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The dynamical behavior of a kind of models with hierarchically constrained dynamics is investigated. The
models exhibit many properties resembling real structural glasses. In particular, we focus on the study of
time-dependent temperature processes. In cooling processes, a phenomenon analogous to the laboratory glass
transition appears. The residual properties are analytically evaluated, and the concept of fictive temperature is
discussed on a physical basis. The evolution of the system in heating processes is governed by the existence of
a normal solution of the evolution equations, which is approached by all the other solutions. This trend of the
system is directly related to the glassy hysteresis effects shown by these systems. The existence of the normal
solution is not restricted to the linear regime around equilibrium, but it is defined for any arbitrary, far-from-
equilibrium, situation.
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[. INTRODUCTION Palmeret al. [7]. This will be done in a very simple, but

In recent years, there has been quite a considerableatural, way: the coupling between the levels varies in time
amount of work in models in which glassy behavior is gen-because the probability of a cluster configuration allowing
erated not by quenched disorder, but by kinetic constraintgelaxation of a particle in the next level depends on the tem-
The kinetic restrictions are responsible for the slow relaxperature. On the other hand, neither the number of particles
ation, since the state of a particle or a group of particles caim a given level nor the length of the clusters “facilitating”
only change if some condition of its environment is fulfilled. the relaxation depends on the temperature. They are consid-
In particular, “facilitated” models have been considered, ered as quantities defined in the coarse-grained description of
both for structural glassesl-5] and for granular systems the system introduced to model the physical problem at
[6]. The characteristic feature of facilitated models is that ehand.
particle(spin can only change its state if a certain number of  Let us note that hierarchical models can also be applied to
its neighbors is in an excited state. Also, hierarchically conthe analysis of nonthermal systems, such as granular materi-
strained models have been used to study stretched exponedls in the dense regime. For those materials, thermal energy
tial relaxation in glassef7]. In these models, the system is is not enough to make the system explore the phase space of
structured in levels and a particle in a given level can onlyconfigurations. Then, the system must be externally excited
make a transition if a given cluster of particles in the lower— for instance, vibrating it — in order to be able to evolve.
level is in a certain subset of configurations. Then, the dyin these situations, the role of temperature is played by the
namics of the several levels are coupled, and the characteintensity of the external driving. If the stationary state
istic relaxation times increase with the level index. Hierar-reached by the system in the long-time limit can be described
chically constrained dynamics may be relevant for thoséoy Edward’s theory{20,21], the compactivityX, which is
complex systems in which the time evolution of the slowestanalogy of the temperature in thermal systems, will be a
modes is controlled by the relaxation of the fastest ones. Thigunction of the intensity of the external force. Then, by ex-
gualitative picture is adequate to describe, among other prolploiting the analogies of Edward’s theory, i.e., substituting
lems, proteins relaxatio8] and the densification of powders volume by energy and compactivity by temperature, it is
and structural glasses at high presq@d0]. Very recently, possible to incorporate nonthermal systems in our formula-
a kind of hierarchically constrained dynamics has beertion.
shown to exhibit, in quite a natural way, logarithmic relax-  Processes in which the temperature is time dependent are
ation [11]. This kind of “anomalous,” highly nonexponen- physically relevant because they can be used to study some
tial, decay is observed in a wide variety of complex systemscharacteristic dynamical aspects of glasses. For instance,
including spin glasses [12,13, granular materials when a supercooled liquid is cooled down to very low tem-
[9,10,14,15, structural glassegl6—18, and protein models peratures, a laboratory glass transition is observed. A dra-
(8,19 matic change in the behavior of the system takes place, and it

The aim of this work is to study the dynamical behavior departs from the equilibrium curve, getting “frozen” in a
of a general class of hierarchically constrained models whefar-from-equilibrium state. This transition appears as a con-
submitted to more complicated processes. In particular, weequence of the fast increase of the relaxation time with de-
are interested in the behavior of a system with hierarchicatreasing temperature. In order to characterize the cooling
constraints when the temperature changes in time, whicprocess, experimental physicists often use the residual value
makes the coupling between the levels time dependent. Thaf the relevant physical properties, i.e., the difference be-
consideration of time-dependent temperature processes riveen their actual values over the cooling curve and the
quires an extension of the original model as formulated byalue obtained by extrapolation of the equilibrium curve to
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the very-low-temperature regig@2,23. If the system is re- results obtained here are more general than the derivations in
heated from the nonequilibrium state, it returns to equilib-Refs.[27,28].

rium for high temperatures, but it follows a different curve  The organization of the paper is as follows. In Sec. Il the
from the cooling one, giving rise to hysteresis effects. Thishierarchical model is introduced, and the exact evolution
phenomenon is related to the “nonlinearity” of glassy relax- €quation for the average spin is obtained. By introducing a
ation: the approach towards the equilibrium curve depend§'ean-field approximation, this equation can be closed. Af-
on the configuration of the system, measured by the so-callerwards, a specific, but quite general, choice for the func-
fictive temperaturd22—24. Narayanaswami's theory pro- tions d_eflmng t.he. model is made. This gllows us to introduce
vides a phenomenological explanation of this behaj@@— & continuous limit in WhICh the rglaxatlon of Fhe system at
25]. Interestingly, a similar behavior has been found in vi-constant temperature is solved in Sec. Ill. Time-dependent
brated granular materials when the tapping intensity is varie€Mmperature processes are considered in Sec. IV, where the
in a cyclic way[26], although the hysteresis effects are moredeneral solution for the evolution of the probability distribu-
evident when the heating process begins in a loosely packdiPn and the average energy are obtained. The general solu-
state, referred as to the “irreversible’” branch in the experi-tion is similar to the expression proposed by Narayanaswami
ments. on a phenomenological badi22,24,23. Section IV is de-

We will start from a very general hierarchical spin model, voted to th_e analysis of Hilbert's _expansion_, which is valid in
in which pseudospins are organized into levels, labeled by ai1€ Very-high-temperatures regime. Cooling processes are
indexn. The pseudospins are assumed to correspond to sonféldressed in Sec. V where, for the sake of simplicity, a con-
coarse-grained description of the system. They can take onfgF€te cooling law is studied, for which the residual properties
two values, representing, for instance, two possible densitied'® analytically calculated. A qualitative analysis of the
of a certain small subvolume of the system. One pseudospiglassllke transition is presented inSec. V. It gllows us to give
in leveln+ 1 can only flip between the two possible values if V€T good estimates of the residual properties and leads to
a cluster ofu, spins in leveln is in a given subset of con- the introduction of the concept of fictive temperature in a
figurations. This is the basic characteristic of hierarchicallyV€ry natural way. The behavior of the system when it is
constrained models as introduced in REf], and it slows reheated from low temperatures is con3|dered in Sec. VI. The
down the relaxation in levei+ 1, as compared with that of Main role played b_y the normal solution for the understand_—
level n. Here we will consider the simple choice that all the iNg Of the hysteresis effects shows up. Moreover, the analysis
spins in the cluster must be in the Gexcited state. The clearly |nd|cates that the rg!ev_ance .of the normal solutlor_] is
exact dynamical equation for the evolution of the pseu_not rgstncted to near nglybnum situations. Fmally, a dis-
dospins involves very complicated moments of the probabil€USSion of the main points in this work is given in Sec. VII.
ity distribution. To get an exactly solvable model, a “mean-
field” approximation will be introduced. Then, the 1l. DYNAMICS OF HIERARCHICALLY CONSTRAINED
characteristic relaxation time, of level n is seen to increase MODELS
both with the index labeh, due to the hierarchical constraint,

and also with decreasing temperature, since the configura; In this section a general _kmd .Of spin model with h|era_r-
. . chically constrained dynamics will be introduced. We will
tions allowing the system to relax become less probabl

) ocus on the evolution of the average value of the spin,
when the temperature is lowered.

