al.[7] is restricted to the nearly elastic limit and
In vibrated granular systems, clustering effects show up irit is based on a numerical marginal stability analysis of the
many cases as a spontaneous symmetry breaking in the diydrodynamic equations. The predictions of this analysis are
rection parallel to the vibrating wall. Consider a gas enclose¢dompared with numerical solutions of the hydrodynamic
in a box that is being supplied energy through a vibratingequations with the appropriate boundary conditions.
wall located atx=0. There are no other external forces act- In this paper, the bifurcation predicted in REF] will be
ing on the system. The box is divided into two equal com-considered again. There are several reasons for that. First,
partments by a wall along the axis starting at a certain hydrodynamic equations derived from the Boltzmann equa-
distance from the vibrating wall. At sufficiently low average tion for smooth inelastic hard disks and valid, in principle,
density, the hydrodynamic fields are symmetric on both sidefor arbitrary inelasticity will be used, thus somewhat extend-
of the partition, but above a critical average density, whiching the previous results. However, it must be pointed out
depends on the value of the restitution coefficient, an asymthat, in steady states of granular systems such as the one
metry in the number of particles at each side of the containetonsidered here, there is a coupling between gradients and
occurs[3]. This asymmetry has been shown to be associatethelasticity. As a consequence, for these states small gradi-
with a bifurcation of the solution of the hydrodynamic equa-ents imply in practice also small inelasticity. Secondly, in-
tions describing the state of the system. stead of a numerical analysis of the stability of the solutions
A similar symmetry breaking has been observed in a sysef the hydrodynamic equations, an analytical study, based on
tem in the presence of a gravitational force acting inthe the WKB approximation, will be presented here. One of the
direction. In this case, the system is unboundedfe0, and  main advantages of this approach is that the dimensionless
the partition has a hole at a certain height. Again, an asymeontrol parameter governing the bifurcation phenomenon is
metry in the number of particles in the two compartmentsclearly identified. A third motivation for the present work is
develops if a control parameter, dependent on the amplitud® report simulation results, both from molecular dynamics
of the vibration and the degree of inelasticity, is larger than aand also from Monte Carlo simulation of the Boltzmann
critical value[4,5]. equation, showing the existence of the predicted transition.
Symmetry breaking in the direction parallel to the vibrat- Since these simulation techniques do not contain any exter-
ing wall has also been observed in systems without any pamrally introduced hydrodynamic concept, they provide a di-
tition of the container. Sunthar and Kumarg#] have re- rect proof of the existence of continuous symmetry breaking,
ported molecular dynamics simulation results showing theand a test of the theoretical predictions. Attention will also be
presence of convection rolls and phase separation into coepaid to the form of the hydrodynamic profiles beyond the
isting dense and dilute regions in a granular system in théifurcation. This leads to a deeper understanding of the de-
presence of gravity. The phase separation takes place on trelopment of the instability. In any case, it is clear that the
surface of the vibrating wall and, as already indicated, in thevork in Ref.[7] opened the way to more systematic investi-
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The plan of the paper is as follows. In Sec. II, the hydro- 70o(T) =5 8

dynamic description of the one-dimensional state of a low

density vibrofluidized granular gas will be briefly summa- The functionsk* w*, and* depend only on the constant
rized. The analytical expressions for the hydrodynamic proggefficient of normal restitutiom characterizing the inelas-

gations of this instability, such as the one in this paper. 1 (mT) 12
r

C)

files are given. This state is the starting point for the margina{icity of collisions. Their explicit expressions are given in
leads to a second order linear differential equation. The
requires consideration of three different cases, depending on
d aT\ @ aT p?
h ) ) . | Ko~-o + — Ko~ —{*—=0.
ily. Simulation results are presented and compared with the IX\ Tax] o dy\ T ay 70
found. The last section contains some final remarks, as we ext, we specify the boundary conditions. We consider that
elastic collisions and very low density. and, therefore, supplies energy to the system. This energy is
Il. BASIC EQUATIONS AND THE REFERENCE STATE respectively, are at rest. For the sake of simplicity, collisions

stability analysis developed in Sec. lll. Linearization of the Refs.[9] and[10], and will not be reproduced here. By using
hydrodynamic equations around the one-dimensional staige gphove expressions we get from E($.and (2)
WKB solution of the closed problem posed by this equation ap  Ip
and the corresponding boundary conditions is built up. This o W= )
the values of the parameters characterizing the system. From
the WKB solution, the marginal stability curve follows eas- (k* —u*)
theoretical predictions in Sec. IV, where an order parameter (10
characterizing the transition is defined. A good agreement Tt‘
as a comparison of the results derived here with those in Re e system halll particles enclosed in a rec_tangula_lr bo_x with
. o dimensiond_, andL, . The wall located ak=0 is vibrating
[7] in the common range of applicability, namely, nearly Y
needed in order to keep and sustain a fluidized steady state.
The other three walls, located &t=L,, y=0, andy=L,,
For a steady state without macroscopic flows, the balancgf particles with all four walls are assumed to be elastic.
equations for a two-dimensional gas of smooth inelastic hard hen the mathematical boundary conditions to be imposed

