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Abstract: In this work, a comprehensive experimental analysis on the performance of a 50 cm2

polymer electrolyte membrane (PEM) fuel cell is presented, including experimental results for a
dedicated load cycling test. The harmonized testing protocols defined by the Joint Research Centre
(JRC) of the European Commission for automotive applications were followed. With respect to a
reference conditions representative of automotive applications, the impact of variations in the cell
temperature, reactants pressure, and cathode stoichiometry was analyzed. The results showed that a
higher temperature resulted in an increase in cell performance. A higher operating pressure also
resulted in higher cell voltages. Higher cathode stoichiometry values negatively affected the cell
performance, as relatively dry air was supplied, thus promoting the dry-out of the cell. However,
a too low stoichiometry caused a sudden drop in the cell voltage at higher current densities, and also
caused significant cell voltage oscillations. No significant cell degradation was observed after the
load cycling tests.

Keywords: fuel cell; polymer electrolyte membrane; polarization curve; load cycling; New European
Driving Cycle

1. Introduction

Proton exchange membrane or polymer electrolyte membrane fuel cells (PEMFCs) are
electrochemical devices that convert chemical energy directly to electrical energy with higher efficiencies
than the ones corresponding to the Carnot thermodynamic cycles. Fuel cells are increasingly being
deployed in the energy generation sector and also in the automotive sector, with major manufacturers
focusing on both purely electric and PEMFC-based power-trains. For a further commercial deployment
of the technology, it is widely recognized that both cost reductions and durability improvements are
required [1,2]. One of the factors influencing fuel cell costs and durability is the operating conditions
of the cell and the fuel cell stack, and it has therefore resulted in major research activities both in terms
of experimental analysis [3–6] and development of modeling and simulation tools [7,8]. Optimizing
the power output by adjusting the operating conditions is leading to more compact stacks, with a
consequent reduction in materials and associated cost. In the same manner, adequate operating
conditions help avoid excessive membrane drying/flooding or membrane temperate gradients that
eventually lead to degradation [1,9]. More compact designs also enable a more suitable integration of
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fuel cell stacks in vehicle power trains and other applications such as unmanned aerial vehicles or
unmanned underwater vehicles.

In most applications involving transient operation with load changes such as the ones mentioned
previously, the operating conditions also vary and the operation is usually more severe to the fuel cell.
When testing fuel cells at a lab-scale, testing should resemble real conditions, if possible. Several fuel
cell testing protocols are available in the literature and comparisons among them have been developed
in the work of Bloom et al. [10]. Regarding laboratory testing of fuel cells intended for automotive
applications, the Joint Research Centre (JRC) of the European Commission (EC) has established a
testing protocol based on realistic conditions being encountered in such applications [11], which has
been agreed upon by different major manufacturers. This is therefore of significant importance when
experimentally testing automotive fuel cells.

Based on the JRC testing protocol mentioned [11], this work presents a contribution covering
experimental studies of a 50 cm2 PEM fuel cell, including the experimental results for a load cycling
test. Cell performance, electrical efficiency, and cycling degradation studies are included in the
experimental analysis.

2. Materials and Methods

2.1. Materials

The experiments were carried out in a fuel cell test bench equipped with a programmable load
(ADAPTATIVE POWER 5L18-24, Adaptive Power Systems, Irvine, CA, United States) and the necessary
Balance of Plant (BoP) to test a PEM Fuel Cell, including anode and cathode humidifiers based on DI
water tanks (bubblers), and anode and cathode back-pressure regulators. The test bench was able to
control the cell temperature and pressure, and the anode and cathode process variables such as volume
flow, relative humidity (RH), pressure, and temperature. The test bench is depicted in Figure 1.
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Figure 1. Test bench (a) front view showing the main components; and (b) back view showing the 
BoP (Balance of Plant). 

The fuel cell used in the experiments was a 50 cm2 single cell from ElectroChem Inc. (Woburn, 
MA, United States), with graphite bipolar plates featuring a cross-flow serpentine flow field (Figure 
2). Vertical channels corresponded to the cathode side and the horizontal channels to the anode side. 
A Nafion 112 membrane (DuPont, Wilmington, Delaware, United States) was used in the 
experiments, where the catalyst layers were 1.0 mg Pt/cm2 in both anode and cathode. Toray 
TGP-H-060 GDLs (gas diffusion layers, GDLs by Toray Industries, Inc., Tokyo, Japan) were placed in 

Figure 1. Test bench (a) front view showing the main components; and (b) back view showing the BoP
(Balance of Plant).