Some exact dynamical results for systems described witHVh'Ch is supposed to be the relevant variable. For instance,

master equations with time-dependent transition rates arg 2 thermal system it will be directly related to the mean

known. In particular, the existence of a “normal” solution, ]?rgg:jgoyﬁ] -(I—:g?\nt,)electl;sssigggsiftirI:v:?; Stgge;gzotf; ;ne?r:u(?gi of
i.e., a solution of the master equation that is approached by 0.2 ...n._. The degrees of freedom in levemwill be

all the others, has been proved on a very general hag]s iy o
The main required conditions are the irreducibility of the represented b, pseudospinsg;™=£1,i=12,... Nn.

Markov process for long enough times and that the transitior] '® Hamiltonian of the system is assumed to have the form
rates be externally controlled, so that they do not depend on

Nnax N (n)
the probability distribution of the system. Moreover, it has H:h§x zn m(™ m(n):l+0i . 2.
been established that the normal solution tends to the equi- Ai=oi=1 ' ' ' 2

librium curve for very high temperatures in continuous heat-

ing processef27]. The linear correction of the normal solu- Note thatmi(”) is the occupation number of the “up(+1)

tion with respect to the equilibrium curve has been computedtate of the corresponding site. In order to write E41) we
using Hilbert’s method28]. It is not evident whether these have supposed that there is no interaction between the pseu-
results still hold when approximations are introduced in thedospins, but there is an “external fieldH. For a thermal
dynamics of the system. In particular, in “mean-field”-type system,H gives the energy of a given microstate of the
approximations, the demonstrations in R¢7,28 are not  system, while for a nonthermal system, like a powder, it
valid, since the transition rates become functionals of theould be interpreted as the volume of a given, mechanically
probability distribution function. Nevertheless, we will show stable, configuration of “grains’[20,21]. Using the termi-

that all the above mentioned properties apply to our simplinology for thermal systems, the average value of the dimen-
fied model. This is a good test of the plausibility of the sionless energy per spin over the ensemble of systems con-
approximations carried out and perhaps an indication that theidered is
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where n-1
1+ (o)
(M= (M) = TI (2.3 n
n+l

is the probability that théth spin of level be in the up state,
N=ZS"mN, is the total number of pseudospins, and the an- FIG. 1. The framed spin in levei, o{™, has a nonvanishing
gular brackets denote statistical ensemble average. probability of changing its state only if the framed cluster of spins

The system is considered to be in contact with a heat batff leveln—1 are in the state shown in the figure, i.e. all of them up
at temperaturd, so that the equilibrium average value of the (+1)- In this example, we have takén=i—2 andu,-1=5.
pseudospins does not depend eitheri mor onn, and it is

given by V(o) =[af @)a; N0)- e )
kitwun_1—1
1 X (o) ]Yin-1 8,n-1) 2.8
(a}ez<ai(”))e:—tan?‘(_r—*). 2.9 ()] jﬂki AV (28

where §;; is the Kronecker delta. This expression implies
Here T* is a dimensionless temperature, afit=2kgT/h,  that the spinc{" needs, in order to flip, that all the spins
kg being Boltzmann’s constant. For the sake of concisionpelonging to a cluster of length,,_, starting at a given spin
we will drop the asterisk in the following. The above averagek; of level n—1 must be in the ug+1) state. Besides, the
value of spin follows from the equilibrium probability for the characteristic flip rate of the spin is the average of the char-

“up” state of any spin, acteristic flip rates of the spins belonging to the cluster de-
termining its possibility of change. This restricting condition

e utr is schematically depicted in Fig. 1. Note that the possibility
Pe= f?e?:m- (2.5 of a given spin in leveh to flip is restricted by the state of a

set of clusters in all levels’<n, the number of clusters
_ involved in each level increasing as decreases. The hier-
In the limit of infinite temperature or zero external field, both grchical constraint implies that the configuration with all the
states of the pseudospins are equiprobaples 1/2, and  spins in the down € 1) state is completely absorbent; i.e.,
(0)e=0. From Eq.(2.2), it follows that the equilibrium the system does not evolve in time from that configuration.
value ofe is We are interested in the time evolution of the average spin
o™, which is given in Glauber dynamics §g9]
€e= Pe- (2.6 q
. . (o)== 2c"W"(0)), 29
For granular materials, the role of the temperatiras dt
played by the compactivity20,21], which is linked to the o ) _ _
intensity of the perturbation, allowing the system to explorend substitution of Eqs2.7) and(2.8) into this expression
the configuration space. yields
The dynamics of the model is formulated by means of a d
master equation Wlth smgl_e-spln—fh_p GIau_ber tran_smon rates _<Ui(n)>: _ < [a(khfl)(a)a(kh;ll)(o), ..
[29]. Let us consider the flip of a given spdff“) . This tran- dt ' '

sition connects a given configurati@nof the whole system _
J J Y Xa'TD (@)Y 1(0—(a),)

with the configurationR{" ¢, where R(" is the operator ki tn-1

which rotates the spim(”), keeping all the other spins the Ki+pmn_1—1

same. The transition rate for the flip of the spiff” in con- x I 68,00 +1> , (2.10
figuration o is i=ki b

where we have taken into account that?)2= +1 for all i,
l+ai(”)tan)‘(£”. (2.7) n. This equation is rather involved, since it couples the evo-
T lution of (¢{) to moments of the probability distribution
containing an increasing number of spins of all the levéls
The characteristic relaxation rate™ of the spinc{™ de-  such that @n’<n. The levels Bn’<n—2 enter into the
pends on the configurationr of the system through the hi- equation through the rateg" (o). Then, we introduce at
erarchical constraint this stage a sort of “mean-field” approximation for the tran-

1
WP (o) =5 a"(a)
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sition rates, which is closely related, in spirit, to the seminalthe hierarchically constrained dynamics, spins in lavell

work of Palmeret al. [7]. Within this coarsening dynamics, reach equilibrium over a time scale in which spins in level

it is reasonable to expect that spins in lemedvolve over a  have not begun to evolve. However, as a consequence of the
time scale quite larger than that characteristic of levell.  last approximation, the configuration with all the spins in the
This means that spins in level-1 change many times their down state is no longer absorbent.

state before a transition in level takes place. Thus, we From Eq.(2.15, an equivalent equation can be written for
replace the product of the Kronecker deltas in &8 by its  the evolution of the probabilitp(™ of the up state in levet,
average value, i.e., by the probability’(”*l)(a(k?’l’ defined in Eq.(2.3), i.e.,

=+1,...0(;) _1=+1) that all u, ; spins of the q
given cluster are in the up state, ap(")= —an(p™—pe), (2.1

(n) —r,(n=1) (n—1) (1) Ypn— . L. .
ai’(o)=[ay “(0)ay i(0)--apy ) (o))t a,, being the characteristic relaxation rate of lemgl

