
TOWARDS A HOMOGENEOUS CHARACTERIZATION OF THE MODEL-DRIVEN
WEB DEVELOPMENT METHODOLOGIES

F.J. DOMÍNGUEZ-MAYO, M.J. ESCALONA, M. MEJÍAS

University of Seville, Seville, Spain

{fjdominguez, mjescalona, risoto}@us.es

M. ROSS

Southampton Solent University, Southampton, United Kingdom

margaret.ross@solent.ac.uk

G. STAPLES

British Computer Society (BCS) Software Quality Specialist Group, United Kingdom

Geoff.Staples@bcs.org.uk

In recent years a large number of Model-Driven Web development approaches have been designed and
are being applied with success in real environments. However, as new ones are frequently emerging in
this changing time, authors have to change and update them constantly and, consequently; development
teams do not know which is the most suitable for them because in many cases it depends on their
project scope. Furthermore, approaches are usually appearing with different concepts and terminologies
in many cases, although all lack the use of standards and practical experience. Thus, the need of
managing quality in this type of approach arises every day. This paper suggests a characterization of
these methodologies in order to use this information for the quality management of Model-Driven Web
development methodologies for authors and development teams alike. In addition, an experimental
study in order to analyse and evaluate a Model-Driven Web development methodology (the NDT
methodology) has been carried out within a specific work context.

Key words: Web engineering methodologies, Measurement, Software Quality

1 Introduction

Web development is currently an important task to take into account since Web applications are
becoming more developed every day. In this context, The Model-Driven Engineering (MDE) paradigm
plays a key role because it aims to increase the return a company derives from its software
development effort basically by using models and automatic transformations. In this regard, the Object
Management Group (OMG) has introduced Model Driven Architecture (MDA) which is an approach

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/333939829?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

for achieving the concept of platform independence and models may have the quality of being
independent from any technological platform. MDE is a paradigm that will change the way an
organization designs and develops software by separating an application’s business logic from the
infrastructure on which it runs. MDE principles are being used to successfully address the construction,
evolution and adaptation of Web applications.

The growing interest in the Internet has led to the making of a large number of proposals [39;
23] which offer a frame of reference for the Web environment. MDWE (Model-Driven Web
Engineering) is the application of the Model-Driven paradigm to the domain of Web software
development, where it is particularly helpful due to the continuous evolution of Web technologies and
platforms. Different concerns of Web applications are captured by using separate models i.e. for the
content, navigation, process and presentation concerns. Whereas code comprises Web pages,
configuration data for Web frameworks as well as traditional code, models are integrated and
transformed into code [11].

During the last years, the Web engineering community has proposed several different
methodologies for Modeling Web applications with different concepts and definitions such as UWE
(UML-based Web Engineering) [23], WebML (The Web Modeling Language)[8], OOH4RIA[25],
RUX-Method [33] or NDT (Navigational Development Techniques) [11] methodology among others.
There is no standard consensus among them, but a lack in the use of standards and scarcity of both
practical experience and tool support. In fact, every methodology has a set of advantages and
disadvantages [39] that depends on the use-context or project scope.

Besides, given the large number of approaches available, it is not only necessary to evaluate
the quality of the existing methodologies, but also to find out how it can be improved so that authors
and development teams can be provided with helpful information. The first point to consider is the
authors’ view; they need to analyze, control, evaluate and improve MDWE approaches. The other
point of view to take into account is development teams’, who need to compare MDWE approaches
(depending on project use-context or project scope) to decide on the most suitable one for them.

Surveys and comparative studies [27, 39, 12, 37] conclude that there are serious gaps. Today
most approaches are not agreed in all their aspects, for instance: meta-models and models are different,
transformations are implemented in different ways, some MDWE approaches cover all levels of
abstractions (CIM, PIM, SPM, and code) and others only some of them, they use different tools and
each MDWE approach is carried out in a different way.

Then, some of these approaches involve most of the levels of abstraction and they even have
tools that support the automation of transformations in development processes. However, there is no
control on what these approaches offer to development teams. In addition, in most cases it depends on
the project scope and use-context and, in the face of this situation, an important need to assess the
quality of existing MDWE approaches arises. Development teams that have to improve web systems
do not know how they can take advantage of these approaches and how they can be helped in their
particular context. The diversity features within the design of these approaches confirm the global
heterogeneity associated with specific aspects or ideas processed by each approach. These limitations
and problem of description not only entail understanding the proposed value, but also require an
objective criterion for the improvement or the possibility of unifying criteria when designing new

approaches in the future. It is known that "you can't improve what you can't measure”, which means
that context has to be described in order for it to be measured and controlled. Thus, by measuring the
environment, you can control and better it because you know what it needs to be improved.

This paper is organized as follows: In Section 2, a global analysis of the situation together
with the related works and discussions about the issue is presented. Section 3 presents concepts such as
the elements for describing the MDWE methodologies under consideration. In Section 4, the way of
analyzing the methodologies in terms of their properties and using checklists for this purpose is
described. In Section 5, in order to illustrate this evaluation process, a Model-Driven Web
development methodology is evaluated to discover the state of completeness of the methodology.
Finally, a set of conclusions, contributions and possible future work are stated in Section 6.

2 Related Works and Discussion

As far as standard methods for the measurement process are concerned, the ISO/IEC 15939:2007
[17] defines a measurement process applicable to software engineering and management disciplines.
Firstly, the process is described through a model which defines the activities of the measurement
process that are required to adequately specify what measurement information is required. Secondly, it
shows how the measures and analysis results have to be applied, and finally, it examines how to
determine if the analysis results are valid. The measurement process is flexible, tailorable, and
adaptable to the needs of different development teams. ISO/IEC 15939:2007 identifies a process which
supports the definition of a suitable set of measures that addresses specific Properties. It determines the
activities and tasks that are necessary to successfully identify, define, select, apply and improve
measurement within an overall project or organizational measurement structure. It also provides
definitions for measurement terms commonly used within the system and software industries.

 ISO/IEC 25040:2011 [18] contains requirements and recommendations for the evaluation of
software product quality and clarifies the general concepts. It provides a process description for
evaluating software product quality and states the requirements for the application of this process. The
evaluation process can be used for different purposes and approaches. The process can be used for the
evaluation of the quality of pre-developed software, commercial-off-the-shelf software or custom
software and can be used during or after the development process. They describe neither methods for
evaluating software production processes nor methods for cost prediction (software product quality
measurements may, of course, be used for both of these purposes). However, these standard models
are difficult to implement. The main weakness of standard models lies in that they are unable to
explain how they are to be implemented. That is, it does not detail what Property you have to use or
what is the most appropriate one, nor how to group value Properties for higher-level Properties or what
the thresholds for each Property are.

In order to define metrics, GQM (Goal Question Metric) [3,4] is an approach to guide the
definition of metrics. It is typically described in the open literature in terms of a six-step process,
where the first three steps deal with using business goals to drive the identification of the right metrics
and the last three with gathering the measurement data and making effective use of the measurement
results to drive decision making and improvements. As far as measurement and evaluation is
concerned, García et al. [14] proposes an approach to enable the management of software process
measurement. The evaluation of software processes involves the measurement of a great diversity of

entities, from the models of the process of projects to resources and the products obtained. The
proposal allows the integrated management of the measurement of these kinds of entities.

 There are also several proposals for the metrics and indicators domain in the literature, one of
them is [1] where a set of design metrics proposed for assessing the size and structural complexity of
navigational models is discussed. Becker and Olsina [5] propose the INCAMI framework, which is an
organizational purpose-oriented measurement and evaluation framework that enables consistently
saving not only meta-data of metrics and indicators but also values (data sets) for concrete real-world
measurement and evaluation projects. The INCAMI framework is made up of five main conceptual
components namely, the requirement, measurement, and evaluation of projects definition; the
nonfunctional requirements definition and specification; the measurement design and execution; the
evaluation design and execution and the conclusions and recommendation.

In the MDE (Model-Driven Engineering) domain, some studies of Mohagheghi [26]
discussed the Characteristics of MDE that are important when building quality, and it stated that the
quality of models is affected by the quality of different Features such as modeling languages, tools,
Modeling processes, the knowledge and experience of development teams/authors and the quality
assurance techniques applied. In this sense, a set of Web methodology Features has to be described in
order to carry out a quality evaluation of these types of methodologies.

Nowadays, producing faster and cheaper software of higher quality is critical in the software
industry and the use of a MDWE methodology and its influence on the final product quality is an issue
that must be acknowledged. The use of a methodology based on MDE is essential to achieve this aim.
Up to now, the main criticism of the quality assessment process has little evidence drawn from
stakeholders as to whether MDE meets the process reference model to ensure product quality.

Maibaum and Wassying [24] commented that quality assessments should be based on
circumstantial evidence inferred from the process. In fact, the standardization of processes ensures
consistency in their output, which may even institutionalize the creation of bad products. In summary,
a standard process does not necessarily conclude with a quality product [32]. Therefore, it is not only
essential to describe the methods or processes of methodologies, but also to describe the product and
define the relationships among all methods and each product’s properties in the results. In this paper,
Web methodologies are described, considering the process as activities, artifacts used during the
activities and techniques. So in future papers, the product’s properties have to be described and related
to the methods of methodologies.