The fuel cell used in the experiments was a 50 cm2 single cell from ElectroChem Inc. (Woburn,
MA, USA), with graphite bipolar plates featuring a cross-flow serpentine flow field (Figure 2). Vertical
channels corresponded to the cathode side and the horizontal channels to the anode side. A Nafion 112
membrane (DuPont, Wilmington, Delaware, United States) was used in the experiments, where the
catalyst layers were 1.0 mg Pt/cm2 in both anode and cathode. Toray TGP-H-060 GDLs (gas diffusion
layers, GDLs by Toray Industries, Inc., Tokyo, Japan) were placed in the cell, without the micro porous
layers (MPL). Silicon gaskets were used to ensure a tight configuration. On the outer sides of the cell
film, heaters (Figure 2, bottom) as well as external air fans were placed in order to allow for an accurate
temperature control.
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Figure 2. (Top) Graphite bipolar plates (anode side and cathode side) with serpentine flow field.
(Bottom left) External fan (black) and film heater attached to the terminal plates for temperature control.
(Bottom right) Thermocouple inserted into the cathode monopolar plate for cell temperature measurement.

2.2. Methods

The experimental testing methods that have been followed in the research work are described in
the JRC harmonized testing protocols for automotive single fuel cells [11].

The objective of such protocols was to establish a methodology for a better comparison of the
performance and durability achieved by different fuel cells (single cells). Operating conditions
representative of automotive applications were proposed (the so-called reference conditions,
as indicated in Table 1). The protocol also established expected ranges for the operating conditions for
variables such as temperature, reactants pressure, and humidification, or stoichiometry. Load cycling
experiments (applying a repetitive load profile to the cell) were also described in the protocol [11] and
have been used in the current research work. The load cycle proposed in the protocol was based on the
New European Driving Cycle [12].
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Table 1. Operating conditions defined for the fuel cell (according to the testing protocol [11]).

Operating
Condition

Reference
Conditions

Test
Temperature

Test
Pressure

Test Cathode
Stoichiometry

Cell Temperature (◦C) 80 70, 85 80 80
Anode Pressure (kPa) 1 250 250 160; 190 250

Cathode Pressure (kPa) 1 230 230 140; 190 230
Anode RH (%) 50 50 50 50

Cathode RH (%) 30 30 30 30
Anode Stoichiometry (-) 1.3 1.3 1.3 1.3

Cathode Stoichiometry (-) 1.5 1.5 1.5 1.3, 2.0, 3.5
1 Absolute pressure.

The experimental tests carried out are presented in Table 1, where the reference conditions
represent the benchmark conditions used for comparison, and the set of tests carried out were grouped
by the variable being modified (cell temperature, reactants pressure, and cathode stoichiometry).
All tests represent deviations from the reference conditions, which would result in changes to both cell
performance and durability.

As indicted in Table 1, 80 ◦C was defined as the reference cell temperature. The cell temperature
was measured at the center point of the side of the cathode monopolar plate in the single cell. As stated
previously, a constant temperature was maintained during all experiments by means of electric heaters
placed on both sides of the fuel cell (when external heating was required), or by means of external
cooling fans placed on both sides of the cell (when external cooling was required, particularly at higher
current densities).

A set of polarization curves in galvanostatic mode (including both forward and backward current)
was performed for each condition depicted in Table 1. Before performing each set of polarization
curves, the cell was conditioned according to the specifications provided in the testing protocol [11].
The set points for the polarization curves are included in Appendix A.

Regarding the load cycling tests, the objective was to carry them out in a laboratory environment
and at a single cell level, by varying the power demands during vehicle operation, which is known to
be a relevant source of stress on MEA performance and durability [13,14]. In the experiments, the load
cycling tests were performed with the operating conditions corresponding to the reference conditions.
As this was carried out at a laboratory-scale and not an industry-scale, only five cycles were repeated.
The set points corresponding to the load cycling test and the procedures followed are described in
Appendix B.