disks of massn and diameter have the form are
.P= aT aT aT
V-P=0, (1) JaT _[9T _[9T o, 11
IX] =1 N yeo Ny
V.q+nT{=0, 2 x Y Y
wheren andT are the number density and granular tempera- k% ﬂ B
ture (with Boltzmann’s constant set equal to unjtyespec- [ (@) =7 ()]} ko(T) 72 x:O_Q. (12

tively. In the low density limit, for a gas described by the
inelastic Boltzmann equation, and to lowest order in the gragquations(11) express that the heat flux must vanish at the
dients(Navier-Stokes ordey the pressure tensé and heat  jmmobile walls, while Eq(12) is the energy balance at the
flux g, for the steady state under consideration, are given byibrating wall. The quantityQ is the rate of energy input
[8,9] through this wall per unit of length. Its calculation in terms
of the parameters defining the motion of the wall has been
P=pl, (3 addressed in several works. Here we will consider the sim-
plest possibility, namely, that the wall moves in a sawtooth
manner with velocity, [10—12. This is a good approxima-

; - ; tion to more realistic motions, as long as the characteristic
| being the unit tensop=nT the hydrodynamic pressure, S ' .
9 P y y P frequency of vibration of the wall is much larger than the

the heat conductivity, angt a transport coefficient that has llisi te of th lecules in its vicinitv. In additi
no analog in the elastic case. These transport coefficients af@''Ston rate ot the gas molecules in its vicinity. in addition,
it will be assumed that the amplitude of the vibration is much

proportional to the elastic heat conductivity(T), smaller than the mean free path of the particles of the gas

g=—kVT—uVn, (4)

Tro(T) next to it, so collective motions in the system are not being
k=r*(a)ko(T), pu=u*(a) e (5)  generated. Under the above conditions, iftli%]
2/ T \12 Q=pvy,. (13
ko(T)=— —) (6) : :
o\ mm The closed mathematical problem defined by E§s-(13)

) _ _ S admits ay-independent solutio = T(x) that has been dis-
Finally, the cooling rate in the same approximation is related:;ssed in detail in Ref[10]. The existence of this one-

to the elastic shear viscosity, by dimensional solution was previously noticed by Grossman
et al.[13]. In the following, we will refer to this solution as
gzg*(a)ﬁ, 7) the reference state and its properties will be characterized
n with a subindexR. The reference temperature profile is
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2 i iti i -
cosh & — &) in qddmon to the reference one. Thus, we introduce a pertur
— | (14)  bation6T(x,y) by

T =T
R(E)=Tor coshé”

whereé, is a dimensionless scaled length defined by
with 8T(x,y)<Tg(X), and search for a solution of this form

o [* dx to Eqgs.(9) and (10) with the boundary condition&l1) and
&= a(a)jo Ar(X)’ (15 (12). Substitution of Eq(21) into Eq.(10) and linearization
in 8T yields
with Ag(X) being the local mean free path, )
&2 1/9InTR\? [Ag)|~ &2
—2+2— E +| = ] oT
Ar(X)= —=——, (16) O&; 23" N o0&
2\/§crnR(x)
4T
and = on op, (22
a(a)= m{* 17) where §p has been defined hy=pg+ dp, &, is the dimen-
16(k* — u*) ' sionless scale introduced in E{.5), and
Moreover, & is the value ofg, for x=L,, i.e.,
fx fx X fy: a(a'):y. (23)
oN A
& =2y2a(a) " (18 _
y Here\ is the average mean free path,
Therefore & is proportional to the number of monolayers of
particles perpendicular to theaxis at restgN/L, . Finally, N = 1 _ (24)
the uniform pressure of the reference state is 2\2on’
D Tor(2£5 +sinh 2£7) 19 n=N/L,L,. Next, we consider factorized solutions of Eg.
R 8\2a(a)olL,cosh &’ (22),
and the temperaturg, g of the gas next to the vibrating wall OT(&x. €)= d(E)¢(&y). (25
's given by The conditions at the boundaries to be satisfied by the func-
e 2 2am| Y2y, tions ¢ and ¢ are
Tor= 5 el)=l——] —. (20
tanh&; W 4 Jdo dep dep