In order to evaluate quality, according to Cachero et al. [6], it is necessary to count on
instruments that are based on clear definitions. One of these instruments is a quality model. It is
defined in ISO as the set of characteristics and relationships among them, which provides the basis for
specifying quality requirements and evaluating quality. There are some models in the literature such as
the WQM model (Web Quality Model) [7]. This model is introduced and distinguishes three
dimensions related to Web features, lifecycle processes and quality features including the most
relevant Web metrics using the framework, which is classified.

Therefore, to carry out quality management, it is necessary to define a quality model that
identifies the set of characteristics and relationships among them. .Giving a definition of all these
elements is not an easy task and some authors do not have a strategy to identify quality management

targets. Besides, a problem may arise if the quality model is not clearly designed or defined, since there
is no goal to achieve.

In previous papers, a set of quality characteristics and an evaluation process for them is proposed
[10]. Further, a framework (QuEF) to analyze, evaluate and improve quality of MDWE approaches is
proposed [9] to cover a complete life cycle for the quality model. Consequently, to define a quality
model to make these approaches in real contexts more effective and efficient becomes essential, as
well as to achieve suitable tools to analyze, evaluate and plan the improvement of MDWE approaches
automatically based on the quality model lifecycle management. In addition, it is important for authors
to weight all these elements (properties, quality characteristics and influences among them) in order to
give development teams what actually matters to them.

Figure 1 Conceptual scheme representing the goals to be achieved with QuEF for Model-Driven Web development
methodologies

QuEF can be used by authors to analyze, evaluate, control and increase the quality of MDWE
approaches and improve their design and results. In addition, this framework can be used by
development teams to identify the most suitable one for them and decide which one will be used.

As shown in figure 1, the framework will be used from two points of view: authors’, who
need to analyze, control, evaluate and improve MDWE approaches and development teams’, who need
to compare MDWE approaches (depending on project contexts) to decide on the most suitable one for
them. These objectives are detailed in the following sections. With QuEF we can get quality
management in a systematic way, automating the quality management for this type of approach and
any entity in order to reduce costs and time and improve quality within the quality management
process.

The main difference from other frameworks is that the quality management is focused on the
quality model life cycle as shown in figure 2. This means that it comprises several phases which
include different objectives and artifacts. The above mentioned phases are the Quality Model Strategy
phase, the Quality Model Design phase, the Quality Model Operation phase, the Quality Model
Transition phase and the Quality Continual Improvement phase. Each one of them has a specific
objective:

Figure 2 Quality Management based on the quality model life cycle [9]

• Quality Model Strategy phase: This phase is a strategic active that focuses on the definition of a
strategy for the quality management. The past, the present and future view elements of the
quality model in the domain under study are fundamental to achieve effective and efficient
quality management.

• Quality Model Design phase: This phase is where the quality model is finally designed in terms
of all strategic actives in the previous phase. This quality model is the model used in the next
phase for operating for the quality management.

• Quality Model Operation phase: In this phase the quality model is used to carry out the Quality
management. The Analysis and Evaluation management processes are performed within this
phase.

• Quality Model Transition phase: If the domain or context is changed because of the appearance
of new trends, then this phase describes the processes that carry out the changes in the quality
model but without affecting the Operation phase.

• Quality Continual Improvement phase: This phase performs all processes to improve quality of
all processes in the life cycle and also the quality model.

The main difference is that the framework defines a life cycle for the quality model, which is
the focus of the quality management and all phases revolve around it. For an effective and
efficient quality management it is essential to establish the domain under study. This is important
not only for the quality management of these kinds of methodologies but to be applied to any

context or domain. For instance, even in developing a Web Application (a product) it is important to
consider what type of product is concerned. It is not the same to develop an application or product for a
bank to whom security stands as a quality characteristic imperative, as to develop a search engine
which the usability or performance is crucial. So, a general approach for MDE is not enough for
solving the problem of the quality management for MDWE methodologies. The purpose of QuEF is
not only to assure a clear strategy for the quality management but, in addition, continuous automatic
quality improvement by means of generating checklists and documentation, as well as automatic
evaluations and plans in order to control and improve quality and thus, automatically, reduce effort and
time.

All elements of the quality model are explained, although in this paper we focus on properties
of MDWE methodologies (classified by features and sub-features). Once this quality model metamodel
is explained, we pass onto Section 4, where some formulas are defined for the analysis and the
evaluation processes, and which shows the results of the characterization of these methodologies.
Section 5 illustrates a evaluation process for a Model-Driven Web development methodology which is
evaluated to find the state of completeness of the methodology and improve its weaknesses.

3 Concepts in use

In ISO 15939 [17], the measurement information model constitutes a structure linking information
needs to the relevant entities and attributes of concern. Entities include processes, products, projects
and resources. The measurement information model describes how the relevant attributes are
quantified and transformed into indicators that provide the basis for decision-making. The selection or
definition of appropriate measures to address an information need begins with a measurable concept:
an idea of which measurable attributes are related to an information need and how they are related. The
measurement planner defines measurement constructs that associate these attributes with a specified
information need. This measurement information model identifies basic terms and concepts. The
measurement information model helps determine the measurement planner needs to specify during
measurement planning, performance and evaluation.

The entity in our quality model represents a MDWE approach that has to be characterized by
measuring its attributes. An entity may have one or more interesting properties to meet the information
needs. In practice, an entity can be classified into more than one of the above categories.

In this paper, a quality model consists of a set of elements and the relationship among them, which
lays the foundations for quality management. The quality model may be defined as “conformance to
requirements” and/or “fitness of use”. This quality model contains:

• Properties, that is, the descriptive environment in which the quality management is going to be
performed and the needs offered by authors to development teams of MDWE approaches.

• Quality characteristics are those quality aspects that authors of MDWE approaches must
ensure in the set of properties offered to development teams[10]

In simple terms, all authors must be well aware of properties (they are the description of
approaches and development teams’ needs and expectations to be covered), quality characteristics to
be assured and the impact on quality characteristics, strategic quality management and the contribution
of this strategy towards achieving the goal.

Figure 3 Quality Measure Elements Concept in the Software Product Quality Measurement Reference Model [17]

Figure 3 shows the relationship [2] between the quality measure elements and the software
quality measures, and between the software quality measures and the quality characteristics and
subcharacteristics. In metrology, these would correspond to base measures and derived measures,
respectively. It can be observed that these measures, particularly derived measures, are specifically
defined to measure the sub-characteristics of internal and external quality or the characteristics of
quality in use. None of these is directly related to the software quality top level (which is itself broken
down into three models, then into sixteen characteristics and finally, into a large number of sub-
characteristics)

Figure 4 quality model metamodel for MDWE approaches

Software Product Quality

Quality Characteristics

Quality Sub-Characteristics

Software Quality Measures

Measurement
Function

Quality Measure Elements

The following definitions come from ISO standard on software measurement process, ISO
15939 [17], which is itself based on the definitions in ISO International Vocabulary of Basic and
General Terms in Metrology [19]. Further, in ISO 15939 [17], the type of measurement method
depends on the nature of the operations used to quantify an attribute. Two types of method may be
distinguished:

• Subjective — quantification involving human judgment.

• Objective — quantification based on numerical rules such as counting. These rules may be
implemented via human or automated means.

Figure 4 shows the specific proposed metamodel for MDWE approaches. Different levels
for properties and quality characteristics are explained below:

• Feature (FT-<Level 0>): It is a general concept. A set of properties, but a higher-level concept
of an approach, that broadly describes it. They may be, for example, the software development
process, MDE aspects, Web Modeling aspects, tool support, experience of an approach or
quality assurance techniques, among others. A Feature has a set of Sub-Features.

• Sub-Feature (FT-<Level 1>): It is a specific concept. A set of properties, but a lower-level
concept of an approach. For example, the MDE Feature may have some Sub-Features such as,
Language Definition, Transformations and Trace Generation. It is used to categorize the
approach properties in two levels (Feature and Sub-Feature).

• Property: It should indicate the degree to which a Sub-Feature is measured. A property is used
for describing and analyzing Sub-Features. In terms of properties, the aim is to look for a series
of qualitative and quantitative properties based on their nature, although it might be interesting
to have standard properties on MDWE that would be, somehow, centralized. In the literature,
numerous references to metrics can be found, however, standardization has yet to be carried
out. Furthermore, the metrics used must be validated theoretically or empirically. The
theoretical validation helps know when and how to apply metrics and the empirical validation
intends to prove the practical application of the proposed properties.

A base property may be defined as a measure that provides the degree of implementation of a
need to be covered, whereas a derived property may be defined as a property that is composed of a set
of base properties or derived properties. MDWE approaches will be evaluated in this way so most of
the methods are going to be subjective since they involve human judgment. With regard to properties,
it must be mentioned that a Property describes a MDWE approach element, therefore it could be
considered a simple metric that indicates the state of the implementation of this element. Measurement
is the act of determining a measure. The IEEE Standard Glossary of Software Engineering Terms [16]
defines metrics as "a quantitative measure of the degree to which a system, component, or process
possesses a given attribute".

Apart from that, as explained in Dominguez-Mayo et Al. [10], quality characteristics
(hierarchically structured by Quality Characteristics (or QC-<Level 0>) and Quality Sub-
Characteristics (or QC-<Level 1>)) are quality aspects, together with those properties that authors have

to assure to development teams. For instance, such an assurance could be Usability, Functionality,
Maintainability, Reliability and Portability.

