
Automatic Extraction
of Semantically-Meaningful Information

from the Web.

J.L. Arjona, R. Corchuelo, A. Ruiz, and M. Toro

Escuela Técnica Superior de Ingenieŕia Informática de la Universidad de Sevilla
Departamento de Lenguajes y Sistemas Informáticos

Avda. de la Reina Mercedes, s/n,Sevilla (SPAIN)
{arjona,corchu,aruiz,mtoro}@lsi.us.es

Abstract. The semantic Web will bring meaning to the Internet, mak-
ing it possible for web agents to understand the information it contains.
However, current trends seem to suggest that the semantic web is not
likely to be adopted in the forthcoming years. In this sense, meaning-
ful information extraction from the web becomes a handicap for web
agents. In this article, we present a framework for automatic extraction
of semantically-meaningful information from the current web. Separat-
ing the extraction process from the business logic of an agent enhances
modularity, adaptability, and maintainability. Our approach is novel in
that it combines different technologies to extract information, surf the
web and automatically adapt to web changes.

Keywords: Web agents, information extraction, wrappers, and ontolo-
gies.

1 Introduction

In recent years, the web has consolidated as one of the most important knowl-
edge repositories. Furthermore, the technology has evolved to a point in which
sophisticated new generation web agents proliferate. They enable efficient, pre-
cise, and comprehensive retrieval and extraction of information from the vast
web information repository. They can also circumvent some problems related to
slow Internet access, and free up prohibitively expensive surf time by operating
in the background. It is thus not surprising that web agents are becoming so
popular.

A major challenge for web agents has become sifting through an unwieldy
amount of data to extract meaningful information. Two important factors con-
tribute to these difficulties: first, the information on the web is mostly available
in human-readable forms that lack formalised semantics that would help agents

� The work reported in this article was supported by the Spanish Inter-ministerial
Commission on Science and Technology under grant TIC2000-1106-C02-01

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/333939653?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

use it [3]; second, the information sources are likely to change their structure,
which usually has an impact on their presentation but not on their semantics.

Thus, if we want to succeed in the development of web agents, we need a
framework in which they can be separated from the information sources or the
way to extract semantically-meaningful information from them. This way we
enhance modularity, adaptability and maintainability, as well as agent interop-
erability. In this article, we present such a framework. It is organised as follows:
Section 2 goes into details about our motivation and some related work; Sec-
tion 3 presents our proposal and a case study; finally, Section 5 reports on our
main conclusions and future research directions.

2 Motivation and Related Work

The incredible successfulness of the Internet world has paved the way for tech-
nologies whose goal is to enhance the way humans and computers interact on the
web. Unfortunately, the information a human user can easy interpret is usually
difficult to be extracted and interpreted by a web agent.

Figure 1 shows two views of a web page picked from Amazon.com. On the left,
we present a shot of the page a human sees when he or she searches for informa-
tion about a book; on the right, we present a portion of HTML that describes
how to render this page. If we were interested in extracting the information
automatically, the following issues would arise immediately:

– The implied meaning of the terms that appear in this page can be eas-
ily interpreted by humans, but there is not a reference to the ontology that
describes them precisely, which complicates the communication interface be-
tween user and agent, and the interoperability amongst agents. For instance,

...
<b class="sans">Beginning Xml

by <a href="/exec/obidos/search-handle-url/ index=books&field-
author=Cagle%2C%20Kurt /107-9979303-0464511">Kurt Cagle</
a>, <a href="/exec/obidos/search-handle-url/ index=books&field-
author=Gibbons%2C%20Dave/107-9979303-0464511">Dave
Gibbons, <a href="/exec/obidos/search-handle-url/
index=books&field-author=Hunter%2C%20David/107-9979303-
0464511">David Hunter, <a href="/exec/obidos/search-handle-
ur l / index=books&field-author=Ozu%2C%20Nikola/107-9979303-
0464511">Nikola Ozu, <a href="/exec/obidos/search-handle-url /
index=books&f ield-author=Pinnock%2C%20Jon/107-9979303-
0464511">Jon Pinnock

<a href=/exec/obidos/tg/stores/detai l /- /books/1861003412/reader/1/
107-9979303-0464511#reader- l ink><img src="http:/ /
images.amazon.com/images/P/1861003412.01.MZZZZZZZ. jpg"
width=111 height=140 al ign=left border=0>

List Price: $39.99

Our Price: $27.99

You Save: $12.00
(30%)

...