X P ( ("~ n-1
ki ]
(n-1) an=pg",  Gn=2 4. (2.17)
=+1,... 0D =+1). (2.19) =0

Moreover, we will restrict ourselves to situations where thereEqu.atlon (2'16). implies _that, due to the _hle_rarchlcgl con-
straints, the spin relaxation slows down with increasing level

is spatial homogeneity within each of the levels, so that the sincea, is a decreasing function af, becausep,<1
e . ; g n , o<1.
dependence on the specific site considered in a given Iev%quation(Z.lG) is the main result in this section. In the fol-

can be dropped, obtaining lowing, we will explore its implications, considering first

aM(g)=a" V(PO V(" V=41, .. ,05?—1): processes at constant temperature in the next section, and
n-1 cooling and heating processes in the remainder of the paper.
+1). (2.12

Ill. RELAXATION AT CONSTANT TEMPERATURE

Iteration of the above relation gives
For the case of constant temperatiireand therefore con-

n-1 _ _ stanta,, Eg.(2.16 is easily solved,
aV(0)=a O[] PO(P=+1,... o=+1),
J=0 : P (t) —pe=[p(0) — peJe™*n". (3.1

(2.13
. N ) _ Then, each spin relaxes exponentially to equilibrium with the
with a(®) being a constant that characterizes the relaxationgte characteristic of its level.
rate of the spins belonging to levet=0, whose dynamics is  For the homogenous situations within each level we are

not constrained. ASI(O) determines the basic time Scale, Considering, the dimensionless mean energy per mh
which is arbitrary, we will takex!®=1 in the following. I defined in Eq(2.2) simplifies to

the mean-field approximation just introduced, the time evo-

lution of the average value of the spin, E&.10), takes the Nmax
form e(0)= 2, wap™(1), (32
n-1
i<0_(n)>: _ H P(a,(lj): 1, ... ,Ug_): +1)({o™) Wperewn=Nn/N is the fraction of spins in leved, verifying
at I=0 : Enria(;\/\/n:]--
—()e). (2.14 Putting Eq.(3.1) into Eqg. (3.2 yields
Nmax

Now, a new approximation will be made. The probability =g (T)+ M(0)—p.Te 33
PU) in Eq. (2.14 will be substituted by its equilibrium value. e()=eelT) nZO Wnl PT(0) = Pel - 33

This would be exact in linear response around equilibrium,
but it will be taken here as an approximation leading to thefor the relaxation of the energy at constant temperature. In
basic equation of our hierarchically constrained modelorder to proceed, we will consider the simple case in which
namely, the initial probability distributiorp(™(0) does not depend on
the index leveln. This will be the situation, for instance,
d _ when the initial state corresponds to equilibrium at a differ-
gilo™=- HO Py (o) =(a)e), (219 ent temperatur@+AT. Thus, the relaxation function of the
= physical property described by the Hamiltonian of the sys-
tem is given by

n—-1

wherep, is the equilibrium probability of any spin being in
the up state, given by E@2.5). Again, on physical grounds, Nimax

this is a sensible approximation due to the separation of the (t)= () —ee _ z w.e @t (3.4)
characteristic time scales of the different levels. Because of e(0)—ee A=0
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This equation is a generalization of the result derived by Nmax

X X
Palmeret al. in their pioneering work in hierarchically con- E pw,e” %t f "dx w(x)e ™ @0t
strained dynamic$7], which corresponds to the choigg ¢(t)=n:0 _Jo
=1/2. This is formally equivalent to the particularization of Nmax Xmax ’
Eq. (3.4 for T—c. If other positive values of the tempera- 240 7 Wh fo dx w(x)
ture are considered, the effect is an increase of the relaxation (3.11)
times

in the continuous limit.
Tn:a;{ (3.5 In general, Eq(3.11) is mathematically rather involved,
since it depends both on the functiongx) andw(x). The

sincep, is a decreasing function of the temperature. A mainSimplest possibility appears to gx) proportional tow(x),
advantage of the formulation of the hierarchical models a&®- #n Proportional tow, or, equivalently, toN, . In other
presented here, aside from its larger generality, is that it alvords, the simplest kind of hierarchically constrained mod-
lows analysis of processes in which the temperature of &IS sShows up when the number of “facilitating” spins at a
thermal systenfor the vibration intensity in a granular sys- level is an extensive func_tl_on pf the number of spins at the
tem) changes in time. This kind of processes will be ad-Same leve[11]. This condition is expressed as

dressed in the next section. A mean relaxation tinuan be

defined as pO)=aWx), (312
with a being a constant, independent>ofin this case, it is
o max useful to define the new variable
T=J dtp(t)= >, W, 7y, (3.6)
0 n=0 X
dx'w(x")
providing a quantitative measure of the time it takes the sys- u= 0—1 (3.13
tem to relax to equilibrium at temperatufe fxmaXdX,W(X,)
Let us consider that the fraction of spins in levelw,,,

and the number of “facilitating” spins in leveh, x,, de-
pend very smoothly on; i.e., they can be expressed as func-measuring the fraction of spins belonging to levels umto
tions of the form =x/7n. In terms ofu, the relaxation rates of Eq3.9) are
given by
wy=w(n =u(nny), 3.

n=W(n7)  pp=p(ny) (3.7) a(W)=pi®  g(u)—au, (3.14
where'n<1. These seem to be sensiblle condit'ions wWheny o relaxation function is expressed as
modeling a real system, in which the introduction of the

levels and the pseudospins is associated to some coarse- 1 .
grained description. By defining p(t)= JO due M, (3.19
Xp=N17, (3.8 and the mean relaxation time reads
which is a continuous variable in the limij—0, the sums (" e Pl
over n can be replaced by integrals. The relaxation rate of ™ fo dt(t)= fo duT(u)_a|ln Pel’ (3.1
level n, given by Eq.(2.17), becomes a function of the con-
tinuous variablex, with 7(u)=a (u). It is interesting to consider situations
for which p3<1, so that the minimum relaxation rate1)
a(x)=pd™, (3.9  is much smaller than the maximum on€0)=1 in our di-
mensionless time scale. In this case, the relaxation function
with ¢(1) is linear in Int over an intermediate time window, 1
<t<p,?, namely[11],
n—-1
X ’ ! 1
2, 1 f dxu(x’) $(1)~1— ———(y+In1), (3.17
k=0 0 alln pe|
g(x _nmax = Xmax ! (31()
> Wy 7 J dx'w(x") wherey stands for Euler’s constanf=0.577. This kind of
k=0 0

linear logarithmic behavior is characteristic of a great variety
of complex systems, including spin glas$&g,13, granular
wherex.=Nmax?: and the normalization of the weights, =~ materials[9,10,14,19%, structural glassegl6—-18, and pro-
has been used. Therefore, the relaxation func#¢t), given  tein models[8,19]. In the present context, the conditii

by Eq.(3.4), becomes <1 corresponds to a “low”-temperature limit, in which the
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mean relaxation time, given by E(.16), is very large; i.e., Nmax

the relaxation of the system becomes very slow. M(t,t")= >, Woxa(t,t)) (4.6
It is worth noting that, in terms of the& variable, the n=0

continuous limit is formally obtained by changing the func-.

tions of the index leveh by the corresponding functions of II\S;I (6; tr?)egoézufglngitohrg rlgletzgtigisﬁjr?éti%%r(]tsta?’t) tzrgzzr:r:ure,
th iabl db king th | t ' - - )
© variablal and by maxing the replacemen by comparing Eq(4.6) with Eq. (3.4). The structure of Eq.