As shown in figure 4, authors should define relations between these properties and quality
characteristics in order to identify how each Sub-Feature is influenced by each Quality Sub-
Characteristic. These association links would represent the dependencies between properties and
quality characteristics. They would show quality characteristics affected by Sub-Features or areas of
the approach that will be significantly affected, if the approach changes.

Association links may be based on proven and real-world experience. The impact of each
Sub-Feature on Quality Sub-Characteristics must be demonstrated and the requirements must be
determined by real case studies applied to a number of real projects. This should be supplemented by
references to published literature. A weight is used to define the importance of a property in the value
of a Sub-Feature. This description or checklist can help authors discover tradeoffs and weak? points of
a MDWE approach. For instance, Web Modeling is described as a Feature that has different Sub-
Features. These Sub-Features could be Web Conceptual Levels, Development Process and some Web
conceptual levels such as, Content Modeling, Presentation Modeling or Navigation Modeling, among
others. In addition, Usability can be described as a Quality Characteristic that has different Quality
Sub-Characteristics, such as Learnability, Understandability or Attractiveness, among others. Then,
depending on experiments and real-world experience some aforementioned Sub-Features could be
associated with previously mentioned Quality Sub-Characteristics. For example, Presentation
Modeling could be related to Attractiveness and, the use of a standard like UML for modeling web
applications is a property influencing Usability. The relationships between properties and quality
characteristics can be defined in terms of development teams and authors’ knowledge and experience.

Those quality characteristics and properties can be evaluated as elements of a MDWE
approach from either a general or a specific granularity. For that reason, there are two levels of quality
characteristics and properties which have, in turn, been divided into two levels: firstly, Quality
Characteristics and Sub-Characteristics for quality characteristics and, secondly Features and Sub-
Features for properties. In the same way, authors could have different viewpoints on the influence of
properties on quality characteristics.

Thus, a generic and basic metamodel, which categorizes the concepts of this domain in a
generic and easy way, is proposed. In this sense, the present proposal consists in capturing these
properties by means of checklists. Checklists, which include the common elements of all these
approaches, have been defined. As analyzed before, a set of properties (organized in two levels,
Features and Sub-Features) that lays the basis for specifying the checklists to analyze MDWE
approaches, are described and explained. For those tasks, a Systematic Literature Review (SLR)
process dealing with the observation of trends and technology on the rise has been carried out. This
SLR is further explained in next sections. In addition, development teams have to identify the
importance of these elements considering the removal or insertion of more quality characteristics,
depending on the current scope captured. Then, a Group Decision Making (GDM) is performed [13] as
a decision-making problem for reaching a consensual view. The idea consists in facilitating a
consensual reaching process when evaluating properties.

 4 Characterization of Model-Driven Web Engineering development approaches

The main purpose of the characterization is to be able to analyse and identify tradeoffs and
sensitive points of the approach studied. The aim is to evaluate and determine which properties need to
be improved on a MDWE approach. In order to carry out the analysis and evaluation of MDWE
approaches, the framework would use the checklists results with the implemented properties. The
checklists have been drawn from a thorough systematic study of the literature and state-of-the-art
of current domains. Checklists are a complete description of all properties that a MDWE approach can
implement. Authors have to identify these needs and focus them on MDWE approaches quality
enhancement. They have to become observers and listen to development teams in order to offer them a
more effective and efficient framework.

The value of every Feature and Sub-Feature is going to be calculated in terms of its individual
importance. A weighted average formula that takes into account the proportional relevance of each
component, rather than treating it equally is defined by default in order to calculate the values of
Feature and Sub-Features. This is a first approach to the results, but it is possible to use more accurate
formulas which have already been described in the literature. So, If a stakeholder considers that, during
the quality analysis of MDWE approaches within their evaluation, all properties are important, then the
completeness of these approaches will be evaluated. However, development teams have to determine
which of these properties are more suitable to their needs and based on that decision, they have to
choose which methods better match their interests.

Descriptive statistics can be helpful when describing certain characteristics of a product and a
process [34, 20]. The most important descriptive statistics are measures of central tendency such as the
mean, measures of variability such as the standard deviation and range, and measures of the data
distribution. In this case, descriptive statistics to describe properties and quality characteristics of a
MDWE approach can be used. The arithmetic average, or the mean, is a statistic formula that measures
the central tendency of a set of data; knowing the central point of a set of data is highly important. To
compute the mean, it is simply necessary to sum all the observations and divide them by the total
number of observations. Different points of view of an approach can be obtained.

The weighted arithmetic mean (or weighted average) is used, when trying to combine average
values from samples of the same population with different sample sizes. In this application, the sample
sizes represent a measure for the reliability of influence some respective values have on the mean.
Authors and development teams can obtain a specific and general knowledge of the approach
environment for Sub-Features and Features directly from the results. Therefore, the result would be a
report with the conclusions of the evaluation. It would provide an assessment report of the approach
and it may even be used to compare other MDWE approach evaluations. The formulas for analyzing
the approach are described below in formula (1), (2) and (3).

It is specifically interesting to obtain a relative value for MDWE approaches in order to

compare these types of approaches. The global properties value Fr can also be obtained considering

the weight and value of each Feature, as shown in formula (1). Where
iFw represents the weight for

indicating how each Feature value
iFr influences the global properties value Fr . The weights may be

different for each author or development team and may be customized. m represents the number of

Features associated with the global properties value Fr .

1
i i

i m

F F
i

F

w r
r

m

=

==
∑

(Formula 1)

• Fr : Global properties value

•
iFw : Feature weight for the Feature i.

•
iFr : Feature value for the Feature i.

Quality of approaches [10] in turn depends on some Features of properties, such as the MDE,
the knowledge of MDWE approach development teams, the Web Modeling, the customization
Modeling, the maturity of a MDWE approach and the tool support used for Modeling and
transformations. Development teams and authors of an approach apply the available Modeling
languages, tools and processes and develop models based on their knowledge of the problem and their
experience. Besides, a Sub-Feature could influence a Feature differently and properties could also
influence Sub-Features in a different way.

For Feature values the formula is formula (2).
,i jfw represents the weight indicating how

each Sub-Feature value
,i jfr influences the associated Feature

iFr . The weight
,i jfw may be also

customized by authors and development teams. Finally, n stands for the number of Sub-Features

associated with the Feature
iFr , as shown in formula (2).

, ,
1

i j i j

i

j n

f f
j

F

w r

r
n

=

==
∑

(Formula 2)

•
iFr : Feature value i.

•
,i jfw : Sub-Feature weight for the Feature i.

•
,i jfr :Sub-Feature value for the Feature i.

Finally, for Sub-Feature values, a Sub-Feature value
,i jfr is calculated as:

, , , ,

,

1
i j k i j k

i j

t

m m
k

f

w r
r

t
==
∑

(Formula 3)

•
,i jfr : Sub-Feature value j for the Feature i.

•
, ,i j kmw Property weight for the property k, sub-Feature j and Feature i.

•
, ,i j kmr : Property value for the property k, sub-Feature j and Feature i.

where
, ,i j kmw represents the weight indicating how each property value

, ,i j kmr influences the Sub-

Feature
,i jfr associated. The weights may be different for each author or development team and may be

customized. t represents the number of properties associated with the Sub-Feature value
,i jfr .

4.1 Identification of properties

The definition of properties involves a large initial effort. Furthermore, in this approach, the
description domain is built by conducting an initial description of the domain according to the
information gathered from different experts, authors and development teams of MDWE approaches
and by carrying out a Systematic Literature Review (SLR) process. Then, it is important to distinguish
concepts such as problem analysis and decision-making for they are completely different. The SLR
process must be firstly performed in order to determine the initial description of the domain. After that,
the information gathered in that process may be addressed to decision-making process.

 In order to get a common description of these properties, a consensus reaching process has to
be defined. Group Decision-Making (GDM) methods are the central axis of other papers [13] to
customize a set of weight values related to properties, as well as quality characteristics of approaches
in terms of the importance given. With this method, a consensual decision for the weight values of the
quality model elements can be reached. Similarly, a GDM method should be defined in the future to
agree on the description of properties.

In table 1 a pattern is defined to build each Feature. All fields are relevant, but the version
field is really significant, for some information is needed to control the current state of the checklists
based on the quality model. Since technology is constantly changing and evolving, authors and
development teams of MDWE approaches have to continuously update this first proposed quality
model for MDWE approaches. In other words, it is important to take into account that this first
identification is just a first base to start evaluating MDWE approaches quality. It must be assured that
when analyzing several MDWE approaches, the analysis is performed with the same version of
checklists.

Table 1. Pattern to describe the Features
FT-<ID> Name Description Version Sub-Features
<id value> <Feature name> <Feature description> <version number> • SF-<ID>: <Sub-

Feature name>
• …

• FT<ID>: It represents an identification code for the Feature.

• Name: It refers to the name of the Feature.

• Description: It provides a brief description of the Feature.

• Version: It consists in a number given to control the version of the Feature.

• Sub-Features: It refers to the set of Sub-Features belonging to the Feature. Each line consists of
the identification value and the Sub-Feature name.