3. Results

This section presents the main results obtained in the experimental research performed. The cell
performance corresponding to the reference conditions in Table 1 is presented first, followed by the
different tests that were carried out (temperature, pressure, and cathode stoichiometry). Finally,
the load cycling test is presented. An in-depth discussion of the results is introduced in Section 4.
The raw experimental data of this work is described in Appendix C.

3.1. Cell Performance under Reference Conditions

The reference conditions were analysed first in order to provide a benchmark or reference curve
for the cell performance.

3.1.1. Cell Conditioning

Cell conditioning is a mandatory step before any measurement of the polarization curve, and it
aims at ensuring that the cell voltage achieves a constant value before starting any subsequent test.
Once the desired operating conditions are defined for the cell, the criterion of constant voltage is
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defined by monitoring the cell voltages during a specified period [11], where variations must be within
a range of +/−5 mV during the last hour, before the finalization of the cell conditioning.

In the experiments carried out, the conditioning step took around 3 h. The time evolution of the
cell voltage during the conditioning step is depicted in Appendix D (Figure A2), showing the +/−5 mV
criteria according to [11].

3.1.2. Polarization Curves

Once the cell conditioning step was finalized, the polarization curve experiment was started by
following the set points indicated in Appendix A (Table A1). Both forward and backward curves were
recorded, and the complete experiment was repeated three times in order to verify the reproducibility
of the results. The resulting polarization curve corresponding to the reference conditions is depicted in
Figure 3, where error bars were included to account for the three experiments carried out. The three
polarization regions (activation, ohmic, mass transport) are clearly shown in the curve, and a hysteresis
phenomenon can also be seen. The fact that the forward curve (increasing current) was below the
backward curve (decreasing current) clearly indicates that there is a certain degree of dry-out in
the cell [15,16], for the cell components and operating conditions specified. The polarization curve
corresponding to the reference conditions was used as a benchmark case for the analysis of how
deviations in the operating conditions affected the performance of the cell.
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3.2. Temperature Tests

The operating temperature of the cell is an important parameter that affects both performance
and durability. Membrane degradation can be accelerated by high temperature and high temperature
gradients, and heat management highly influences the water management in the cell, resulting
in excessive flooding or dry-out, depending on the temperature conditions. The objective of the
temperature tests was to assess the cell performance variations when operating at the temperature
values indicated in Table 1. The resulting polarization curves corresponding to the temperature tests in
Table 1 are depicted in Figure 4, together with the reference condition curve, for comparison.
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3.3. Pressure Tests

The objective of the pressure tests was to assess the cell performance variations when operating
at the reactants pressure values indicated in Table 1. Pressure variations affected the fuel cell
performance due to different phenomena, such as variation in open circuit voltage (OCV), fuel cross-over
due to pressure differences, effects caused by the different partial pressure of reactants and water
(electrochemical kinetics, liquid/vapor equilibrium), and mass transfer phenomena [11].

The resulting polarization curves corresponding to the pressure tests in Table 1 are depicted in
Figure 5, together with the reference condition curve, for comparison.
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3.4. Cathode Stoichiometry Tests

The objective of the cathode stoichiometry test was to assess the cell performance variations when
operating at the reactants pressure values indicated in Table 1. The air mass flow being supplied to
the cell had a clear influence in terms of oxygen transport, liquid water removal capability, and also
membrane dry-out, depending on the relative humidity of the air. It also generated parasitic losses,
as usually the air supply is managed by a compressor in final applications.

The resulting polarization curves corresponding to the cathode stoichiometry tests in Table 1 are
depicted in Figure 6, together with the reference condition curve, for comparison.
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3.5. Load Cycling Tests

The aim of the load cycling test was to assess the durability of the fuel cell under realistic driving
conditions, characterized by load changes. Durability is a key parameter of fuel cells [13,14] and
5000 h are required for the fuel cells to be suitable for automotive applications (as defined by the
DOE targets [17]). The cell durability can be evaluated by applying a repetitive load profile and
consequent measuring of the performance degradation (cell voltage decrease vs. time or vs. number of
cycles). The load cycling test defined in the protocol [11] is based on the New European Driving Cycle
(NEDC) [12], although with appropriate modifications to account for the particular operation of fuel
cells in automotive applications. Details on the load profile and the procedures for the application of
the load cycling to the fuel cell are included in Appendix B.