Fig. 1. A web page that shows information about a book.

if we do not consider semantics and we interpret prices as real numbers, a
US librarian agent that deals with dollars would be likely to misinterpret a
European one that deals with euros.

– The layout and the aspect of a web page may change unexpectedly. For
instance, it is usual that web sites incorporate Christmas stuff in December,
which does not affect the information they provide, but may invalidate the
automatic extraction methods used so far.

– The access to the page that contains the information in which we are inter-
ested may involve navigating through a series of intermediate pages, such as
login or index pages. Furthermore, this information may spread over a set
of pages.

On sight of these issues, several researchers began working on proposals whose
goal is to achieve a clear separation between presentation concerns and data
themselves. XML [12] is one of the most popular languages aimed at representing
structured data, but, unfortunately, it lacks a standardised way to link them with
an abstract description of their semantics. There are many proposals that aim at
solving this problem. They usually rely on annotating web pages with instances
of ontologies that is usually written in a language such as DAML [1] or SHOE
[19].

Most authors agree in that it would be desirable for a web in which pages
are annotated with semantics to exist, because this would help web agents un-
derstand their contents, and would enhance semantic interoperability. Unfor-
tunately, there are very little annotated pages if we compare them with non-
annotated pages. As of the time of writing this article, the DAML crawler
(www.daml.org/crawler) reports 17,019 annotated web pages, which is a negli-
gible figure if we compare it with 2,110 millions, which is the estimated number
of web pages (Cyveillance.com). Current trends seem to suggest that the seman-
tic web is not likely to be adopted in the forthcoming years [14]. This argues for
an automatic solution to extract semantically-meaningful information from the
web that is clearly separated from the business logic so as to enhance modularity,
adaptability, and maintainability.

Several authors have worked on techniques for extracting information from
the web, and inductive wrappers are amongst the most popular ones [17,23,15,4],
[21,2]. They are components that use a number of extraction rules generated by
means of automated learning techniques such as inductive logic programming,
statistical methods, and inductive grammars. These techniques use a number of
web pages as samples that feed an algorithm that uses induction to generalise a
set of rules that allows to extract information from similar pages automatically.
Recently, researchers have put a great deal of effort to deal with changes, so
that extraction rules can be regenerated on the fly if the layout of the web page
changes [18,16]. Although induction wrappers are suited to extract information
from the web, they do not associate semantics with the extracted data, This
being their major drawback.

There are also some related proposals in the field of databases, e.g., TSIM-
MIS [11] and ARANEUS [20]. Their goal is to integrate heterogeneous informa-

tion sources such as traditional databases and web pages so that the user can
work on them as if they were a homogeneous information source. However, these
proposals lack a systematic way to extract information from the web because ex-
traction rules need to be implemented manually, which makes them not scalable
and unable to recover from unexpected changes on the web.

3 Our Proposal

Our proposal aims at providing agent developers with a framework in which
they can have access to semantically-meaningful data that resides on web pages
not annotated with semantics. It relies on using a number of agents that we call
information channels or IC for short. They allow to separate the extraction of
information from the logic of an agent, and offer agent developers a good degree
of flexibility. In order to allow for semantic interoperability, the information they
extract references a number of concepts in a given application domain that are
described by means of ontologies.

Before going into details, it is important to say that our notion of agent
was drawn from [24]: “Agents have their own will (autonomy), they are able to
interact with each other (social ability), they respond to stimulus (reactivity),
and they take initiative (pro-activity).” In our proposal, web agents are software
agents that interact with the web to retrieve, extract or manage information.

3.1 The Architecture

Figure 2 sketches the architecture of our proposal. As we mentioned above, in-
formation channels are at its core agents because they specialise in extracting
information from different sources, and are able to react to information inquiries
(reactivity) from other agents (social ability). They act in the background proac-
tively according to a predefined schedule to extract information and to maintain
the extraction rules updated.

Each information channel uses several inductive wrappers to extract informa-
tion so that they can detect inconsistencies amongst the data each one extracts.
If such inconsistencies are found, they then use a voting algorithm to decide
whether to use the data extracted by most wrappers or regenerate the set of
extraction rules on the fly. This may happen because of an unexpected change
to the structure of the web page that invalidates the extraction rules used so far.

There is also an agent broker for information extraction that acts as a trader
between the agents that need information from the web and the set of available
information channels. When an agent needs some information, it contacts the
broker, which redirects the request to the appropriate information channel, if
possible. This way, agents need not be aware of the existence of different ICs,
which can thus be adapted, created or removed from the system transparently.
However, every time an IC is created or destroyed, it must be registered or
unregistered so that the broker knows it. It therefore has a catalogue with the
description of every IC in the system (yellow pages).