The pattern for defining each Sub-Feature is described in Table 2.

Table 2. Pattern to describe the Sub-Features
SF-<ID> Name Description Properties

<id value> <Sub-Feature name> <Sub-Feature description> • PD-<ID>:<Property name>
• ...

• SF<ID>: It represents an identification code for the Sub-Feature.

• Name: It refers to the name of the Sub-Feature.

• Description: It provides a brief description of the Sub-Feature.

• Properties: It refers to the set of properties belonging to the Sub-Feature. Each line consists of
the identification value and the property name.

Additionally, the pattern for defining the scale of Properties is described in Table 3:

Table 3. Pattern to define the scale of a Property
SC-<ID> Type Range Range type Value

<id value> <Quantitative or
Qualitative>

<Range of possible
values>

<Range type> <Normalized quantitative value>

• SC<ID>: It represents an identification code for the scale type.

• Type: It is the scale type that can be either Quantitative or Qualitative.

• Range: It is used for defining the possible values of this scale.

• Range type: It is the element type of the Range values.

• Value: It is a normalized quantitative value in terms of range.

In order to define properties, the pattern determining the checklists of Properties is described
together with the elements in Table 4, where each property entity is explained as a regular expression
and “+” indicates that there is one or more of the preceding elements and “|”represents the operator
“or”.

Table 4. Pattern to define the checklists of Properties

P
D

<I
D

>
P

ro
pe

rt
y

N
am

e PB-<ID>
<Property name>

<Property description> <Reference to Scale
Value>

PD-<ID>
<Property name>

PB-<ID>
<Property name>

<Property description> <Reference to Scale
Value>

PD-<ID>
<Property name>

…

• PD-<ID>: It is a derived property. It consists of one or more base properties. The ID is an
identification code for the property. It has also a name and a version number

• <Property name>, {PB<ID> | PD<ID>}+

• PB-<ID>: It is a base property. It includes a description defining the property and a reference to
the scale value used for measuring the description. <Property name>, <Property Description>,
<Reference to Scale Value>

o <Property name>: It is the name of the property.

o <Property Description>: It is a sentence that questions whether an approach has an
element or not.

o <Reference to Scale Value>: It is the identification code for the scale value. It is
possible to have more than one reference for a scale value in this field, for example, one
reference to indicate a quantitative value and another one to indicate a qualitative value.
This happens because it could be necessary to indicate a quantitative value and the way
it has been supported by a qualitative value.

4.2 Systematic Literature Review process for properties

One of the most important tasks to describe the specific environment is to clearly delimit the scope
of the Features, Sub-Features and properties of approaches that are relevant for the study. This is
obtained through the SLR (Systematic Literature Review) process [21, 22]. A problem regarding this
survey is how to describe each Feature, Sub-Feature and property of approaches in a homogeneous
way and how to compare them. This description is found in the next section where different patterns
for Features, Sub-Features and properties are defined.

As introduced, Features, Sub-Features and properties to describe approaches should fulfill and
must be consistent with the work of this survey: to improve the analysis of MDWE approaches based
on a characterization of MDWE approaches (its characterization). Thus, following the terminology
described in previous sections for a particular development of this review, Context, Objectives,
Methods and Results are defined:

• Context: It is the systematic or even automatic analysis of MDWE approaches according to a
characterization of this kind of approach. To improve the analysis of approaches using

checklists could be a solution. This study is focused on MDWE approaches. The use of these
checklists makes the analysis and the evaluation of approaches easier.

• Objectives: After defining the context, the objectives of this overview have to be defined. They
can be categorized into in four groups:

o The ones dealing with identifying comparative studies that have been proposed to
address the analysis of MDWE approaches.

o Those that analyze if they offer a set of suitable characterization that can be used to
analyze MDWE approaches.

o The ones that identify the gaps in current research.

o Those that propose future work dealing with the comparative studies of MDWE
approaches.

• Methods: The search strategy for the review was centered on three lines:

o It was primarily directed towards finding published surveys that compare MDWE
approaches. Some previous surveys were found [27, 39, 12, 37]. This search started
with the concepts included in these papers and then an analysis of which of them
covered this domain was carried out. The proposed study of Schwinger et al. was a good
basis for this framework, but not enough because this is a static study and we not only
want to evaluate proposals, but carrying out a complete quality management about this
domain in future. In addition, in a good strategy, the properties that are shown in the
study are not enough since in a quality continuous improvement past, present and future
trends have to be considered. All this favors a good model design in order to conduct a
quality management, but based on a quality continuous improvement.

o After that, a Web-search was performed to find other relevant and new concepts related
to these properties. Several sets of keywords were used by combining the concepts of
this study such as: “Model-Driven Engineering, Web Modeling, Model-Driven Web
Engineering”, “Navigation Modeling” or “Content Modeling”, among others. These sets
were used both in specialized search engines and in general ones. The search engines
were: Google, Google Scholar, Scoupus, EI Compendex, ISI Web of Knowledge,
IEEEXplore, ACM Digital Library and CiteSeerX

o The last step consisted in looking at references of papers taken from previous reviews.

• Results: The final result of searching an initial description of MDWE approaches properties
(including all the references from previous comparative surveys and approaches found) was
translated into the analysis of various MDWE approaches.

4.3 Initial description of properties

Relating to the results obtained in the SLR process, a set of Features, Sub-Features and properties
identifying MDWE properties, has been identified, classified and described regarding work and the
current literature. A SLR process aims at providing an exhaustive summary of the relevant literature to
a research question; which are the entities involved in a MDWE approach that best describes it? The

first step of the SLR process consisted in a thorough literature search, for example, in electronic
resources such as Google Scholar, Web of Science, ScienceDirect, PubMed and Public Library of
Science. The SLR process intends to provide a detailed summary of literature relevant to this research
question. Next, the titles and the abstracts of the identified articles were checked for eligibility and to
improve the search. Third, a list of appraisal criteria was applied to the selected articles. These criteria
had to do with the methodological quality of the studies, relevance and credibility that could be
implicit to the results. The Feature pattern table with their specific values for this domain is described
in Table 5. Web Modeling, MDE, Experience and Tool Support Features are described in the table
together with their Sub-Features.

Table 5. Features
FT -<ID> Name Description Version Sub-Features
1 Web Modeling It describes the specific

MDWE aspects. It covers
aspects such as evaluating the
Web application development
process, specific conceptual
levels for this domain and
levels of abstraction which
have been defined in the
approach. The MDE Feature
is more general than this one.

2.1 • SF-<11>: Web Conceptual Levels
• SF-<12>: Interfaces
• SF-<13>: Development Process
• SF-<14>: Content Modeling
• SF-<15>: Presentation Modeling
• SF-<16>: Navigation Modeling
• SF-<17>: Business Modeling

2 MDE It describes the MDE aspects
as the Modeling language
definition used, such as their
suitability for the MDWE
domain, complexity,
transformations, traces, test
cases, and rule generation
models as a prerequisite for
successfully employing MDE
in the style of the MDA of the
OMG.

2.1 • SF-<21>: Levels of Abstraction
• SF-<22>: Standard Definition
• SF-<23>: Model-Based Testing
• SF-<24>:Transformations
• SF-<25>:Traces

3 Experience It describes the state of being
mature in a methodology
building process by authors.
For example, it deals with the
year of introduction of the
approach, number of
Modeling examples or
number of applications in
Real-World projects.

2.1 • SF-<31>: Topicality
• SF-<32>: Modeling Examples
• SF-<33>: Application in Real-
World Projects
• SF-<34>: Publications
• SF-<35>: External Web References

4 Tool Support It is used for specifying
whether it provides or not a
tool support such as a
creation tool, edition tool or
other different tools it
supports.

2.1 • SF-<41>: Creation, edition and
composition tool support
• SF-<42>: Analysis Tool support
• SF-<43>: Transformation Tool
support
• SF-<44>: Code generation and
specific platform tool support
• SF-<45>: Trace Tool support
• SF-<46>: Teamwork tool support

The Sub-Feature pattern table of FT-<1>: Web Modeling Feature with their values is
described in Table 6 together with properties.

Table 6. Sub-Features (of the Feature FT-<1>: Web Modeling)
SF-<ID> Name Description Properties
11 Web

Conceptual
Levels

It describes which Web conceptual levels and
which levels of abstraction are considered by
an approach.

• PD-<111>: Content (Content Model)
• PD-<112>: Presentation
(Presentation Model)
• PD-<113>: Navigation (Navigation
Model)
• PD-<114>: Business (Process
Model, Development Team Model and
Context Model)

12 Interfaces It describes how the interrelationships among
the Web conceptual levels are modeled.

• PD-<121>: Interface specification

13 Develo pment
Process

It describes the development process and
whether it is defined or not in the approach.

• PD-<131>: Development

14 Content
Modeling

This Web Conceptual Level is described for
each level of abstraction, but it focuses on the
content aspects.

• PD-<141>: CIM
• PD-<142>: PIM
• PD-<143>: PSM

15 Presentation
Modeling

This Web Conceptual Level is described for
each level of abstraction, but it focuses on the
presentation aspects.

• PD-<151>: CIM
• PD-<152>: PIM
• PD-<153>: PSM

16 Navigation
Modeling

This Web Conceptual Level is described for
each level of abstraction, but it focuses on the
navigation aspects.