The load cycling experiment was performed with operating conditions corresponding to the
reference conditions. As this was carried out at a laboratory-scale, only five cycles were repeated.
The set points corresponding to the load cycling test and the procedures followed are described in
Appendix B. The evolution of the cell voltage during the execution of the load cycle test is shown
in Figure 7, where the superposition of the cycles is provided in Figure 8, for a better comparison
between cycles.

As indicated in the testing protocol [11], the polarization curves were measured both before the
load cycling test and after the load cycling test. Both polarization curves are presented in Figure 9.
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4. Discussion

4.1. Effect of the Operating Parameters on the Cell Performance

The results presented in Section 3 describe the performance of the fuel cell and the effect of
different operating conditions. The IV curve of the reference conditions clearly features the three
polarization regions (activation, ohmic, and mass transport). The hysteresis phenomenon was also
remarkable in all four curves presented, where in all cases, the forward curve (increasing current) was
below the backward curve (decreasing current), clearly indicating that there was a certain degree of
dry-out in the cell [15,16] for all operating conditions defined. In the discussion below the polarization
curve corresponding to the reference conditions was used as a benchmark for the analysis of how
deviations in the operating conditions affected the performance of the cell.

The effect of increasing the cell temperature was significantly positive, as shown in Figure 4.
The cell voltage increased with increasing temperature for all current densities. The main reasons are
the reduction of the activation losses, as the exchange current density increased with temperature [15].
Reactant diffusion also improved with the increase in temperature. In addition, the outlet gases at
higher temperature featured a higher capability to carry water out of the cell. However, operating the
cell at high temperatures would also reduce the durability of the membrane [1], especially in case of
poor heat management where high temperature gradients would occur.

The results of the pressure tests in Figure 5 shows a significant drop in cell performance,
when operating at lower pressures (160 kPa in anode and 140 kPa in cathode, in absolute pressure).
This was due to the fact that higher pressures have a positive effect in reducing the activation losses,
as the exchange current density increased with pressure. In addition, water content of the membrane
also increased with increase in pressure [15]. One interesting indication for this was that the slope
of the polarization curve in the ohmic polarization region was steeper for the low pressure case
(thus indicating a lower membrane conductivity due to a lower membrane water content). Reactant
diffusion was also promoted at higher pressures. It is on the other hand noticed in Figure 5 that the
case with 190/190 kPa presented a slightly better performance than the reference case with 250/230 kPa.
The reason was most likely due to the enhanced cross-over effect for the case with positive pressure
gradient between the anode and the cathode, adversely affecting the cell performance.

The cathode stoichiometry tests showed the importance of the cathode air flow in the final
performance of the cell. In the cases analysed, a low stoichiometry λc = 1.3 presented a good
performance at low current densities, but as soon as the current density increased, the cell voltage
dropped dramatically, which was probably caused both by oxygen starvation at the cathode electrode
and by a low liquid water removal capability in the flow-field channels. From the reference conditions
of λc = 1.5, further increasing the cathode stoichiometry resulted in a lower cell performance (Figure 6),
which was caused by the excessive dry-out resulting from the fact that air was supplied in relatively
dry conditions (RH = 30%, Table 1) [18]. Thus, increasing the air stoichiometry promoted the drying of
the cell, resulting in a lower performance. Operating at lower current air flow rates had the additional
advantage of reducing parasitic losses produced by the electrical consumption of the air compressor.
At the highest current density (1.2 A/cm2), the cell voltage for λc = 2.0 was, however, higher than
at λc = 1.5. This was probably caused by the improved liquid water removal from the bipolar plate
channels, at a higher air stoichiometry.

In addition to the overall cell performance measured in the polarization curve in Figure 6, the cell
voltage stability was another aspect of interest that was influenced by the cathode stoichiometry.
The time evolution of the cell voltage at 1.0 A/cm2 for all cathode stoichiometry tests is depicted
in Figure 10. High oscillations in the range of 20 mV were observed for the lowest stoichiometry
(λc = 1.3), which was due to the lower oxygen concentration at the cathode electrode and due to the
lower liquid water removal capability from the flow-field channels. Increasing the air volume flow
rate stabilized the cell voltage, where the case with λc = 3.5 presented a very stable cell voltage with
oscillations <2 mV.
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4.2. Load Cycling Tests