=0, (26)

- | A o
The simplicity of the above results is a consequence of the & =& & £=0 & =&

limiting kind of motion of the vibrating wall considered,
whose only effect is to transfer energy to the grains, without 1( dInTg

inducing any periodic motion in the system. In some previ- 2\ 9¢,
ous studie$13,14], a “thermal” wall, instead of a vibrating
one, was considered at=0. By definition, particles which
collide with a thermal wall leave it with a velocity distribu-
tion corresponding to the temperature of the wall. Although oN
this kind of wall is far from reality for granular systems, its 5; =2+2a(«a) " (28
consideration might be useful for comparison purposes. The X

only change to be mad_e in the above disc_ussion in order tﬂ’/loreover, Eqgs(11) and (12) also imply that it must besp
apply it to a system with a thermal wall is to replace the _q j o "the pressure is not changed by the small perturba-

boundary condition given in E¢412) by the requirement that 0" \when Eq(25) is substituted into Eq22), use of sepa-
the temperaturd yr has the value determined by the wall. ration of variables leads to the equations

As a consequence, the expressions for the hydrodynamic

23"

2
) #(0)+ —) =0, (27)
£=0 £=0

where

profiles remain the same, while E0) does not apply in 2
thi 1 d’e(g)
is case. — =—k?, (29)
¢(&y)  d&
ll. MARGINAL STABILITY ANALYSIS .
. . . . d? 1/dInTg\? [knTg
Our aim now is to investigate whether the system de- —2+2—§ g - ¢(&)=0, (30
scribed in the preceding section exhibits another steady state, dé & Pr
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wherek is the constant of separation. The solution of Eg.wherec, andc, are constants, and
(29) satisfying the corresponding boundary conditions in Eq.

(26) is 9(&x) = V(). (37)
@=Acoské,, (31) Imposing the boundary condition &= ¢; leads to

with A an arbitrary constant. Moreover, the valueskadre . c L

restricted tck=7q/ & , g being an integer. It is important to b(&)= \/—COS d&x9(&0).,
: y D : . 9(&x) &

realize that the low density limit does not imply eithgf

<lor §;<1. In fact, both quantities can be large in a very with ¢ another constant. When the boundary conditiog,at

dilute system. An additional restriction to be required to=0, Eq.(27), is also required, the consistency condition

ST(x,y) is that the total number of particles in the systéin,

(39

is conserved. It is easily seen that this condition is equivalent & 3tanhéy
to tan | *d&g(&)=—F———— (39
0 93(0)cost &
& OT(6x,&y) - follows. The above equation determines the possible values
dgx dgy =0 (32 : . )
Tr(&x) of the parameters for which a WKB solution of the differen-

_ _ _ tial equation(33) exists in the region under study.
Equation(25) with ¢(&,) given by Eq.(31) guarantees that  |f a thermal wall is considered at=0, the boundary con-

this equality is satisfied. dition (27) must be replaced by(0)=0, and instead of Eq.
An equation having a structure similar to E@®0) was (39) we find

obtained in Ref[7] for a dense system in the limit of nearly

elastic collisions, by employing approximate constitutive re- &

lations introduced by Grossmaat al. [13]. While the equa- cosfo d&,9(60=0, (40
tion in [7] was solved using numerical techniques, here we

will use a Wentzel-Kramers-BrillouiWKB) approximation j.e.,

[15] to investigate the possible solutiofis6]. First we use

Eqgs.(14) and(19) to rewrite Eq.(30) as F’; (29+1)m

2 g9 =5, (4D)

d“p(£y) B
dé? +1(6)h(£0 =0, (33 whereq is an arbitrary integer.
X (b) The function £,) is negative everywhere in the sys-
with tem This is the case if(&)<0. Therefore, the region of
parameters being considered is defined by
2 16k2¢; 2cost(£5 — &)
f(&)= - , 2& +sinh 2£
(& cost(&f — &) (2&F +sinh 2£5)? k=k,= §X—*2§X (42)
(34) 272¢;

which is a monotonically increasing function &f in the = The exponential WKB approximation in this case reads
whole interval O<&,<¢&5 .
To construct the WKB exponential approximation of Eq. bE) = by ex f ng’h(g’)
(33) it is necessary to consider three different ranges of pa- x \/Tgx) o XX
rameters, which will be discussed separately in the follow-

ing. b éx
(a) The function €&,) is positive everywhere in the sys- + \/hiexﬁ{— JO d§>’<h(§§)}, (43
tem This is equivalent td(0)>0 or (6x)
with
2§X +sinh 2£5
= 228 coshie: 39 h(g)=—T(&), (42)

and b; and b, arbitrary constants. Imposing the boundary
conditions(26) and(27) leads to the relationship