• PD-<161>: CIM
• PD-<162>: PIM
• PD-<163>: PSM

17 Business
Modeling

This Web Conceptual Level is described for
each level of abstraction and it is used to
describe the context, the development team
and the business process of a Web application.

• PD-<171>: CIM
• PD-<172>: PIM
• PD-<173>: PSM

The Sub-Feature pattern table of FT-<2>: MDE Feature with their values is described in
Table 7 together with properties.

Table 7. Sub-Features (of the Feature FT-<2>: MDE)
SF-<ID> Name Description Properties
21 Levels of

Abstraction
It describes properties to indicate the Level
of Abstraction (CIM, PIM, PSM and Code)
which are used in the approach

• PD-<211>: CIM
• PD-<212>: PIM
• PD-<213>: PSM
• PD-<214>: Code

22 Standard Definition It describes properties for defining whether
is made with standards notations or is not
made. This Sub-Feature is for the
evaluation of whether a web modelling
language has been defined explicitly in
terms of a metamodel (including UML
profiles), a grammar, a semantic
description in terms of semantic web
technologies, or if such a definition is
absent

• PD-<221>: Metamodel, Schema,
Grammar or Ontology
• PD-<222>: Model or Visual Syntax

23 Model-Based
Testing

It describes properties for describing
whether a Model-Based Testing is defined
for the approach

• PD-<231>: Metamodel, Schema,
Grammar or Ontology for Test Cases
• PD-<232>: Model or Visual Syntax
for Test Cases
• PD-<233>: Transformations for
Model-Based Testing

24 Transformations The Transformations Sub-Feature is for the
evaluation of whether approaches might
support or not support various types of
model transformations. For example, an
approach might support transformations
between platform-independent models
(PIM2PIM), and transformations between
platform-independent and platform-specific
models (PIM2PSM), transformations
between platform-specific models and code
(PSM2Code)

• PD-<241>: Transformation Types
• PD-<242>: Model-Driven Reverse
Engineering or Synchronization

25 Traces The Traces Sub-Feature evaluates if a
generation of traces has been defined from
transformations or between models.
Regarding MDE, the traceability
mechanism links elements of different
models in order to specify elements useful
in generating others. Those links can also
be used to analyze impacts of model
evolutions onto other models in the
transformation chain

• PD-<251>: Trace Generation
Language
• PD-<252>: Horizontal Trace
Generation
• PD-<253>: Vertical Trace
Generation

The Sub-Feature pattern table of FT-<3>: Experience Feature with their values is described in
Table 8 together with properties.

Table 8. Sub-Features (of the Feature FT-<3>: Experience)
SF-<ID> Name Description Properties
31 Topicality The Topicality Sub-Feature is the year of

introduction of the approach and other issues
related with the time under development.

• PD-<311>:Years of Experience

32 Modeling
Examples

The Modeling Examples Sub-Feature is the
number of different and existing modelling
examples and their depth which would also be
of interest. Such a depth measure could be
composed of the number of modeling concepts
used, i.e. the number of content classes, nodes,
links, etc

• PD-<321>: Experience in Examples

33 Application in
Real-World
Projects

The Application in Real-World Projects Sub-
Feature describes the employment in
designing real-world applications and number
of organizations which are currently using the
approach or an adaptation of it. This criterion
evaluates whether real-world applications
exist or do not exist.

• PD-<331>: Experience in Projects

34 Publications The Publications Sub-Feature describes the
number of publications in different conference
proceedings, journals, books, etc

• PD-<341>: Experience in
Publications

35 External Web
References

The External Web References Sub-Feature
describes the number of external web
references which may be used for future
development teams of the approach. For
example it could be the number of references
showed by a google search

• PD-<3511>: Number of external web
references on Google
• PD-<3512>: Number of external web
references on Google Scholar

Feature pattern table of FT-<4>: Tool Support Feature with their values is described in Table
9 together with properties.

Table 10 describes a scale property with two types of values, qualitative and quantitative, as
an example.

Table 9. Sub-Features (of the Feature FT-<4>: Tool Support)

SF-<ID> Name Description Properties
41 Creation,

edition and
composition
tool support

The Creation, Edition and Composition
Tool Support Sub-Feature is to describe
properties for analyzing the aspects of a
tool support used to the creation, edition
and composition of metamodels and models

• PD-<411>: Creation, edition and
composition of Models
• PD-<412>: Creation, edition and
composition of Models for Testing
• PD-<413>: Pattern design Tool for
Models

42 Analysis Tool
support

The Analysis Tool Support Sub-Feature
describes properties for analyzing the
features of an analysis tool support used to
analyze models, metamodels and
transformations

• PD-<421>: Analysis of Models
• PD-<422>: Transformation Rules
• PD-<423>: Model-Based Testing
• PD-<424>: Trace
• PD-<425>: Metrics

43 Transformation
Tool support

The Transformation Tool Support Sub-
Feature specifies properties for analyzing
the aspects of a transformation tool support
used to define transformations between
models

• PD-<431>: Transformation Types
• PD-<432>: Model-Driven Reverse
Engineering or Synchronization

44 Code
generation and
specific
platform tool
support

The Code Generation and Specific Platform
Tool Support Sub-Feature specify
properties used to analyze the value and
features related to a tool support for
generating code

• PD-<441>: Language or Platform
models and code generation
• PD-<442>: Data Persistence models and
code generation
• PD-<443>: Web services, BPEL and
Mashups models and code generation
• PD-<444>: Models and Code for Testing
• PD-<445>: Web 2.0 and Rich Internet
Application models and code generation
• PD-<453>: Web 3.0 and Semantic Web
models and code generation

45 Trace Tool
support

The Trace Tool Support Sub-Feature
describes properties for analyzing the value
and features of a trace tool support which is
used for tracing between models and
metamodels

• PD-<451>: Trace Generation Tool
• PD-<452>: Horizontal Trace
Generation Tool
• PD-<453>: Vertical Trace Generation
Tool

46 Team work tool
support

The Team Work Tool Support Sub-Feature
describes properties for analyzing the value
and features of a Team work tool support.
This tool is used for improving the work in
a team

• PD-<461>: Team work

Table 10. Property scale
SC-<ID> Type Range Range type Value

1 Qualitative {Not Supported, Partly
Supported, Supported}

STRING {0, 1/2, 1}

2 Quantitative {0 - 5} INTEGER

4.4 The Checklists

Table 11 Checklist for the SF-<14>: Content Modeling

M
T

-<
14

1>

C
IM

2.

1

MB-<1211>
CIM-
Requirement
s Capture

It determines a well-defined technique, process and artifact used for capturing
content requirements

ValueOf(
SC-<1>)

MB-<1212>
CIM-
Content
Requirement
s Definition

In CIM level of Abstraction for defining and Modeling the Content it uses standard
diagrams based on UML, UML stereotypes for the specific Web concepts or
BPMN for the Business Process Diagram specification such as class diagrams,
object diagram, or other type of standard very close to it.

ValueOf(
SC-<1>)

MB-<1212>
CIM-
Requirement
s Validation

It determines a well-defined technique, process and artifact used for validating
content requirements

ValueOf(
 SC-<1>)

M
T

-<
14

2>

P
IM

2.

1

MB-<1421>
PIM–
Content
Analysis

In PIM level of Abstraction for Modeling the Content it uses standard diagrams
based on UML, UML stereotypes for the specific Web concepts or BPMN for the
Business Process Diagram specification

ValueOf(
 SC-<1>)

MD-<1422>
PIM –
Design
Pattern for
Content
Models

MB-<14221>
Catalog of patterns

It provides users with a proven catalogue of archetype
patterns: high-value model components that can be easily
incorporated into UML and BPMN models.

ValueOf(
SC-<1>)

MB-<14222>
MVC pattern

It uses the content model in a MVC (Model-View-
Controller Pattern) architectural pattern.

ValueOf(
SC-<1>)

M
T

-<
14

3>
P

SM
2.

1

MB-<1421>
PSM –
Content
Design

In PSM the level of Abstraction for Modeling the Content uses standard diagrams
based on UML, UML stereotypes for the specific Web concepts or BPMN for the
Business Process Diagram specification.

ValueOf(
SC-<1>)

MD-<1422>
PSM -
Technology
and Specific
Platforms

MB-<14221>
Technology

It supports technology such as Ruby on Rails, Strut,
Spring, JSF, or other language or Platform to design the
content model in a MVC (Model-View-Controller Pattern)
architectural pattern

ValueOf(
SC-<1>)

MB-<14222>
Languages or
Platforms

Number of languages or platforms which can be used to
design the content model such as Ruby on Rails (Ruby),
Ajax Framework , Struts (Java /J2EE), Spring (Java
/J2EE), JSF (Java /J2EE), Catalyst (Perl), Web2py
(Python), KumbiaPHP (PHP), MonoRail (.NET), Spring
.NET (.NET) or ASP .NET (.NET) (HTML).

ValueOf(
SC-<2>)

PD-<1433>
PSM - Data
Persistence

PB-<14331>
Modeling of
database

It supports Modeling of database schema design and
automatic generation of scripts such as DB2, MS SQL
Server, MySQL or Oracle, for example.