Regarding the fuel cell load cycle test, it was observed that the cell behavior was correct and it
did not show any kind of voltage degradation with the number of cycles (Figure 8, top), although
the number of cycles tested was obviously too low to allow for a final conclusion of the durability of
the cell. At medium-high cell voltages the differences among cycles were very low (<5 mV) whereas
at higher current densities and lower voltages, the differences among cycles increased up to 20 mV
(Figure 8, bottom), although with no direct relationship with the cycle number. According to the results
in Figure 8 there was no clear cell voltage degradation associated to the load cycling tested. Another
observation was that at higher loads the cell voltage presented more oscillations, which was caused by
the liquid water flooding [19–21]. When comparing the polarization curves before cycling and after
cycling, almost the same curve was obtained, although a slight decrease in the cell voltage at high
current densities was observed for the curve after cycling (less than 15 mV). This would in principle
indicate a slight degradation, but it was expected to be caused by a slight decrease in the water content
in the membrane in the forward curve (with increasing current) as the backward curves were exactly
the same for both tests (after cycling with respect to before cycling).

The number of cycles tested did not allow to extract final conclusions on the cell degradation for a
final application. Thus, a discussion is presented on the data identified in the literature. As introduced
previously, degradation is a major research field in PEMFCs [1] and several accelerated stress test
(ASTs) have been derived [2]. ASTs for automotive applications can be found in the literature, as in
the work of Mukundan et al. [22] or Stariha et al. [23], using the U.S. DRIVE-FCTT drive cycle.
In Mukundan et al., a combination of chemical/mechanical ASTs was developed, where the relative
humidity was also applied to the cycles at OCV [22]. Regarding the application of the NEDC to assess
fuel cell durability, it is worth mentioning the works by Han et al. [24] and Mayur et al. [25,26].

Regarding cell durability assessment with the NEDC, Han et al. analyzed the durability of a
Nafion 211 25 cm2 short stack of three cells in vehicle operation, at temperatures of 55 ◦C and 75 ◦C [24],
where a significantly higher degradation was observed for 75 ◦C. The recovery protocol detailed in [11]
was also applied every 100 h. A total of 300 h of stack operation were recorded, which accounted
for around 800 cycles out of the 1400 cycles defined in the original test protocol [11]. The voltage
degradation rate determined was in the range 100–200 µV/h at 55 ◦C and 200–650 µV/h at 75 ◦C,
after 300 h of operation (in both cases with higher values at higher current densities).

In the work of Mayur et al. [25], a multi-timescale modeling was developed, where at the cell level,
a CFD (computational fluid dynamics) model was used along with a degradation model. The CFD
model simulated a Nafion 112 membrane with 0.8 g Pt/cm2, operating at 250 kPa, 85 ◦C and 100% RH,
with 1.3 and 1.5 anode and cathode stoichiometry, respectively. A total of 20,000 cycles were simulated
(equivalent to 6,555 h of real drive), resulting in a degradation of 172 mV (26 µV/h). In a following
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work [26], the model was used to assess degradation with NEDC and also the Worldwide Harmonized
Light Vehicles Test (WLTC). The Pt loading was 0.15 mg/cm2, and the operating conditions were
maintained at the same levels, as in previous works of the authors. The model results showed that
degradation under the NEDC load cycling was more severe than under the WLTC load cycling, mainly
due to the longer exposure to idle conditions that resulted in higher Pt dissolution [26]. The end-of-life
of the cell was predicted to occur after ~440 h for NEDC and ~510 for WLTC.

4.3. Cell Electrical Efficiency

Finally, the overall cell electrical efficiency was determined for the reference conditions in Table 1.
The cell efficiency was calculated as:

η = cell power output (W)/(H2 mass flow · LHVH2) (1)

where LHVH2 is the low heating value of hydrogen. The results for the reference conditions are shown
in Figure 11, together with the cell power curve.
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The maximum cell efficiency was 0.46, at low current densities (0.3 A/cm2), whereas the operating
condition for maximum power output occurred at 1.2 A/cm2 (with an electrical efficiency of 0.30).
The anode stoichiometry was λa = 1.3, so that 30% of the hydrogen was vented, and thus the efficiency
could be significantly improved by operating the cell in an anode dead-end mode. It is known that
efficiencies increase for decreasing currents [15]. In Figure 11, efficiency dropped for very low currents,
and this was mainly because the hydrogen mass flow controllers of the test bench operated at a
minimum flow rate of 1.0 NL/min, thus, supplying a higher flow rate of hydrogen than that required
for very low currents.