C1 & .
¢(§x)=—ex+f dg;g(&)} 3 fg* 3tanh&y
N, h h|™dé&nh(&)= . 4
9(éx) 0 (0)°tan . déxh(£y) coshie: (45
+ e exp{ —i fgxdg;g(g;)}, (36)  For a thermal wall ak=0, the above equation is substituted
0

Vg(gx) by

Then, the WKB solution is oscillatory,
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& 25
COSth *d¢, h(&)=0, (46)
and, therefore, there is no WKB solution in this range of 20
parameters.
(c) The function €£,) changes sign in the interval 0 15 |
<E<E. It must bef(0)<0 and f(&)>0. This corre-
. A
sponds to thé interval ¢
10 t
* : * * : *
2&; +sinh 265 e 2&; +sinh 2&7 . @7
2\2&; costt & 2\2¢; . ..
Since f(¢,) exhibits in this case a zero in the integration fi%ﬁai\ii \\\\\\
range, we have to consider separately the regiqrsa and ‘ ‘ \‘f-%‘“""“‘—
&.>a, wherea is the turning point, i.e.f(a)=0. In the Oo,o 0.5 1.0 1.5 2.0
former region, the WKB solution is given by an expression 3

of the form (43), while in the latter it has the forni36). A _ N _

global solution is constructed by matching both WKB ap-  FIG. 1. Marginal stability curve (&). The solid and dashed
proximations through the connection formulas expressing thénes are the WKB predictions for a system driven by a vibrating
iors. Since it is easily seen that the turning point is a simple®lS0 shown are the results from DSM@lled symbolg and MD
(first-orde) zero, a standard application of the theory sufficesPen symbolssimulations. For a given value & , the system

[15]. Then, imposing the boundary conditions gives the f0|_exh|b|ts transversal inhomogeneities in the steady state above the

lowing equation to be verified by the solutions in this range:Ma/ginal curve.
* _ 13 *
tar( o— T 3tanhg; —h°(0)cost&; a practical point of view, we have to start by looking for
4 3tanh§:+h3(0)cosi‘?§§ solutions belonging to cade discussed above. The values
1 . §*y*=7r/k obtained from the solutions of Ed45) are the
= EeXF{ - Zf déh(é)
0

largest value ok for which the problem has a solution. From

, (48) critical values, i.e., they define points on the marginal stabil-
ity curve. Nevertheless, there is no solution for every value
of & belonging to thek interval defining casé. More pre-

where cisely, there is no solution at all for a thermal wall, while it is
) a simple matter to show that the existence of a solution in
& i i ibrati i
f= fa dég(&y). (49) this region for a vibrating wall requires that
. . . ) 1 3 & 1 3tanh§:
The result for a thermal wall at&=0 is given in this case by [h(0)] tanhf *de,hM(g) < Tg* (51
0 cosit &
T 1 a
tar( 0——|=—-ex —ZJ’ d&h(éy) | (500  where
4/ 2 0
hM(g) = lim h(&,). 52
Once we have derived the equations determining the so- (&) Kk, (&) (52

lutions to the boundary value problem, the strategy to build

up the marginal stability curve is as follows. Given a value ofEquation (51) gives &f =0.555. Therefore, solutions for
& , the first question is to see whether there is a bifurcationarger values of} must be found, if they exist, in a different
from the one-dimensional solution, i.e., whether B3) has  region of values ok, namely, in that considered in case

a solution. In case the answer to this question is affirmativewith this procedure, it is an easy task to find the largest value
the smallest value of] for which there is a solution gives  of k (smallest value of}) for which the eigenvalue problem
the point of the marginal stability curve corresponding to thaigefined by Eq(30) has a solution for each value &} , in
value of & . For larger values oty , the one-dimensional the WKB approximation. The marginal stability curve for a
solution is not stable. Suppose a solution of E3p) exists  vibrating wall obtained in this way is given in Fig. 1, where
for a given wave numbek. This value is compatible with we have plotted the critical value, of the asymmetry pa-
many (infinite) values ofé&y , the smallest one corresponding rameterA=L,/L,=&; /& , as a function of¢; . The solid

to the choiceq=1 in the relationship between the possible jine is the WKB solution corresponding to the so-called case
values ofk and&j [see below Eq(31)]. Moreover, the larger b, while the dashed line is from case Note that the solu-
the value ofk, the smaller the value of; associated. The tions from both regions of parameters match rather smoothly
conclusion is that the stability curve is determined by theat & =0.555. Moreover, the critical asymmetdy. is a
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monotonically decreasing function & , growing very fast
when & tends to zero, as expected since the transversal
inhomogeneities must disappear in the elastic limit.