Nmax 1 (4.5 is the same as that of Narayanaswami's phenomeno-
> Wnﬂf du. (3.19  logical theory of glasse22-25. A similar result was ob-
n=0 0 tained some years ago for the one-dimensional Ising model

with Glauber dynamic$31].
It follows that, in the continuous limit, the dynamical behav-

ior of the system does not depend explicitly on the level

. . High-temperature limit: Hilbert's method
populationsN,,, but only on the relaxation rates expressed

as functions of, as given by Eq(3.14). We are going to look for a solution of E.1) by means
of Hilbert's method. A special solution
IV. TIME-DEPENDENT TEMPERATURE PROCESSES »
(M) = (n).k
In this section processes in which the temperature changes Y kgo Pr (1) 4.7)

in time will be studied. The evolution equati¢®.16) is now
is constructed in an iterative way as follows. We take

d

—pM(t)=— (M(t)—

G PPO=—aMEPO PN, 4. o) = pu(T), .9

whereT=T(t). The general solution of Ed4.1) is while for k=1
M(t)=[p™(to) — pe(T t,to)+ po(T _,, dp™M KLt
P (1) =[p"™(to) = Pe(To) Ixn(t,to) + Pe(T) pOK() = — o M) =g 4.9
t  dpe(T’) dT’
N ftodt a1’ FX“(“ ). 4.2 Equation (4.8) shows that Hilbert's expansion agrees with

the equilibrium distribution to the lowest order. Besides, for

Here T,=T(t,) is the initial value of the temperaturd, k=1 we get from Eq(4.9)
=T(t), T'=T(t"), T"=T(t"), and we have introduced the

; dpe(T) dT
function ptMY(t)=— —;T TR (4.10
4
Xn(tlytZ):eXF{_ft dtan(t))- (4.3 This equation indicates the main limitation of Hilbert's
2

method. Due to the divergence of the relaxation timgs

71 - . -
The above equation is valid for any law of variation for the ~ 1 " the low-temperature limi{see Eq.(2.17], also

temperature. Taking into account E&.2), the average en- P diverges in that limit. As a consequence, Hilbert's so-

; e A lution is only accurate in the high-temperature regime, in
er er sping, is given by[30 ) ; A ;
gy persping, 1s g y130] which an expansion around equilibrium provides a good ap-
Nimax proximation. Restricting ourselves to high temperatures, we
2(t)= 2, Wal p™(to) = Pe(To) Ixn(t o) + 2e(T) approximate
dpe(T) dT
¢ d T dTr Nmax M(T)= T)—7(T) —— 4.1
t dT dt’ n=0

and, from Eq.(3.2),
whereeg, is the average equilibrium energy, defined in Eq.
8. deo(T) dT "
Let us assume that the system is initially at equilibrium en(T)=ee(T)——F at 2 E WnTy(T).  (4.12
with T=T,. Then the first term on the right-hand sideHS)
of Eq. (4.4) vanishes and

Taking into account the definition of the average relaxation
time 7, Eq. (3.6), the above expression is seen to be equiva-

T')dT’ lent to
t’ 4.
dT’ o M(tt'), (4.5

s(t)—sem—ft dt

deg(T) d

8H(T)288(T) dT dt

where T(T) (4.13
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which agrees with the high-temperature behavior of Eq. i
(4.5). In Egs.(4.11) and(4.13, p{!’ ande}, depend on time e(t)zse(T)—f dt’ — > Wy xn(tt)=el(T),
only through the temperatufg(t). Thus, Hilbert's method 0 T dt’ n=o

provides a “normal” solution, in the sense often used in 5.4

kinetic theory. The validity of a expression identical to Eq. \here we have used E¢B.2). This inequality has been ex-

(4.13, also in the high-temperature limit, has been eStabperimentally observed in glass-forming liquidg2,23.

lished for a quite general class of systems whose dynamics i§ince the reported experiments were made at constant pres-
described by a master equati®8]. Although we have made ¢ e the quantity: considered here must be interpreted as

here several drastic approximations in order to get a closef,o enthalpy in that context.

equation for the average spin, the high-temperature limit of '\, orqer to proceed further in our analysis, the continuous
the solution, given by Hilbert's method, remains formally the iyt introduced in the study of the relaxation at constant
same as that of the exact solution of the original modeliemperature in Sec. Il will be considered. As already men-
Certainly, this is a good property of those approximations. {joneq this continuous limit is expected to be closer to the
What is the physical meaning of the failure of Hilbert's yogerintion of real systems than the discrete level picture.
expansion for low temperatures? Due to the divergence Ofagiges, for the sake of concreteness, we will restrict our-
the characteristic relaxation times, the system does not hav&yes to those models verifying E®.12. The index level
enough time to relax to the equilibrium curve at very low  js gypstituted by the continuous variabiedefined in Eq.

temperatures, and it gets “frozen” in a far-from-equilibrium 3 13 ‘yepresenting the fraction of the total number of spins
state. Since Hilbert’s method is an expansion around equmbl—Jp to leveln, With an obvious change of notation, E&.2)
rium, it fails in the low-temperature region. In fact, the RHS o .omes '

of Eg. (4.11) becomes negative for low enough temperatures.
On the other hand, Hilbert's expansion is useful to estimate t
the values of the physical properties in the “frozen” state p(t;u)zpe(T)—j dt’
[28]. Also, Hilbert's method provides a qualitative under- 0
standing of the hysteresis effects appearing in thermal cycles
(cooling and reheatingIn cooling processesd(T/dt<0), it Where
is ey=¢,, While in heating processes {/dt>0), it is ey t
=¢g.. Then, gy lies to opposite sides of the equilibrium X(t,t’;u)=exp<—f dt” a(T”;u)), (5.6
curve for cooling and heating processes, and hysteresis ef- t
fects show up in thermal cycling experiments, as will be_ . . . .
discussed in more detail in Sec. VI. with «(T;u) given by Eq.(3.14) i.e.,

a(T;u)=pe(T)2", (5.7

Also, using Eq.(3.18), it is found that
Next, we are going to study the continuous cooling of the

deg(T') dT" "0

dps(T’) dT’
—x(t,t";u), (5.
T g XL, 69

V. COOLING PROCESSES

system down to very low temperatures. The origin of time is deg(T') dT' 1 )
taken at the beginning of the cooling process. The initial s(t)zse(T)_Ldt 4T dt OduX(t’t ).
condition will be the equilibrium configuration at a “high” (5.9

temperatureTl, i.e.,
The time evolution of the probabilitp(t;u) depends on
p(M(0)=pu(To). (5.1)  the explicit form of the cooling law. In experiments, linear
cooling is usually employed,
Then, the first correction in Hilbert's expansiguf™-X(t), is q
very small as compared withy(T,) for T—T,. Particular- T