Agent
society

Agent platform (FIPA)

Broker

Internet

Information
channel 1

Information
channel 2

Information
channel n

Fig. 2. Proposed architecture.

We use ACL [10] as a transport language to send messages from an agent to
another. The content of the messages describes how an agent wants to interact
with another, and it is written in DAML. Figure3 shows the brokering protocol
[9] to communicate user agents with the ICs using the notation AUML [13,22].
When an initiator agent sends a message with the performative proxy to the bro-
ker, it then replies with one of the following standard messages: not-understood,
refuse or agree. If the broker agrees on the inquiry, it then searches for an ade-
quate IC to serve it. If not found, it then sends a failure-no-match message to
the initiator; otherwise, it tries to contact the IC and passes the inquiry onto
it. If the broker succeeds in communicating with the IC, this will later send the
requested information to the initiator; otherwise, a failure-com-IC message is
sent back to the initiator, which indicates that an appropriate IC exists, but
cannot respond.

3.2 A Case Study

We illustrate our proposal by means of a simple example in which we are in-
terested in extracting information about books from Amazon.com. We first need
to define an information channel, i.e., we need to construct an expert system
whose goal is to extract information about books from the web. Such a channel
is characterised by the following features: a set of ontologies, a set of extraction
rules, and a navigational document.

The Ontologies. The ontologies [6] associated with an IC describes the con-
cepts that define the semantics associated with the information we are going

proxy

fai lure-no-match

Init iator Broker
Informat ion

Channe l

request

agree

not-understood

refuse

fai lure-com-IC

inform-result- IC

not-understood

 refuse

agree

[Broker cannot f ind any Inf
channel for the request]

[Broker, f ind an Inf. channel
for the request]

Fig. 3. Broker Interaction Protocol in AUML.

to extract from a high-level, abstract point of view. An ontology allows to de-
fine a common vocabulary by means of which different agents may interoperate
semantically.

Figure 4 shows a part of the ontology that describes books using DAML. We
selected this language because it is one of the most important contributions to
the semantic web, it is being supported by many researchers, and the repository
of available tools is quite rich, c.f. http://www.daml.org/tools.

The Extraction Rules. The extraction rules allow to define how to have
access to the information in which we are interested. To generate them, we need
a set of sample pages containing test data on which we use inductive techniques.
To endow the sample pages with semantics, we also need to annotate them
with DAML tags that allow to associate the concepts they contains with their
corresponding ontologies. Figure 5 shows a piece of DAML code that we can use
to annotate the web page in Fig. 1.

Once the sample pages have been annotated, we can generate the extraction
rules. The input to the wrapper generator is a tuple of the following form:

({O1, O2, ..., On}, {(P1, D1), (P2, D2), ..., (Pk, Dk)});n ≥ 1, k ≥ 1

The first element of the tuple denotes the set of ontologies under considera-
tion, and the second element is a set of pairs of the form (P, D), where P denotes
a web page containing sample data, and D its corresponding annotation. With
this information, we apply several induction algorithms [17,23,15,4] to generate

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
 xmlns:xsd ="http:/ /www.w3.org/2000/10/XMLSchema#">

<daml:Ontology about="">
 <daml:versionInfo>10/30/2001</daml:versionInfo>
 <rdfs:comment>Book Ontology</rdfs:comment>
 <daml: imports rdf:resource="http:/ /www.daml.org/2001/03/daml+oil"/>
</daml:Ontology>

<daml:Class rdf: ID="Book">
 <rdfs:comment>
 A set of written sheets of skin or paper or tablets of wood or
 ivory. Websters Dictionary.
 </rdfs:comment>
</daml:Class>

<daml:DatatypeProperty rdf: ID="isbn">
...

</rdf :RDF>

Book

 isbn : String
 title : String
 author : String
 editorial : String
 pages : Integer

UML Model for the Representat ion of
the DAML Book Ontology.

(According to OMG Agent SIG)

Fig. 4. An ontology that describes books from an abstract point of view.