For a thermal wall, we have obtained the result that there
is no solution in regiorb. Therefore, we must search for
solutions belonging to the rangeof parameters. Analysis of
Eq. (50) leads to the result that the equation has no solution 1-5
for & =<1.181. Moreover, Eq(41) has no solution in that 1
region either, implying that, in the WKB approximation, the
transition to the transversally inhomogeneous state requires,
in the case of systems driven by a thermal wall, that the
inelasticity and the number of monolayers at rest be not
small. The dotted line in Fig. 1 shows the marginal stability
curve for a thermal wall. In the limit of larg€; , the curve
overlaps with the one for a vibrated system.

FIG. 2. Three-dimensional plot of the stationary density profile
obtained by the DSMC method for a system with=2 and &}

To test the above theoretical results and also to investigate 1.015. The density is normalized by its average valuand the
the nature of the predicted symmetry breaking, two mordengths with the average mean free pathThe system does not
fundamental descriptions of the system, via the direct simuexhibit gradients in thg direction, i.e., it is in the reference state
lation Monte Carlo(DSMC) method and molecular dynam- (below the marginal stability curye
ics (MD) simulation, respectively, have been considered. Al-

though both are based on a dynamical simulation of the |4 the MD simulations, the density of course plays a rel-
system, their nature is rather different. The DSMC methodyy a0t role. As the interest here is in the low density limit,
provides an algorithm to obtain numerical solutions of theg 411 values of the surface fraction= Nro-2/4L Ly, typi-
. . . . X y
Boltzmann _equation for given initial and boundary condi- o4y of the order of 102, have been used. For fixed given
tions [17]. Therefore, it relies on the validity of a kinetic values ofv. . andL. . a set of simulations have been run
il H X

theory description, namely, the one given by the Boltzmann,, . .o50nding to different widthis, of the system, starting

equation. On the other hand, no hydrodynamic approximag , 5 small enough value. This means that each set of simu-
tions are introduced into the description, so that the valldltyIations corresponds to the same valueédf, as defined in

of a hydrodynamic level of description, as provided for in- Eq. (28), while they differ in the asymmetry parametat

stance by the Navier-Stokes equations, is not taken foji’he simulations of the Boltzmann equation have been car-

granted in this approach. ried out with a similar systematic, the main difference being

The MD simulations follow the motion of the particles of : .
: : that the density plays no role in them. The other parameter
the system as a sequence of free motions and binary colli-

: . . S ) . needed to specify the simulations is the velocity of the vi-
sions[18], i.e., by direct application of Newton’s equations ; o . .

. . : - brating wallvy, . We have verified that, in agreement with the

of motion. Therefore, MD provides the more basic descrip-

tion of the evolution of the system. In this context, it is theory developed in the previous sections, the formation of

important to stress that although the DSMC method also usetgansversal inhomogeneities is not altered by modifying this

“particles” at a formal level, they are not real particles, but Velocity, as long as it is large enough to fluidize the complete

L : L : system.
fictitious ones, which are employed to mimic the ideal dy- All the simulations started from a spatially homogeneous
namics described by the Boltzmann equation. In fact, the b y g

ideal nature of the particles in the DSMC method allows aconﬁgurauon, with a Gaussian velocity distribution, corre-

very high numerical accuracy, since the number of particle sponding to an arbitrary temperature. The simulation is then

used does not affect at all the physical state being simulatezOIIOWecj until the system reaches a steady state, in which the

In particular, the above number is not related to the actua?everal mo_nltored pro_pertles of the SySté'“BaU k|net|_c en-
) ergy, density fluctuations, and hydrodynamic projilée-
density of the system.

) . . . come time independent. Once the system is in the steady
In the following, we will report simulation results ob- i .
. . E . X state, all statistical averages of interest are accumulated. For
tained for the system studied in the previous sections, re; . :

e o the purpose here, the density and temperature profiles pro-

stricting ourselves to the vibrating wall. We have used thevide the relevant information. Let us describe what is ob-
two methods DSMC and MD because they complement one : . .' .