Ll 2 e . 7= Tc, (5.9
ization of Eq.(4.2) for the above initial condition gives dt

wherer.>0 is the cooling rate determining the time scale
p™(t) = po(T) Jtdt,dpe(T') ﬂ)( ). (5.2 r- * over which the temperature changes. Linear cooling im-
¢ dr’ dt "M plies thatp(T) depends on time in a rather involved way.
From Egs.(2.5 and(5.9) one gets

Sincepe(T) is an increasing function of the temperature, for dp, 1 P |2
continuous cooling processes it is — = T po(1-po)| IN——] . (5.10
dt 2 clhe 11— pe
p(M(t)=p(T) forallt andn. (5.3 We are interested in cooling processes for which the tem-

perature changes slowly in time,<1, so that the system
The possible deviations from the equilibrium distribution al- departs from the equilibrium curve for very low tempera-
ways lead to an increase of the probability of the spin beingures, where.<1. Then, a law equivalent to linear cooling,
in the excited state. Moreover, E¢.2) directly implies that  aside from logarithmic corrections, is
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dp 10
d_te:_rcpe- (5.11

having the advantage that analytical calculations are much
more simple with Eq(5.12 [31-33. In the following, we 102
will use the notation

Pre(u=l)
, -3
Pe(T)=Pe: Pe(T)=Pe, Pe(To)=Peo- (5.12 10
The time integrals in Eq5.5 can be transformed into inte- 10
grals overp, by means of the cooling laws.11), with the
result 10°
Peo &= pg" "
. — ’ _ 108
p(t;u)=pe+ fpe dpeex;< rau (5.13 010-6 10° 10°  10° 102 10" 10°

The second term in this expression is dominant in the low-
temperature region, whegg, is very small. Therefore, it fol-

lfg\;vfowaé;g&nshI?e%nyelrz\tll?:ef:”.:%s ggtgielgug:cb{m;n Slit;ik text. The circles correspond to the numerical integration of Eq.
9 P ) 9 %5.16), while the solid line is the prediction of the asymptotic cal-

transition will be ‘f"”a'yze‘?' .below, Ina s_eparate .SUbseCtlc.m'culation, Eq.(5.19. A good agreement is observed upr{e=0.1.
One of the main quantities characterizing a given cooling

process is the residual valigof a relev_ant propertj. The This expression gives the probability that the spins in level
residual value measures the excess with respect to the eayla in the up state at very low temperatures. In Fig. 2, the
librium curve, extrapolated to very low temperatures, residual probabilityp,.{u=1) is plotted as a function of the
— i _ cooling rater., for a=1. The asymptotic result, given by
fres= lim (f—fe). (5.14 ; : o .
T-0 Eqg.(5.19, is compared with the numerical integration of Eq.
(5.16 with p,o=1/2; i.e., the system is taken initially at
In particular, for the probabilityp(t;u) we have from Eq. infinite temperature. The agreement is quite good up.to
(5.13 =0.1, which is not very small.
The evolution of the average energy, for the cooling law

FIG. 2. Residual probability for the slowest moggg(u=1) as
a function of the dimensionless cooling ratedefined in the main

Peo P 5.11), is given b
prew):f dpeexp< -—, (5.19 (511,15 g y
0 r.au
1
which is easily transformed into a(t)—2e(T)= Jo dulp(t;u) = pel
1 1 (% EP 1 Pe rau__ ,au
pres(U)=a(rcau)auJO dxxau e, (5.1 =J duf 0d|o(;exp(—pelr—pe :
0 Pe cau
wherexo=p3y/(r.au). The slow cooling limit is defined by (5.20
the residual properties being independent of the initial con- ) i . )
ditions and determined univocally by the cooling risd— The r¢5|dual energy can be easily computed by particulariz-
34]. In our case, slow cooling means that the upper integralnd this expression fof —0,
tion limit in Eq. (5.16 can be substituted by infinity for all, .
le., 8res:J du pedu). (5.21)
au 0
peO
>1. (5.17 : . .
r.au The integrandp,.{U), given by Eq.(5.19, vanishes expo-

nentially in the limitu—0. A standard Laplace analysis can
As the u variable varies in the intervalQu<1, the slow be made, with the result
cooling condition is

ra<pd <1 (5.18 B P (5.22
c Peo . . res a ||n(rca)1/a|' )
Then, with an exponentially small error,
The leading behavior is potential withy, since
1 1/ 1 1/ 1
PredU)~ —(raau)“@' | —|=(r.au)2'r| 1+ —|. 1
au au au In & e~ —IN(r ) (5.23
(5.19) res 5 c)s .
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10" e hold for all u, wheret* is the time for which the temperature
d 3 vanishes if extrapolated accordingly to the prescribed cool-
10-2;_ - ing law, i.e., T(t*)=0. Equation(5.25 guarantees that the
F 3 system experiments a large number of transitions before get-
10-3;_ _; ting eventually frozen, so that it has enough time to forget
€ the details of the initial condition. For the cooling law de-
4l h fined in Eq.(5.1) it is easily verified that Eq(5.25 is
10°¢ equivalent to Eq(5.17).
_53 ] If we are dealing with a slow cooling process, E§.25
0°F E implies that there is a time window over which
10°E = [(t,0;u)>1. (5.26
10.7' T T PR RN RN This is the time regime we are interested in. Let us analyze
10°® 10° 107 10° 102 10 the behavior ofy(t,t’;u) as a function of’, to<t’<t, for a
r, given time t such that Eq.(5.26 holds. The function

) _ ) ) I(t,t";u) changes from a very large value to zero whén
FIG. 3. Dimensionless residual energysas a function of the goes from O tot. Consequentlyy(t,t’;u) increases from

Pniggrgt';itegfcé (;6\(55 T@F;?w.dzt’h;hzo(lz'zcll'ise f'isrethf;o;r;etdhit'glrjmrz?rtiﬁ? practically zero to unity when’ moves in the above time
| | 9. 1a i | ICU : . . .

. T . interval. Let us define a timg(t;u), prior tot, b

asymptotic analysis, given by E(.22. The agreement is good for g(tu), p y

re=0.01. I(t,t;;u)=1, (5.27)

which comes from the upper limit of integration=1, cor- so that the average number of transitions taking place in
responding to the largest relaxation time. The integral ovetevel u in the time interval betweety andt equals unity.

the whole distribution functiorp,.{u) gives a logarithmic  Then, x(t,t;;u)=e"*, and the functiony(t,t’;u) changes
correction [In(r.a)| ", which makes the residual energy from zero to unity in a certain time interval aroung In
smaller than the dominant term @), This is due to the order to proceed, we will assume that this change takes place
increasing behavior op,.{u) with u, pedU)<p,{u=1). inthe vicinity oft; very rapidly, as compared with the varia-

In Fig. 3 the residual value of the energy is plotted. Thetion of the rest of the integrand of E¢.5). Decomposing
asymptotic expression, E€p.22), is compared with the nu- EQq. (5.5 in the form

merical results from Eqg5.21) and(5.16). Good agreement

is found up tor,=0.01. It is worth noting that, for the cool- _ tr dpe(T') dT’ .
ing law considered, the logarithmic correction to the poten- P(U)=Ppe(T)— fo dt dT’ WX(H u)
tial in r; behavior is not present for other simple models of
structural glasses previously studiggil—35. t  dpy(T) dT’
—J dt’ —x(t,t";u), (5.28
t dT’" dt’