ValueOf(
SC-<1>)

PB-<14332>
Platforms

Number of software which can be used to design the
object-relational mapping such as Hibernate, OpenJPA,
ADO .NET Entity Framework, TopLink, JPA,
EclipseLink.

ValueOf(
SC-<2>)

PB-<1424>
PSM - Web
2.0 and Rich
Internet
Applications

It supports Rich Internet application framework (for example AJAX or GWT) for
scripting which (according to W3C) can make Web pages more dynamic. For
example, without reloading a new version of a page, it may allow modifications to
the content of that page, or allow content to be added to or sent from that page. The
former has been called DHTML (Dynamic HTML), and the latter AJAX
(Asynchronous JavaScript and XML).

ValueOf(
SC-<1>)

PB-<1425>
PSM -Web
3.0 and
Semantic
Web

It supports semantic Web technology such as Resource Description Framework
(RDF), a variety of data interchange formats (e.g. RDF/XML, N3, Turtle, N-
Triples), and notations such as RDF Schema (RDFS) and the Web Ontology
Language (OWL), all of which are intended to provide a formal description of
concepts, terms, and relationships within a given knowledge domain. (W3C
recommendation)

ValueOf(
SC-<1>)

It has already been mentioned that checklists help identify strengths and weakenesses of
MDWE approaches. Besides, checklists are powerful artifacts to assure quality and they can be used to
analyze and control the state of MDWE approaches. Consequently, authors of approaches can use
these checklists as mechanisms to analyze and control the state of their MDWE approaches. Besides
that, they can also be used to indicate what aspect is important within a domain. Furthermore,
development teams can also use them as a mechanism to point out what they really matter. These
checklists can be defined in terms of the properties description already established.

For length reasons, this paper does not show all the Checklists to analyze the methodology.
The checklist Table of SF-<14>: Content Modeling sub-feature is described in Table 11 as an example
of metrics definition for a sub-feature.

5 Example application: studying a visual description of NDT methodology

NDT (Navigational Development Techniques) is a methodological approach oriented to Web
Engineering. In the last few years, several Web approaches were defined; OOHDM, UWE, WebML,
RUX-Method or OOH4RIA, are only some examples. However, comparative studies conclude that
these approaches mainly focus on the analysis and design phases and there is an important gap in Web
requirements treatment. NDT tries to fill this gap. Thus, it deals with the requirements and the analysis
phases. Nowadays, NDT has evolved in the enterprise environment and it covers the complete life
cycle of a software project. With the use of NDT-Suite, NDT offers tool support for each phase of the
life cycle.

 The entire proposed approach has been applied to the NDT methodology. For length
reasons, this paper does not show all the Checklists that have been used to analyze the methodology.
We have analyzed the methodology considering that all Properties are equally important. Thus, the
completeness of NDT is examined in order to identify the weaknesses of the methodology. However,
these Properties are the Properties that include most of MDWE existing methodologies. For this reason
and because of the immaturity of the domain under study we have considered each and every one of
these Properties.

5.1 Analyzing the Web Modeling Feature Checklist for NDT methodology

The Web Modeling Feature Checklist has been applied to NDT methodology in order to analyze
the Web Modeling domain aspects of the methodology. Nevertheless, to restrict the length of the
content of this paper, only the Content Modeling Sub-Feature of the Web Modeling Feature is
described in Table 12, as an example of the analysis and its later evaluation. This Sub-Feature table is
one of the Checklists which describe the Web Modeling Feature in a MDWE methodology. In the
example, the Checklist has values for NDT methodology.

In Fig. 5, every Sub-Feature values for NDT methodology for the Web Modeling Features is
shown in the chart. In this figure, the grey line represents Sub-Feature values for an ideal methodology
and the black one represents Sub-Feature values for NDT methodology.

 Table 12 Filling Checklist for the SF-<14>: Content Modeling

P
T

-<
14

1>

C
IM

2.

1

PB-<1411>
CIM-
Requirement
s Capture

It determines a well-defined technique, process and artifact used for capturing
content requirements

Supported

PB-<1412>
CIM-
Content
Requirement
s Definition

In CIM level of Abstraction for defining and Modeling the Content it uses
standard diagrams based on UML, UML stereotypes for the specific Web
concepts or BPMN for the Business Process Diagram specification such as class
diagrams, object diagram, or other type of standard o very close to it.

Supported

PB-<1413>
CIM-
Requirement
s Validation

It defines a well-defined technique, process and artifact used validating content
requirements

Supported

P
T

-<
14

2>

P
IM

2 .

1

PB-<1421>
PIM–
Content
Analysis

In PIM level of Abstraction for Modeling the Content it uses standard diagrams
based on UML, UML stereotypes for the specific Web concepts or BPMN for
the Business Process Diagram specification

Supported

PD-<1422>
PIM –
Design
Pattern for
Content
Models

PB-<14221>
Catalog of patterns

It provides development teams with a proven catalogue
of archetype patterns: high-value model components
that can be easily incorporated into UML and BPMN
models.

Supported

PB-<14222>
MVC pattern

It uses the content model in a MVC (Model-View-
Controller Pattern) architectural pattern

Supported

P
T

-<
14

3>

P
SM

2.

1

PB-<1431>
PSM –
Content
Design

In PSM level of Abstraction for Modeling the Content it uses standard diagrams
based on UML, UML stereotypes for the specific Web concepts or BPMN for
the Business Process Diagram specification

Supported

PD-<1432>
PSM -
Technology
and Specific
Platforms

PB-<14321>
Technology

It supports technology such as Ruby on Rails, Strut,
Spring, JSF, or other language or Platform to design the
content model in a MVC (Model-View-Controller
Pattern) architectural pattern.

Partly
Supported

PB-<14322>
Languages or
Platforms

Number of languages or platforms which can be used to
design the content model such as Ruby on Rails (Ruby),
Ajax Framework , Struts (Java /J2EE), Spring (Java
/J2EE), JSF (Java /J2EE), Catalyst (Perl), Web2py
(Python), KumbiaPHP (PHP), MonoRail (.NET),
Spring .NET (.NET) or ASP .NET (.NET) (HTML)

1

PD-<1433>
PSM - Data
Persistence

PB-<14331>
Modeling of
database

It supports Modeling of database schema design and
automatic generation of scripts such as DB2, MS SQL
Server, MySQL or Oracle, for example.

Partly
Supported

PB-<14332>
Platforms

Number of software which can be used to design the
object-relational mapping such as Hibernate, OpenJPA,
ADO .NET Entity Framework, TopLink, JPA,
EclipseLink.

1

PB-<1424>
PSM - Web
2.0 and Rich
Internet
Applications

It supports Rich Internet application framework (for example AJAX or GWT)
for scripting which (according to W3C) can make Web pages more dynamic.
For example, without reloading a new version of a page, it may allow
modifications to the content of that page, or allow content to be added to or sent
from that page. The former has been called DHTML (Dynamic HTML), and the
latter AJAX (Asynchronous JavaScript and XML).

Not
Supported

PB-<1425>
PSM -Web
3.0 and
Semantic
Web

It supports semantic Web technology such as Resource Description Framework
(RDF), a variety of data interchange formats (e.g. RDF/XML, N3, Turtle, N-
Triples), and notations such as RDF Schema (RDFS) and the Web Ontology
Language (OWL), all of which are intended to provide a formal description of
concepts, terms, and relationships within a given knowledge domain. (W3C
recommendation)

Not
Supported

Figure 5 Web Modeling Sub-Features values

The formula 3 was applied by using the Checklist information. In this analysis, the weight
value for each Property is going to be considered equally important. In fact, each weight value is 1 for
each Property in order to calculate the Sub-Feature values.

Table 13 Values for calculating the SF-<14>: Content Modeling in terms of Checklists
PT-<141> CIM 2.1 PB-<1411> CIM-Requirements Capture 1

PB-<1412> CIM- Content Requirements Definition 1
PB-<1412> CIM- Requirements Validation 1

PT-<142> PIM 2.1 PB-<1421> PIM- Content Analysis 1
PD-<1422> PIM- Design Pattern for
Content Models

PB-<14221> Catalogue of
patterns

1

PB-<14222> MVC pattern 1
PT-<143> PSM 2.1 PB-<1431> PSM- Content Design 1

PD-<1432> PSM- Technology and
Specific Platforms

PB-<14321> Technology 1 / 2

PB-<14322> Languages or
Platforms

1 / 5

PD-<1433> PSM- Data Persistence PB-<14331> Modeling of
database

1 / 2

PB-<14332> Platforms 1
PB-<1434> PSM- Web 2.0 and Rich Internet Applications 0
PB-<1435> PSM-Web 3.0 and Semantic Web 0

2/3

As far as applying formulas is concerned, the total value for each Sub-Feature is the sum of
Property values associated to the Sub-Feature, divided by the number of total Properties in the Sub-
Feature considered, as it is indicated in the formula 2. For qualitative value, and as it is defined in the
scale SC-<1>, the Property value in the example is 1, if it is a Supported, 1/2 of the arithmetic mean of
supported elements out of the total elements, if it is partly supported, and 0 if it is not supported. In
case we have a quantitative value, as it is defined in scale SC-<2>, the value is out of the range max

value defined in the scale. The total value for the Content Modeling Sub-Feature is 2/3, as it is shown
in Table 15.