. . . Served in a set of simulations, namely, we are going to
another. For instance, comparison of the results obtained b resent DSMC data from svstems with=0.95 andL
both methods provides a test of the validity of the inelasti — N y o X
Boltzmann equation to describe a system under the physicaf 1O\ This corresponds tg; =1.015. In Fig. 2 the steady
conditions used in the MD simulations. Since the one-wo-dimensional density profile fobL,=20\ (A=2) is
dimensional state has been discussed in detail elsewhesBown in a three-dimensional plot. It is seen that no gradients
[10,13, attention will be focused here on the behavior of thein they direction are present, i.e., the system is in the one-

system in the vicinity of the bifurcation. dimensional reference state. The transversal homogeneity ap-

IV. SIMULATION RESULTS

061302-6



TRANSVERSAL INHOMOGENEITIES IN DILUTE.. . . PHYSICAL REVIEW E 65 061302

1.6 . ' | N
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P00 0020000000000 0060%00000°%800,442000,00000 ‘.“".‘..“”‘.’..
1-2 _ 7 1.2 300000000000000000‘
10 MepgppsSseseuSaupSuSgugeipgSgeigunpanfiaglasy 10 r ..-......----.---.----...--....-..._
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0.6 L L L 0.6 . . . . \
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yA -
Les ot for the Saime systom as n Fig. 1. The curves correep FIG. 5. Density profiles as a function of for several fixed
values ofx, for the same system as in Fig. 1. The curves correspond,g|ues ofx for the same system as in Fig. 4. The curves correspond,
oM DOtom 0 109, XA, B, 0% andl from bottom to top, tax=L,/4, L,/2, 3_,/4, andL,.

pears even clearer in Fig. 3, where the density is plotted as ansversal direction occurs. Moreover, the transversal den-
function ofy for several fixed values of. sity profile near the transition exhibits, as in the case of Fig.

When the widthL, is increased keeping all the other pa- 5, a wavelength equal to twice the width of the system. In the
rameters fixed, a critical value shows up such that gradientéinguage used in Sec. Ill, what is observed is a perturbation
in the y-direction spontaneously develop in the system forwith q=1 (k=ml&}), consistently with our theoretical
larger widths. An example of this is given in Fig. 4, where gnaysis.
the density surface for the same parameters as in Fig. 2, |f the width of the system is increased further, the trans-
except that now.,=26.5\, is plotted. A gradient in the di- versal inhomogeneities grow very fast and, of course, the
rection parallel to the vibrating wall is clearly identified, be- results from the linear marginal stability analysis do not ap-
coming more pronounced next to the opposite wall, as illusply. Simulations show that the density becomes very large in
trated in Fig. 5. The density gradients in this case arene of the corners of the system, away from the vibrating
relatively small, the maximum variation of the density in thewall. The rapid increase of the gradients and the large value
y direction being of the order of 5%. In fact, in all the simu- of the density in a localized region of the system lead us to
lations, both by DSMC and MD, it has been found that onconclude that in this regime a cluster of particles is formed
increasing L, a continuous transition from the one- [7]. Of course, for such a region of parameters the hydrody-
dimensional state to a state with weak inhomogeneities in theamic profiles obtained from DSMC and MD simulations are
quite different, as the former considers the particles as points
while the latter assigns them a finite diameter, implying that
the density is bounded by the close-packing value.

Once the appearance of transversal inhomogeneities has
been observed by visual inspection, it is desirable to have a
“guantitative” criterion to establish whether the system is or
is not transversally homogeneous. This is equivalent to iden-

4777

77 /]
A A 74T

IIII ity /,,,;;;IIII//;Z,’ZIII;ZZ;/I

7 "
7 Wl gy, 00y,
e g s

Z tifying an order parameter to characterize the transition.
i gy g . i g e
/"’//I///',",’I/II//',',’,’;;III/;;;,%//Z' 110 Since there may be gradients in both directions, the identifi-
;;,’I/;I'//” 5 cation of such a parameter is not at all a trivial task. The one
ity ' we have chosen is defined as follows. First, we introduce the
% dimensionless quantity,(y) by
n(x,y)
px(y)= -1 (53

—1 Ly
% fo dyn(x,y)

FIG. 4. Three-dimensional plot of the density profile obtained
by the DSMC method for the same system as in Fig. 2, with thef the system is transversally homogeneopgy) is inde-
only difference that now.,=26.5.. The system is now above the pendent of botx andy, and equal to zero. When transversal
marginal stability curve and transversal gradients are clearly obinhomogeneities are present, it depends of coursehon, as
served. can be guessed from Figs. 4 and 5, it also depends. on
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FIG. 7. DSMC results for dimensionless order paramgtgras

FIG. 6. DSMC results for the dimensionless functip(y),  a function of the asymmetrs for a system with¢ =1.015 (the
defined by Eq(53), for the same system as in Figs. 4 and 5. Thedashed line has been included as a guide for the. @ysecond
different curves correspond to equally spaced valuex of the  order nonequilibrium bifurcation is clearly identified.

interval [ 3L,/4,L,].
order of magnitude larger than its typical value in the refer-