Demarcation mode, fictive temperature, and glass transition
The existence of nonvanishing residual properties is afhe first integral is subdominant with respect to the second

indication of the departure of the system from equilibrium atOn€ and, moreover,
low temperatures. Due to the divergence of the characteristic

relaxation timesr,,, for low enough temperatures the system tdt/dpe(T,) ﬂx(t t"u):ftdt’dpe(-r,) ﬂ
does not have enough time to relax towards equilibrium, and ~ J¢; dT’ dt’ v tf a1’ dt’

a kinetic phenomenon resembling the laboratory glass tran-

sition [22—24 shows up. Next, we will try to understand the =Pe(T) = Pe[ Te(t;W) ],
physical origin of this kinetic transition. (5.29

Let us consider again the time evolution of the probability
distribution p(t;u) in a cooling process, as given by Egs. where T¢(t;u) is the temperature of the system at time
(5.5 and(5.6). The integral iny(t,t";u), ty(t;u), ie.,

t T(t;u)=T[t(t;u)]. 5.3
I(t,tr;u):f,dt/!a(Tr/;u), (524> f( ) [ f( )] ( @

! Note thatT(t;u)>T, since the time instarit(t;u)<t. Sub-
titution of Eq.(5.29 into Eq. (5.28 and use of the above

is a measure of the average number of transitions occurrin S .
pproximations yields

in level u in the time interval between’ andt. Conse-
_que_ntly, a mathematl_cal definition for the limit of slow cool- p(t:u)=pe[ T(t:u)]. (5.31)
ing is that the condition
The arguments leading from E¢5.5) to Eq. (5.31) are for-
[(t*,0;u)>1 (5.25 mally equivalent to assume that
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(L u) =0t —ty(t;u)], (5.32 2 ' ' ' ' '

10 g_ uu-ﬂauuua §
where ® (x) is Heaviside’s step function. The result in Eq. - nnnuﬂ*’“ ]
(5.3)) has a neat physical interpretation: the probability dis- S| Dupu“" ]
tribution of spins in level at timet is given by the equilib- 10°F L E
rium distribution corresponding to the temperature of the F n,,u_f!«'?"“ ]
system at a prior timé;(t;u), defined in Eq.(5.27. The p(u:l)_4-"nnnnuﬂn:{‘,s"": A
temperaturel¢(t;u) is, therefore, the “fictive” temperature 10 3
of level u for the cooling program under consideration, in the C ]
sense used in the phenomenological theories of glass- sl i
forming liquids[22—24. In the present context, each level 0E 3
has its own fictive temperature, so that there is not a unique .
equilibrium distribution describing the whole state of the ol LT | . | i
system at a given temperature. As a consequence, the behav- 10 0.20 0.30 0.40
ior of different macroscopic properties of the system may be T
quite different, depending on the modes which dominate for
the evaluation of each property. FIG. 4. Probability for the slowest levgd(u=1), as a function

The definition of the fictive temperature, E¢.30), can of the dimensionless temperature in a process with the cooling law
be written as of Eq. (5.11) and a cooling rate.= 10" * (squares The glass tran-
sition temperaturdy, as given by Eq(5.39, is indicated. It gives

[(t*,te;u) =1 (1", t;u) + I (Lt ;u) =1 (t* ,t;u) + 1. a good estimate of the actual fictive temperature for this level. The

(5.33 equilibrium probabilityp., Eq. (2.5), is also plotteddotted line.

In the “high-temperature” regime, where the number of peratureT, at which the glass transition begins for a given
transitions between temperatif@ndT=0 in leveluis very  cooling program is that for which the slowest modes freeze,
large, we can neglect unity on the RHS of £§.33 and we ¢ Ty=TF(u=1).

getT¢(t;u)=T; the modes in level remain in equilibrium. The physical image developed in the above paragraph al-
On the other hand, in the “low-temperature” limlt*,t;u)  |ows us to estimate the residual values in quite a simple way.
becomes very small an(t;u) tends to a limiting value,  For a given cooling law, first we calculate the limit value of
the fictive temperatur&? (u). Then, the residual probability

* — i . — *
f (u)—tlran(t,u)—T[tf (W], (5.34 distribution is given by
wheretf (u) is the time for which Pred U)=pe[ TH(W)], (5.36
Lt tF u)= det a(T:u)=1. (5.35 and, consequently, the residual value of the energy is
f
1 1
The low-temperature region for levalcorresponds to tem- Eres™ fo du predu)= J; dupfTf (W] (5.3

peratures such that the average number of transitions remain-

ing to spins in levelu before formally reachingr=0 is A5 a test, we have considered the cooling process of the
smaller than unity. Since the raie(T;u) decreases as a pjgrarchical model studied in this paper with the law given
function of u [see Eq(3.14], Tf (u) is an increasing func- py Eq. (5.11). In the slow-cooling limit, it is easy to show
tion of u; i.e., the fictive temperatur@¥ (u) is larger the that

slower the modes. Then, the following picture of the kinetic

glasslike transition appears. The relaxation modes associated . 2au

with level u are in equilibrium forT=T¥ (u), getting frozen i (u)= m; (5.39

in their equilibrium distribution corresponding to the fictive

temperaturely (u) for T<Tf (u). A similar idea was first j.e., the glasslike transition begins at

used in the context of the structural glass transition by Dyre

[36], who characterized the transition by means of the con- 2a

cept of demarcation mode. For a given value of the tempera- Ty= m- (539

ture T, the modes in levels witA'§ (u)>T will be frozen,

while those withTf (u)<T will still be able to relax. The for which the slowest modes become frozen. In Fig. 4 we
demarcation mode at temperatufe uy(T), is defined by plot the evolution of the probability, as given by E§.13),
TF(ug)=T. The modes withu>u4(T) are frozen at this of the slowest leveli=1, fora=1 andr.=10"*. For these
temperature, and modes with<uy(T) can still evolve. The parameters, it i§'g=T?(u= 1)=0.217, which is seen to be
glass transition can be understood as the movement of thee good value for the fictive temperature. It is worth noting
demarcation mode from=1, corresponding to the largest that the simple arguments used in this section lead to an
relaxation time, tai=0, which is the fastest mode. The tem- estimate of the residual population
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2 the temperaturd . Each level freezes at its corresponding
fictive temperaturd§ (u), and the probability of the frozen
statep,.{U) is approximately given by Eq5.40. For the