As regards the results, in the chart, the NDT methodology has the best scores for the
Development Process and the Web Conceptual Levels. Nevertheless, it may improve the Navigations
Feature Modeling, Business Modeling and Content Feature Modeling Sub-Features. Therefore, the
Presentation Modeling is a Web conceptual Level which this methodology lacks. So, the approach the
author has to improve this Sub-Feature in the future. Another Sub-Feature which may be improved is
the interfaces, which this methodology also lacks.

This analysis can help identify what the Features and Sub-Features to be improved in a
methodology are. Attending to the information obtained in the Checklists, we recommend the authors
to improve the Presentation Modeling Sub-Feature, since it has no models for defining either PIM or
PSM levels of abstraction. Besides, it could be relevant that the models provided by the methodology
in the future would be standard diagrams based on UML or UML stereotypes for the specific Web
concepts. Thus, development teams would be also provided with a proven catalogue of archetype
patterns in order to be helped to design the presentation.

As regards the Business Modeling Sub-Feature, it would be appropriate that the methodology
may offer in the future the Business Process Execution Language (BPEL), the short version of Web
Services Business Process Execution Language (WS-BPEL), which is a standard executable language
for specifying interactions with Web Services. In addition, it would also be relevant that the
methodology may provide technologies for the use of mashups (a way to create new Web applications
by combining existing Web resources by using data and Web APIs) such as consumer mashups, data
mashups or business mashups.

Furthermore, and with regards to interface Sub-Feature, the methodology should define more
mechanisms used to specify the interfaces among different conceptual levels with a standard language
as OCL, QVT or ATL.

In general, and in order to improve the Web Modeling Feature in NDT, we suggest to
improve the PSM level of abstraction, consequently some platforms can be used to design every
conceptual model such as for example Ruby on Rails (Ruby), Ajax Framework, Struts (Java /J2EE),
Spring (Java /J2EE), JSF (Java /J2EE) or ASP .NET (.NET). In order to improve the methodology, we
also recommend the implementation of the Rich Internet Applications and Semantic Web aspects.

With regards to the other Features, as is shown in Fig. 6, for the MDE Feature (Fig. 6 - A),
NDT methodology may improve on Standard Definition and transformation Sub-Feature. Standard
Definition would improve, if NDT methodology implements the standard BPMN 1.2 and 2.0 for the
definition of business processes. That is, it would improve in the transformation Sub-Feature, if it
provides mapping functions or transformations such as: CIM2CIM, PIM2PIM, PIM2Code and
PSM2Code. Furthermore, it should also provide a synchronization method or a reverse engineering
technique between transformations such as PSM2PIM and Code2PIM.

The NDT methodology does not offer a separate model for describing the transformation such
as a separate Platform-Description Model, which could be very useful.

It is a methodology with good scores in Traces, Levels of Abstraction and Model-Based
Testing Sub-Feature values. According to the Experience Sub-Feature, it is a methodology that lacks in
experience if compared to other older proposals, for example, UWE, WebML or OOHDM
methodologies. To sum up, NDT methodology has to improve in the external Web references and the
number of publications (Fig. 6 - B).

Figure 6 MDE (A), Experience (B) and Tool Support (C) Sub-Features values

As for the Tool support Feature (Fig. 6 - C), NDT methodology is supported by a complete
tool. Enterprise Architect is a tool which supports the majority of aspects considered in the
methodology. However, NDT methodology may improve specifically for the Transformations and
code generation and specific platform Sub-Feature. The aspects that should be implemented in order to
generate automatic code when using the methodology are the Web services, BPEL and Mashups
models, code generation for Web Rich Internet Application models and code generation for Semantic
Web models.

A B

C

5.2 Global results of Features

The results for the Sub-Features of NDT have already been shown in previous sections. Nevertheless,
a general view of NDT can also be shown. Fig. 8 offers the methodology results in terms of Features.
The black line represents Feature values on NDT methodology and the grey one stands for Feature
values for an ideal approach, depending on the Features under consideration. In this case, the total
value for each Feature is the sum of the Sub-Feature values associated to the Feature (which has been
obtained by the formula 2.

Table 14 Values for calculating the FT-<1>:Web Modeling in terms of the Sub-Features

Table 15 Values for calculating the Feature values.

Figure 7 Features values
.

The NDT methodology has better results in the MDE and Tool Support Feature and a lower
value in the Experience Feature. The Web Modeling Feature has also a significant value.

SF-<ID> Name Values
SF-<11> Web Conceptual Levels 1
SF-<12> Interfaces 2 / 3

SF-<13> Development Process 1
SF-<14> Content Modeling 2 / 3
SF-<15> Presentation Modeling 1 / 2
SF-<16> Navigation Modeling 5 / 7
SF-<17> Business Modeling 6 / 7

3 / 4

FT -<ID> Feature name Values
FT-<1> Web Modeling 3 / 4
FT-<2> MDE 7 / 8
FT-<3> Experience 1 / 4
FT-<4> Tool Support 7 / 8

6 Conclusions and Future Work

In this paper, a meta-model has been defined based on ISO quality standards in order to be used
with QuEF which is a framework for the quality management of MDWE methodologies. Besides, a set
of patterns to instantiate the quality model has been proposed in order to make easier the instantiation
of the proposed quality model. Furthermore, these patterns were used to suggest a characterization of
MDWE methodologies in order to use this information for the analysis and evaluation of MDWE
methodologies. The study focuses on describing Properties (hierarchical by Features and Sub-Features)
for MDWE methodologies.

In QuEF, at the beginning of the Quality Model Strategy and Design phases, it is important to
generally define all development teams’ needs. Once all the development teams’ needs are customized
then, in turn, they are defined within a quality model. During the Quality Model Operation phase both,
development teams and authors, can analyze, control and evaluate the quality of their approaches, as
shown in the sample application included in this paper. So, a quality model has been defined for these
Properties and a set of Checklists has been described in terms of this quality model. Features and Sub-
Features are described in order to show a complete example of Properties.

We are currently working on the analysis and evaluation of other MDWE methodologies and
even the experimentation for the validation of these Properties. So, contacts with authors of different
MDWE methodologies have been established to analyze and evaluate their approaches. The idea is to
get valuable feedback on the Checklists concerning understandability as well as acceptance. Besides,
The filled Checklists from the development teams of the approaches could be an interesting data
source for comparing different approaches as well as determining the current state-of-the-art of the
whole MDWE field.

The use of a methodology or standard model process ensures consistency in their output,
although it does not guarantee a product quality. This fact may even institutionalize the creation of bad
products. Therefore, in the future, the product Properties in the results have to be taken into account
and related to the methodology Properties because a standard process does not necessarily conclude
with a quality product. In this sense, it is necessary to describe the product and define relations among
the methodology Properties and the product Properties in the results. In fact, the product Properties
which are obtained by means of the methodology have to be also considered and related to the
methodology Properties, since it is necessary to know what methodology Properties influence product
Properties. This is due to the fact that the use of a methodology does not ensure a quality product, but
the uniformity of results. Thus, product Properties have to be related to methodology Properties in
future works.

One of the limitations is that the proposal works with people and this is a difficult aspect to
take into consideration because people have to agree on a lot of concepts. Each one has different
experiences and points of view. Besides, the domain of MDWE methodologies is currently immature
and these methodologies have different metamodels, models, transformations, tools support that work
in a different way and some other aspects that are causing different situations that render some
consideration. Take, for example, development teams who do not know how to make use of these
approaches let alone know how these approaches can help them and which approach is more suitable
for them; for that matter, and yet, they are the main target of design of the desired methodology. In

addition, the diversity in some features of the design of these approaches reflects that authors of these
approaches do not share the same vision or purpose of use. So, this methodologies depends on the
project context in which they are going to be used. The convergence towards a standardization of these
methods together with a consensus within a quality management and common quality model would
result in that both, authors and development teams, make use of and design these methodologies
effectively and efficiently.

Cooperation among authors has to lead to the detection of needs. Authors have to provide
development teams with the Properties that they need and they have to guarantee the Quality
Characteristics that development teams are demanding. Thus, authors would win in effectiveness and
efficiency in the design of their methodologies. This would be possible because both, development
teams and authors, would have a common strategy, the same objectives as well as purposes and the
same design of the model to be achieved. At the same time, and due to their shared knowledge, authors
would have a clearer idea as to what should be changed in the quality model. So, this approach would
be used not only for Analysis and Evaluation but by development teams of different methodologies.
Development teams will have the chance to compare methodologies and authors, on their part, will
have the chance to control and improve the design of their methodologies.

Acknowledgements

This research has been partially supported by the NDTQ-Framework project (TIC-5789) of Junta de
Andalucía, by the TEMPROS (Testing Temprano y Modelos de Simulación Híbrida en la Producción
de Software) Project of the Ministerio de Educación y Ciencia, Spain (TIN2010-20057-C03-02) and by
the FEDER of European Union for financial support via project “THOT. Proyecto de innovación de la
gestión documental aplicada a expedientes de contratación de servicios y obras de infraestructuras de
transporte” of the “Programa Operativo FEDER de Andalucía 2007-2013”. We also thank all the Staff
and Researches of the Regional Government of Andalucía Agency of Public Work for their dedication
and professionalism.