Nevertheless, the simulation data indicate that this depensnce state, which is determined by the noise level. For the
dence is rather weak, at least near the transition. As an exystems used in the DSMC method, this latter value is of the
ample, in Fig. 6 the functiop,(y) has been plotted for the order of 103, so that a system has been considered as trans-
same system as in Figs. 4 and 5. The different lines correyersally inhomogeneous whéfy |~ 102, which implies de-
spond to four different values of equally separated, in the viations from homogeneity of the order of 1%. This leads in
interval [3L,/4,L,]. This is the region where the transversal the case of Fig. 6 to an estimatidn= 2.5+ 0.1 for the criti-
gradients are larger. From the figure it follows that the cal asymmetry.
dependence is essentially scaled out in the definition of By changing the initial parameters of the system and re-
px(y). It must be mentioned, however, that if the whole peating the above procedutk, has been computed for dif-
range of variation ok is considered, some dependencexon ferent values of* . The results from the DSMC simulation
shows up. In any case, the departure from zero of the averagge represented by the filled symbols in Fig. 1. The agree-
value of p,(y), p(y), over a certairx interval, next to the ment between the theoretical predictions and the simulation
vibrating wall and not too large to avoiddependence, pro- data is rather good, although a systematic deviation appears,
vides a good criterion to distinguish transversally inhomogeiarger for smalleré) . When evaluating the comparison, it
neous systems from homogeneous ones. The results to heust be taken into account that the simulations only provide

discussed in the following have been obtained using the inan upper bound foA .. When the system is very close to the
transition point, the time required to go from the transver-

terval[3L,/4,L,].
The above discussion, the theoretical analysis, and theally homogeneous state to the inhomogeneous one may be
numerical results, like those illustrated in Fig. 6, suggest thafoo large to observe the transition during the simulation time.

a good order parameter may be given by the absolute valug any case, it is fair to say that the hydrodynamic equations
and the WKB approximation provide an accurate description

of the first Fourier componef,| of p(y). In fact, we have

verified that the absolute value of the Fourier transform ofof what is observed in the simulations.

this quantity exhibits an abrupt maximum for the first com-  The results discussed up to this point were obtained from
ponent when transversal gradients begin to build up in th&SMC simulations. Just to illustrate how MD simulations
system. The behavior ¢f | as a function of the asymmetry lead to an equivalent scenario, we present next some results
A in the vicinity of the transition point, is shown in Fig. 7 for for a set of MD simulations withe=0.925, »=10"2, and

the same parameters considered in Figs. 2—6. First of all, it,=1000. For these values, it ig; =0.281. In Fig. 8 a
must be noted thdtf,| varies in a continuous way through three-dimensional plot of the density profile is shown for

the transition, although it grows very fast when one goes into=6.4. The system exhibits gradients in the transversal direc-
the inhomogeneous region. This is the typical behavior of theion, increasing again as we move away from the vibrating
order parameter of a nonequilibrium second order phase tranvall. However, the density gradients are very small, the
sition[19]. The continuous character [f;| introduces some maximum deviation from homogeneity being of the order of
arbitrariness in the determination of the transition paigt 10%. That means that the system is close to the transition,

We have made the choice, somewhat arbitrarily but consisgrobably in the region where a linear approximation around
the steady state still provides an accurate description.

tently, that the transition takes place whigp| becomes an
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FIG. 8. Three-dimensional plot of the stationary density profile . . . . . .
obtained by MD simulation. The particles are disks of diameter 0 100 200 300 400 500 600
the area fraction isyv=10"2, the coefficient of restitutiona y/o
=0.925, L,=1000, and A=6.4. Small transversal gradients are ) ) —
present, and the system is in the vicinity of the bifurcation. FIG. 10. MD results for the dimensionless functipfy), for

several values of the asymmetdy, as indicated in the figure. All

When the asymmetry is increased further, gradients in th&e Other parameters of the system are the same as in Figs. 8 and 9.
perpendicular direction become sharper, and a state with . e t_rgnsmon to a state inhomogeneous inytiiérection is clearly
sharply peaked density is observed. This is illustrated in Fig'. entified.