3 o values of the parameters considered in Fig. 5, &¢))

leads toT} =0.175, which is also a good approximation for
the value of the temperature at which E§.42 holds. Fi-
nally, let us stress that similar results for the fictive tempera-
tures can be derived by means of the qualitative reasonings
developed in Refl28] and based on Hilbert's expansion.
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VI. HEATING PROCESSES
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This section will be devoted to the study of heating pro-
0.4 cesses after the system has been previously cooled down to
T very low temperatures. Then, the system is not initially at
) ) . _equilibrium, but the initial probability distributiom(tg;u)
FIG. 5. Average dimensionless energy as a function of the dixgrresponds to the final state reached in the cooling process.
mensionless temperatufen a cooling procesésquares The cool- (|11 is convenient to introduce a timg<t, such thatT(t,)

i.ng I.aW and th.'fa C.°°"ng rate are the same as .in Fig. 4. The doue:o if the heating law is extrapolated to times shorter than
line is the equilibrium energy, E2.6). The predicted value for the From Eq.(4.2) it follows that

glass transition temperatufg=0.217 is indicated. Also, the global

o

10793

e
o
o
w

fictive temperature?*, calculated from Eq(5.41), is shown. It tw=lo(te u)—pT tteu)+ou(T
gives quite a good estimate of the temperature for which the equi- P(EW=[P(to;u) = Pe(To)x(tito; W)+ Pe(T)
librium energy equals the residual energy. t ,dpe(T’) dT’ ,
— | dt T WX(M ;u), (6.9
t
pres(u)zpe[T?(u)]:(rcau)l/au: (5.40 0

wherex(t;,t,;u) was defined in Eq(5.6), andTy=T(tg) is
except for a factor of the order of unity. the initial temperature of the heating process. The firgt_ term
In Fig. 5 the dimensionless average enesgyeq. (5.20), on the RHS of EQ(G.'.l) represent_s the de_cay of the initial
is shown, for the same parameters as in Fig. 4. The predicté&onequ_'“p”um and't'on' Foﬂ'(t_) n the. h|g.h-temperature
glass transition temperatuig,~0.217 is also indicated. It 910N It iS x(t,to;u)<1, and this contribution can be ne-
provides a good estimate for the beginning of the departur@!ected. This implies thai(t;u) reaches a behavior which is
from the equilibrium curve. The residual value of the energylndependent of the initial condition or, equivalently, indepen-
calculated from an asymptotic analysis of E¢5.37) and dent of the previous cooling program. Moreover, the lower

which gives the same dependenceppfonr. as Eq.(5.19,

(5.40 reads limit ty in the integral can be replaced by, with a relative
error that decreases amcreases. Therefore(t;u) tends to
1 (rea)t? the “normal” solution
Eres™ J' du pedU)= T 1 (5.41)
0 |In(r ca)™?| -
t o dpe(T') dT ,
: o pN(T;U):pe(T)_j dt' ——— —x(t,t";u).
Comparison of Eqs(5.41) and Eq.(5.22 also indicates a th daT t

good agreement, the difference being again a factor of the (6.2
order of unity. We can introduce a global fictive temperature .
T# for the energy, as the temperature for which the equilib/AnY arbitrary p(t;u) approachepy(T;u) for long enough

rium energy is the same as the energy of the system in thdmes, corresponding to high temperatures. The exist_ence of
cooling process, when extrapolatedTie- 0, i.e. the normal solution for heating processes is not restricted to

the hierarchical models considered in this paper, but it has
Ero=eo(TF) (5.42 been established for a quite general class of systems, whose
rest el T dynamics is described in terms of a master equdtdt. In
this context, the existence of the normal solution in our sim-
plified, mean-field description of the hierarchical models,
provides a consistency test of the approximations we have
introduced starting from the master equation formulation.
_ 1 . . .
Se(T?):f du pf T7 (u)]. (543  However, it cannot be assured that the special choice of the
0 initial conditions leading to the normal solution in our mean-
field-type approximation remains the same for a more exact
The global fictive temperature is then a kind of average ofanalysis.
the fictive temperature®; (u), but the probability distribu- In the limit of high temperaturespy(T;u) must be
tion of the frozen state is not the equilibrium distribution at closely related to Hilbert's expansion solutipp(T;u), ana-

This global fictive temperaturg}* is related to the fictive
temperatures of the levelg (u) by
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lyzed in Sec. IV. In fact, sincp,(T;u) does not refer to any
particular initial condition, it is to be expected that the nor-
mal solution coincides with Hilbert's expansion in their com-
mon range of validity. However, the normal solution is not
restricted to near-equilibrium situations, and the system can
approach the normal curve in a temperature range for which 10°
Hilbert’s solution is not accurate. This point will be clearly p(u=1)
illustrated below.

For the sake of simplicity, we will consider that the sys- 10
tem is submitted to a cooling process given by Egll),

10°

T
o
o
o
o
o
o
o
o
o
o
o
0
o
o

1 IIIIII||

1
o/

T IIIIII&O’ T IIIIIII|

followed by a heating process of the form 10° ooog-’gooo/ J
dpe :.»': II,’ ;
W:rh Pe» (6.3 107 i 1 X I .
0.1 0.2 0.3 0.4
wherer,>0 is the heating rate. Using this heating law, we T

can express E¢6.1) in the simpler way: FIG. 6. Evolution ofp(u=1) in a heating process. The dotted

line is the equilibrium curve. The heating law is E§.3), with a

Pe’'— P20 : 104
p(t;u)=[po(u)— peo]ex% - +Pe heathg rater,=10 °. The r_10rma| curve r]as been _evaluated both
hau by using Eq.(6.5 (dashed lingand Hilbert's expansion, Ed6.7)
au  rau (solid line). Two different initial conditions for the heating process
Ped / Pe —Pe have been considered, both corresponding to previous coolings
- pexp ————|. (6.4 o
Peo rpau down to very low temperatures but with different rates, nangly
=10"* (squares and r,=10"% (circles. The cooling law was
Here we employ the same notation as in E§12. Simi-  given by Eq.(5.11) in both cases.
larly,
Hilbert’'s expansion is not valid. This illustrates how the nor-
Pe pa—pLa! mal solution is relevant for far-from-equilibrium states, in
Pn(T U) = Ppe— fo dpeexp — Trau (6.5  which a linear theory in the deviations from equilibrium is

not accurate.

In the experiments, either with supercooled liquids or
with granular materials, the distribution function cannot be
pau directly measured, but instead the average values of the rel-

e . . .
. au>1’ (6.6 evant p.hyS|caI properties. In our _moc_iel, we can cons_lder the
h dimensionless energy(t) [30], which is calculated by inte-
grating p(t;u) over u. For the specific heating law we are
considering, it follows from Eq(6.4) that

The high-temperature regime for leuels given by

and, in this limit, Eq.(6.5 reduces to

pn(T;u)=pe—rpps 2", (6.7)

L Pe"— P
which agrees with Hilbert's solution. E@4.11), particular- s(t) fo dulpo(W) peo]exp( rp,au +ee(T)
ized for the heating lav6.3). At rau
Figure 6 shows the evolution qf(t;u=1), as given by 3 J’ld J’ped ' exd — Pe —Pe 6.9
Eq.(6.4), in a heating process with=1 andr,=10"*. Two 0 u Peo Pe © rpLau |/’ '

different initial conditions have been considered, correspond-

ing to slow previous coolings of the system witp=10"*  There is also a normal curve for the eneegyl’), which can
andr.=10" 9, respectively. In the figure, it is seen that both be obtained by integration of the normal probability distribu-
heating curves approach the normal solution, reaching it in &on, Eq.(6.9), i.e.,

region where the normal curve represents a clear nonequilib-

rium state. Hilbert's expansion approximation, £.7), is = e (T)— ld Ped , _ pe'—pe
also plotted. It provides a good description for the linear en(t)=e¢(T) o u o Pe €X “rau
correction around equilibrium of the normal curve, but fails (6.9

for low enough temperatures. In fact, for the values of the

parameters considered, E(5.7) becomes negative fof  For long enough times, independently of the initial probabil-
<0.217. Therefore, in general, Hilbert's solution cannot beity distribution pg(u), e(t) will approachey(T), as a con-
used to estimate the normal curve over the whole range isequence of the tendency pf{t;u) towardspy(T;u). The
which the system is well described by the normal solutiontime regime in whiche(t) practically agrees withey(T)
which depends on the details of the previous cooling procesgorresponds to the condition given by E.6) being veri-

In the figure, for the smallest cooling ratg=10"6, the sys- fied for all u, i.e., when it is fulfilled by the slowest modes,
tem reaches the normal curve for a temperature at which=1. Therefore, the approach to the normal curve is con-
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cussion. This idea is supported by the fact that in other mod-
els based on a master equation formalism, analogous results
have been found28,31,35. Also, Hilbert's expansion, al-
though of limited validity, leads to the conclusion that cool-
ing and heating curves are at opposite sides of the equilib-
rium curve.