References

1. Abrahão, S., Condori-Fernandez, N., Olsina, L., “Defining and validating Properties for
navigational models”. Proceedings of the Ninth International Software Metrics Symposium
(METRICS’03). pp. 200-210, 2003.

2. Abran, A., Al-Qutaish, R. E., Desharnais J.and Habra, N., Chapter 5: ISO-
Based Models to Measure Software Product Quality, in: Software Quality Measurement –
Concepts and Approaches, Edited by: Ravi Kumar Jain B. pp. 61-96, Publisher, Institute of
Chartered Financial Analysts of India, Hyderabad, India: ICFAI University Press.2008.

3. Basili, V., “Software Modeling and Measurement: The Goal/Question/Metric Paradigm”.
University of Maryland, CS-TR-2956, UMIACS-TR-92-96, 1992.

4. Basili, V.R. and Weiss, D.M. A Methodology For Collecting Valid Software Engineering Data,
IEEE Software Engineering ndards, Std. 610.12-1990, pp.47-48. 1993

5. Becker P., and Olsina, L., “Towards Support Processes for Web Projects”, ICWE Workshops'10,
pp. 102-113, 2010.

6. Cachero, C., Poels, G., Calero, C. “Towards a Quality-Aware Web Engineering Process”.
Twelfth International Workshop on Exploring Modelling Methods in Systems Analysis and
Design. Vol. 1, pp 7-16. Held in conjunction with CAISE’07Trondheim, Norway, 2007.

7. Calero, C., Ruiz, J., Piattini, M., “Classifying Web Properties using the Web quality model”. Vol.
29, No. 3, pp. 227-248, 2005.

8. Ceri, S., Fraternali, P., and Bongio A., “Web Modeling Language (WebML): A Modeling
Language for designing Web sites” Computer Networks: The International Journal of Computer
and Telecommunications Networking Vol. 33, Issue 1-6, Elsevier North-Holland, NY, USA DOI:
10.1016/S1389-1286(00)00040-2, 2000

9. Domínguez-Mayo, F.J., Escalona, M.J., Mejías, M., Ross, M., Staples, G. “A Quality
Management Based on the Quality Model Life Cycle”, Computer Standards and Interfaces,
January 2012, ISSN 0920-5489, 10.1016/j.csi.2012.01.004.

10. Domínguez-Mayo, F.J., Escalona, M.J., Mejías, M., Ross, M., Staples, G. “Quality Evaluation
for Model-Driven Web Engineering Methodologies”, Information Software Technology, Vol. 54,
Issue 11, November 2012, pp. 1265–1282

11. Escalona, M.J., Aragón, G., “NDT. A Model-Driven Approach for Web Requirements”. IEEE
Transactions on software engineering, Vol. 34, No. 3, pp. 377-390, 2008.

12. Escalona, M.J., Koch, N., “Requirements Engineering for Web Applications – A comparative
study”. Journal of Web Engineering. Vol. 2, No. 3, pp. 193-212, 2004.

13. Espinilla, M., Domínguez-Mayo, F.J., Escalona, M., Mejías, M., Ross, M., Staples, G. “A Method
Based on AHP to Define the Quality Model of QuEF”, Knowledge Engineering and Management,
Proceedings of the Sixth International Conference on Intelligent Systems and Knowledge
Engineering, (ISKE 2011), Publisher: Springer Berlin / Heidelberg. Vol. 123, Pág. 685 - 694.
ISBN: 978-3-642-25660-8.

14. García, F., Serrano, M., Cruz-Lemus, J., Ruiz, F., Piattini, M., “Managing software process
measurement: A metamodel-based approach”. Information Sciences.Vol. 177, No. 12, pp. 2570-
2586, 2007.

15. Goethert, W., Fisher, M.: Deriving Enterprise-Based Measures Using the Balanced Scorecard and
Goal-Driven Measurement Techniques. Software Engineering Measurement and Analysis
Initiative, CMU/SEI-2003-TN-024, (2003).

16. IEEE Std 610.12-1990. IEEE Standard Glossary of Software Engineering Terminology.
17. ISO/IEC 15939:2007. Systems and software engineering -- Measurement process. Retrieved

March 2013 from
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=44344

18. ISO/IEC 25040:2011. Systems and software engineering -- Systems and software Quality
Requirements and Evaluation (SQuaRE) -- Evaluation process Retrieved March 2013 from
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=35765

19. ISO- International Organization for Standardization, Retrieved March, 2013, from
http://www.iso.org.

20. Jones, M. B., Walsh, D., Prins, S., Kiermeier, A., Russell, K., Dialsingh, I., Govindaraju, R.,
Hewson, P., Gillespie, C., “Open source stage 1 statistics textbook project” Retrieved November
2012 from http://www.massey.ac.nz/~mbjones/Book/

21. Kitchenham, B.A., Hughes, R.T., Linkman, S.G.: “Modeling Software Measurement Data”. IEEE
Transactions on Software Engineering, 27(9), pp. 788-804, (2001).

22. Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., Linkman, S., “Systematic
Literature Reviews in Software Engineering – A Systematic Literature Review”, Information and
Software Techonology, Vol. 51, Issue No 1, pp. 7-15, 2009.

23. Koch, N., Knapp, A., Zhang, G., and Baumeister, H., UML-based Web Engineering: An
Approach based on Standards (book chapter). In Web Engineering: “Modelling and Implementing
Web Applications”. Gustavo Rossi, Oscar Pastor, Daniel Schwabe and Luis Olsina (Eds.), chapter
7, 157-191, 2008.

24. Maibaum, T., Wassying, A., “A Product-Focused Approach to Software Certification”. Computer,
2008. 41(2): p. 91-93

25. Meliá, S., Gómez, J., Pérez, S., Díaz, O., “A Model-Driven Development for GWT-Based Rich
Internet Applications with OOH4RIA”, ICWE '08 Proceedings of the 2008 Eighth International
Conference on Web Engineering, 2008.

26. Mohagheghi, P., Dehlen, V., “Developing a Quality Framework for Model-Driven Engineering”.
Models in Software Engineering: Workshops and Symposia at MoDELS 2007, pp. 275–286,
2008.

27. Moreno, N., Romero, J.R., Vallecillo, A., “An overview of Model-Driven Web Engineering and
the MDA”, Web engineering: modelling and implementing web applications, Human–Computer
Interaction Series, 2008, Part II, 353-382, DOI: 10.1007/978-1-84628-923-1_12

28. NDT (Navigational Developtment Techniques): Retrieved February, 2011, from
http://www.iwt2.org.

29. OMG: MDA. Retrieved January, 2010, from http://www.omg.org/mda/faq_mda.htm
30. OOHDM: Retrieved February, 2011, from http://www-di.inf.puc-

rio.br/schwabe/HT96WWW/section1.html
31. OOH4RIA: Retrieved February, 2011, from http://code.google.com/p/ooh4ria/
32. Pérez, J. M., Ruiz, F., Piattini, M., “Model Driven Engineering Aplicado a Business Process

Management”, Informe Técnico. UCLM-TSI-002, 2007.
33. Preciado, J.C., Linaje, M., Morales-Chaparro, R., Sanchez-Figueroa, F., Zhang, G., Kroiβ, C.,

Koch, N., “Designing Rich Internet Applications Combining UWE and RUX-Method”, ICWE '08
Proceedings of the 2008 Eighth International Conference on Web Engineering, ISBN: 978-0-
7695-3261-5, 2008.

34. Reid, R. D., Sanders, N. R., “Operations Management” September 14, 2004 | ISBN-
10: 0471712108

35. Rossi, G., Schwabe, D., de Lucena, C.J.P., Cowan, D.D., "An Object-Oriented Model for
Designing the Human-Computer Interface of Hypermedia Applications", Proceedings of the
International Workshop on Hypermedia Design (IWHD'95), Springer Verlag Workshops in
Computing Series, 1995.

36. UWE (UML-Based Web Engineering): http://uwe.pst.ifi.lmu.de
37. Vallecillo, A., Koch, N., Cachero, C., Comai, S., Fraternali, P., Garrigós, I., Gómez, J., Kappel,

G., Knapp, A., Matera, M., Meliá, S., Moreno, N., Pröll, B., Reiter, T., Retschitzegger, W., Rivera,
J. E., Schwinger, W., Wimmer, M., and Zhang, G., “MDWEnet: A Practical Approach to
Achieving Interoperability of Model-Driven Web Engineering Methods”, Proc. Third Int’l
Workshop Model-Driven Web Eng., pp. 246-254, 2007.

38. WebML: http://www.webml.org
39. Schwinger, W., Retschitzegger, W., Schauerhuber, A., Kappel, G., Wimmer, M., Pröll, B.,

Cachero C., Castro, Casteleyn, S., De Troyer, O., Fraternali, P., Garrigos, I., Garzotto, F.,
Ginige, A., Houben, G-J., Koch, N., Moreno, N., Pastor, O., Paolini, P., Pelechano V., Ferragud,
Rossi, G., Schwabe, D., Tisi, M., Vallecillo, A., van der Sluijs and Zhang, G., “A survey on Web
modeling approaches for ubiquitous Web applications”. International Journal of Web Information
Systems Vol. 4 No. 3, pp. 234-305, 2008.