5. Conclusions

This work presents a contribution covering experimental studies of a 50 cm2 PEM fuel cell,
including experimental results for a load cycling test. Cell performance for a comprehensive set of
operating conditions, cell electrical efficiency, and cycling degradation studies were included in the
experimental analysis.

The results showed that a higher temperature resulted in an increase of the cell performance.
Pressure also positively enhanced the cell voltage, although a cross-over effect and a consequent
performance drop seemed to appear at an anode overpressure of 20 kPa. Higher cathode stoichiometry
values negatively affect the cell performance, as relatively dry air was supplied, thus, promoting the
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dry-out of the cell. However, a too low stoichiometry caused a sudden drop in the cell voltage at higher
current densities.

No significant cell degradation was observed after the load cycling tests, although the low
number of cycles carried out did not allow us to reach a final conclusion on the cell degradation for a
final application.
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Appendix A

The polarization curve set points for the forward and backward curves defined for the experiments
according to [11] is presented in Table A1.

Table A1. Polarization curve set points (forward and backward curves) based on [11].

Set Point ID Current Density (A/cm2) Dwell Time (s) Data Acquisition Time (s)

1 0.00 60 30
2 0.02 60 30
3 0.04 60 30
4 0.06 60 30
5 0.08 60 30
6 0.10 60 30
7 0.20 200 30
8 0.30 200 30
9 0.40 200 30

10 0.60 200 30
11 0.80 200 30
12 1.00 200 30
13 1.20 200 30
14 1.00 200 30
15 0.80 200 30
16 0.60 200 30
17 0.40 200 30
18 0.30 200 30
19 0.20 200 30
20 0.10 60 30
21 0.08 60 30
22 0.06 60 30
23 0.04 60 30
24 0.02 60 30
25 0.00 60 30

Appendix B

The complete test as defined in [12] consists of repeating the specified load cycles to the cell for
500 h (1400 cycles), which would correspond to a one year utilization of the vehicle, and 80 daily
minutes. The cycle comprises periods of acceleration, deceleration, and constant speed.
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Each test must start defining the desired operating conditions and performing the required
conditioning step [11]. After this, the cell performance at the Beginning of Test (BoT) is evaluated
by measuring a polarization curve (according to the set points indicated in Appendix A). The load
cycles defined in Table A2 are then carried out. The protocol states 50 consecutive cycles (5 cycles were
carried out in this work, as the test was intended for laboratory-scale tests). After the first load cycling
block, a new polarization curve must be measured and compared to the one recorded at BoT, in order
to measure the degradation rate (µV/h). The 50 cycling steps and polarization curve recordings are
repeated until the 1400 driving cycles are completed [11].

The dynamic load cycling test set points defined for the experiment according to [11] are presented
in Table A2.

Table A2. Fuel cell dynamic load cycle set points, based on [11].

Step Time (s) Dwell (s) Load (%)

1 0 15 0.0
2 15 13 12.5
3 28 33 5.0
4 61 35 26.7
5 96 47 5.0
6 143 20 41.7
7 163 25 29.2
8 188 22 5.0
9 210 13 12.5

10 223 33 5.0
11 256 35 26.7
12 291 47 5.0
13 338 20 41.7
14 358 25 29.2
15 383 22 5.0
16 405 13 12.5
17 418 33 5.0
18 451 35 26.7
19 486 47 5.0
20 533 20 41.7
21 553 25 29.2
22 578 22 5.0
23 600 13 12.5
24 613 33 5.0
25 646 35 26.7
26 681 47 5.0
27 728 20 41.7
28 748 25 29.2
29 773 68 5.0
30 841 58 58.3
31 899 82 41.7
32 981 85 58.3
33 1066 50 83.3
34 1116 44 100
35 1160 21 0.0

According to protocol [11], the 100% load value was obtained by averaging the two current values
(forward and backward curves) corresponding to 0.65 V. This was done (Figure A1) with a result of
0.675 A/cm2 (corresponding to 33.75 A).
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