9 for A=7. In Fig. 10, the quantity is shown for different
simulations belonging to the set we are considering, i.e., the
differ only in the value ofA. The continuous transition from
the reference state to the transversally asymmetric one |
clearly observed, as well as the dramatic increase of thauP
transversal gradients when the system gets well inside the
unstable region. In conclusion, MD results are in full quali- V. DISCUSSION AND CONCLUDING REMARKS
tative agreement with the DSMC ones. Even more, the criti- .
cal values of the asymmetry parameters obtained from M%r In this paper, the spontaneous transversal symmetry

are in very good quantitative agreement with those followin 7eak|ngf|ntﬁ wpratedfgrz:ngl?r fllwd %redu_:tted b% L'me?tl'
from DSMC calculations, as seen in Fig. 1, where they ar | was further investigated for low density systems. It was

represented by the open symbols. This provides a proof Oﬁhown thgt the transition ta}kes places both in MD simuila—
the validity of the kinetic theory description as given by the tlons and in syst_ems described by the Boltzmann equation.
Boltzmann equation for dilute inelastic gases. Moreov_er, there_ls_a reasonab_ly good agreeme_nt betwe_e.” the
It is worth emphasizing that points in Fig. 1 were obtainedtheorepcalI predictions, foIIo_wmg frqm_ a marginal stability
from DSMC and MD simulations by changing the values ofanaIyS|s of the hydrodynamic description of the system, and

. the results from MD and also from the numerical solution of
@ ando_N/Ly_ to s_ample d|ff_erent values @t  The fact that the Boltzmann equation by the DSMC method. This refers to
A, obtained in this way varies smoothly wiéj supports the

. - . the values of the critical asymmetry as a function of the
theoretical prediction that the dgpendence on the d'ﬁerenéontrol parameter, and also to the shape of the hydrodynamic
parameters ofA. occurs through it. This has also been rati

" profiles in the vicinity of the symmetry breaking.
To characterize the transition, an order parameter quanti-

fied by considering two sets of simulations having different
Yalues of bothe and oN/Ly, but leading to the same value

f & . The same critical asymmetry parameter was found,
porting the scaling predicted by the theory.

“\\ fying the initial setup of transversal inhomogeneities has
“‘x\“%{ been introduced. In terms of this parameter, t'h.e Fransition
0“8“‘ 3“ \ presents the feqtures of a sgc_ond order nont_aqu_lhbnum phase
4 ‘::‘ Q : :\\ ; transm_on. In_ this _context, it is worth mentlo_nlng tha_t no
3 "0‘ &*:3‘138::2‘3%%% 3 ;ubcrmcal bifurcations have begn .observgd in the simula-
> '3:“3‘:3::?‘33:2233?2?232‘3:3::‘:. tions. Moreover, _for states well inside th_e _mstablll_ty curve,
1! ,023330.§::§2$2§§Ei%ziiifz’ozs:::~:~z~. = the density profile exhibits a characteristic nonlinea®
& .‘:%titititititiéiiiiiii‘i’z%‘.‘:{:‘.’z‘?:” shape. On the other hand, in Rdf7], nonlinear two-
SSSSISISIIILASIIRIRIZIEZT 60 dimensional states inside the linear stability region were
":3??3:??::’ found at high densities from the numerical solutions of the
'0::::::2::::.,. x/fo hydrodynamic equation. Of course, there is no contradiction
y /o 200 SRS in this, since our analysis was restricted to low density gases.

&

In Ref.[7] an analytical expression for the marginal stability
FIG. 9. The same as in Fig. 8 but with=7. Quite large trans-  CUrve in a certain limit is given. In our notation, the limit

versal gradients growing in thedirection are identified. The sys- considered i} <1, and the expression reads=1.6/}2,
tem is above the marginal stability curve. where we have neglected subleading terms in the density. An
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asymptotic analysis of the WKB results in this paper,granular gag2], we believe this relationship deserves more
namely, of Eq.(45), leads toA.=1.63/£ , i.e., a qualita- work. The information we have up to now about each of the
tively different behavior. Given the asymptotic character oftwo phenomena is not the same. We know the mechanism
the region where these expressions are derived, it is hard t@sponsible for the clustering instabilitthe growth of the
discriminate between the two results from the simulationshear mode relative to the granular temperatuyat not the
data. final state attracting the system. On the other hand, the exis-
The work reported here shows once again the generalitience of a transversally inhomogeneous steady state has been
of spontaneous symmetry breaking phenomena in granulastablished for vibrated systems, but the detailed mechanism
fluids. They occur in isolated as well as in driven granularresponsible for the development of instabilities from the ref-
systems, in dense and dilute flows, with and without gravi-erence state is not known.
tational field acting on the particles, i.e., they appear as quite
a ubiquitous effect. Interestingly, all the indications are that
they always have a collective origin, which is fully captured ACKNOWLEDGMENT
by a hydrodynamic description.
Although it may be thought that the spontaneous symme- This research was partially supported by the Diregcio
try breaking discussed in this paper must be closely relate€eneral de Investigaaio Cinetfica y Tecnica (Spain
to the clustering instability exhibited by a freely evolving through Grant No. PB98-1124.
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