107 F
e f
L VII. DISCUSSION
: | In this paper, we have analyzed a simple spin model with
hierarchically constrained dynamics. The spins are classified
107 ‘ into levels, and a spin in level+ 1 is able to relax only if a

F 4

certain number of spins in level are in the up(excited
state. Starting from a master equation formulation of the dy-
namics, a mean-field approximation was introduced. The re-
T sult is a generalization of the model of Palne¢rl. [ 7], with

FIG. 7. Hysteresis of the dimensionless enesgin a thermal & Close_d equat_ior] for the evolution of the probability of find-
cycle. As in the previous figures, the cooling law is B0 and N9 @ given spin in the up state. Each level has a character-
the heating law is Eq(6.3). The cooling and heating rates are the IStic relaxation rate, which is a function of the temperature of
samef.=r,=10". The dotted line is the equilibrium energy, and the system. Two sets of parameters characterize the model:
the dashed line is the normal curve for the heating process. ThE1e number of spins in level, N,, and the numbeg, of
arrows over the solid lines indicate the variation of the temperatur&pins in leveln involved in the facilitation of the relaxation
in each process. In the heating process, the system approaches thea spin in leveln+1. We have chosen the simplest possi-
normal solution, crossing the equilibrium curve. bility, namely, thatu,, andN,, are proportional to each other,

which leads to a relaxation behavior that is independent of

the level population®\,,. In relaxation processes at constant
trolled by the slowest leveli=1. For very high tempera- temperature, the system displays linear logarithmic decay
tures, Hilbert's result4.13 holds and, particularizing for the [11]. This is a characteristic feature of the behavior of a wide

015 0.2 0.25

heating law of Eq(6.3), we get variety of complex systems, including structural glasses, spin
glasses, protein models, and powders.
-a_ A key point in our approach to the problem of hierarchi-
en(T)=en(T)=pe—rh pepe__ (6.10 cally constrained dynamics is the introduction of the “mean-
alInpe| field” approximation, which allows us to reduce the initial,

rather involved, problem to a solvable one. This approxima-
tion is based on the physical idea that hierarchical constraints
render the characteristic time scales of the different levels
en(M<eq(T), (6.17)  clearly separated. This is indeed the case in the low-
temperature region, since the ratig/ 7,,_, of the character-
for all temperatures. This property, together with the inequalistic times of levelsn andn—1, as given by Eq(3.5), di-
ity, Eq. (5.4), for cooling processes, explains the hysteresis/erges forT—0.
effects exhibited by the model when submitted to a thermal The model has also been used to study processes in which
cycle. These effects are similar to the experimentally obthe temperature changes in time in an arbitrary way. The
served behavior in glass-forming liquifia2] and other com-  general solution for the time-dependent distribution function
plex systems, such as granular mater{@6]. In Fig. 7 a can be explicitly written, and the average energy has a form
hysteresis cycle of the energy is shown fge=r,=10"%. In resembling that of Narayanaswami's phenomenological
the cooling process the energy is greater than the correspontheory of glass-forming liquid§25]. By means of Hilbert's
ing equilibrium value, while in the heating process the ten-expansion we have constructed an approximate solution for
dency of the system to approach the normal curve, whiclthe probability distribution. This expression is valid in the
verifies Eq.(6.11), makes the system overtake the equilib-limit of very high temperatures and for situations where the
rium curve. Only for very high temperatures, where Hilbert's system is in the linear around equilibrium region. The behav-
expansion is accurate, does the normal solution tend to thier of Hilbert’s solution is formally identical to the one pre-
equilibrium one from below. Comparison of Figs. 6 and 7viously found for a very general class of systems described
shows that the separation of the normal solution for the enby master equatiori28], despite the mean-field character of
ergy from the equilibrium curve is smaller than that of thethe simplified model considered here. Hilbert's expansion
slowest level probabilityp(u=1). This is due to the contri- predicts the existence of hysteresis effects when the system
bution of the other modes, which reach their equilibriumis first cooled down to low temperatures and, afterwards,
values for lower temperatures. reheated to high temperatures. This is because the average
In our opinion, the explanation of the hysteretic behaviorenergy is at opposite sides of the equilibrium curve for cool-
observed in real systems must be similar to the above dishg and heating processes.

An important feature of the normal curve is that
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Another point we have addressed is the evolution of theThis is analogous to previous results found in models for
system in continuous cooling processes. A phenomenostructural glasse$31,35 and for granular systemfg28].
similar to the laboratory glass transition shows up, and the'hus, we think it would be worth investigating whether a
system departs from equilibrium at low temperatures. Theimilar curve does exist for real complex systems showing
magnitude of this separation can be measured by the valuesis kind of hysteretic behavior.
of the residual properties, which have been analytically com-  although a particular simple model with hierarchically
puted. A simple but physically appealing argument is preconstrained dynamics has been considered in this paper,
sented, in order to understand the origin of this glassy behavmost of the physical ideas developed seem very general. The
ior. Each level in the system becomes frozen at thegjidity of Hilbert's expansion for high temperatures, the
equilibrium value corresponding to a temperature, called theatyral appearance of the concept of fictive temperature,
fictive temperature of the level, such that the average numbﬂéading a physically appealing description of the laboratory
of transitions per spin in that level until reachiiig=0, fol-  glass transition, the existence of the normal solution, and its
lowing the prescribed cooling program, equals unity. A simi-fundamental role in explaining the hysteresis effects are re-
lar argument has been previously used in other modelgyits that are not restricted to the present model. In fact,
[28,31,33. Here, an analytical derivation is presented. Thissimilar results appear in a quite general class of systems
provides a theoretical basis for the concept of fictive temescribed by master equatiof®8,31,33. Of course, the de-
perature and clarifies the accuracy of the results followingajls of the dynamical behavior depend on the specific model
from the qualitative argument. We have compared them witiye are dealing with. On the other hand, the general picture
the values of the residual properties obtained numerically ageveloped here, where the heating and cooling experiments
well as with those following from asymptotic analysis calcu-jn glasses appear as purely kinetic and relatively simple to

lations. _ understand, might not be valid for real and much more com-
Finally, heating processes have also been analyzed. Mojgiex systems.

specifically, we have considered heating processes following
a continuous cooling of the system down to very low tem-
peratures. In the description of heating processes, the so-
called normal curve plays a fundamental role. The hysteresis
effects observed when the system is first cooled and after- This research has been partially supported by the Direc-
wards reheated appear because of the trend of the systemdion General de InvestigaaioCientfica y Tecnica (Spain
approach the normal solution, along the heating evolutionthrough Grant No. PB98-1124.
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