<Book rdf : ID="A book">
 <rdfs: label>A book</rdfs: label>
 <rdfs:comment>Instance of Book.</rdfs:comment>
 <tit le>Beginning Xml</ti t le>
 <isbn>1861003412</ isbn>
 <editorial>Wrox Press, Inc</editorial>
 <author>Kurt Cagle</author>
 <author>Dave Gibbons</author>
 <author>David Hunter</author>
 <author>Nikola Ozu</author>
 <author>Jon Pinnock</author>
 <pages>823</pages>
</Book>

Fig. 5. Annotations to a web page with information about a book.

a set of extraction rules R1, R2, ..., Rm. Their exact form depend on the algo-
rithm used to produce them, and may range from simple regular expressions to
search procedures over a DOM Tree [5] or even XPointers [8]. hereafter, we refer
to this set of rules as BookRules.

The Navigational Document. A navigational document defines the path of
intermediate pages, such as login or index, we need to visit in order to have
access to the page that contains the information in which we are interested.

Figure 6 shows a navigational document that describes how to have access to
the web page that contains information about a book with a given ISBN. This
document indicates that there exists a web page at www.amazon.com called d1.
This page has quite a complex structure, but it contains a form called search-
form with two fields a human user may use to select the kind of product he or
she is searching for (index) and some key words that describe it (field-keywords).

Thus, d2 denotes the web page that we obtain when the server processes this
form using “index” := “Books” and “field-keywords” := “:Book#isbn”. Books is
the value that indicates the server that we are looking for books, and :Book#isbn
denotes the ISBN code associated with the book for which we are searching.

Navigat ional document NDBook
 Using ontology http://arjona.lsi.us.es/Book#;

 Document d1:="http:/ /www.amazon.com/";
 Document d2:=d1{searchform, " index" := "Books", "f ield-keywords" := :Book#isbn};

 Extract Info from d2 using BookRules;
End.

index=Books
field-keywords=181...

Fig. 6. A sample navigational document.

Roughly speaking, a navigational document may be viewed as a state machine
in which each state is a web page, and the transitions between states may be
viewed as the navigation from the page associated with the initial state to the
page associated with the destination state.

3.3 Dealing with Pagers and Indexers

In this section, we present a slightly modified version of the previous case study in
which we are interested in extracting information about the set of books written
by a given author. If we write the name of an author in the above-mentioned
search form, we can get a result page similar to the one presented in Fig. 1. In this
case, the initial page does not lead directly to the requested information. Instead,
it leads to an index page in which we can find some links that point to pages
that describe books written by that author, and a pager that allows to search
for more results. Although the wrapper we generated previously keeps working
well, the way to have access to the information has changed substantially.

The new navigational document we need is presented in Fig. 7. There, we
define a new document called d3 that represents the web page to which the
initial search form leads. d4[] references the set of web pages that we can get if
we dereference the link labelled with “More results” by means of a sequential
pager. This is an artefact that allows to navigate through the complete set of

Navigat ional document NDBook
 Using ontology http://arjona.lsi.us.es/Book#;

 Document d1 := "http:/ /www.amazon.com/";
 Document d2 := d1{"searchform", " index" := "Books", "f ield-keywords" := :Book#isbn};
 Document d3 := d1{"searchform", " index" := "Books", "f ield-keywords" := :Book#author};
 Document d4[] := SequentialPager(d3, "More Results");
 Document d5[] := Indexer(d4[] , AmazonIndexer);

 Extract Info from d2, d5[] using BookRules;
End.

Fig. 7. Modified version of the navigational document.

pages that contain the information about the books written by an author. d5[]
references the set of web pages we obtain by dereferencing the links on books
that appear in the set of pages d4[]. This set is obtained by means of an indexer,
which is an artefact that analyses a set of pages and extracts the links to the
pages in which we are interested. In this case, we use an inductive wrapper called
AmazonIndexer, but new indexers can be easily generated.

3.4 Using the Information Channel

Once we have set up an abstract channel, we can send messages to it in order to
retrieve information about a given book by means of the broker. The content of
the messages in DAML is based on an ontology that defines the communication
[7]. This ontology is illustrated in Fig. 8.

ExtractInfo

 label : String
 comment : Str ing
 about : String

Attribute

 name : Str ing
 value : String

at t r ibuteRestr ict ions

Warning

 wcode : Integer
 wdescription : String

ExtractInfoResponse

Error

 ecode : Integer
 edescription : String

Ok

 NumberRecords : Integer

Thing

R
ecords

*

*

Fig. 8. Ontology for the content language.

Information requests are expressed as instances of class ExtractInfo. The
reply from the abstract channel is an instance of ExtractInfoResponse, an error
message (for instance, the channel can not have access the web page that contains
the information), a warning message (for instance, 0 records have been found) or
the information requested by the agent (as instances of the ontology class that
defines the channel).

Figure 9 shows two example messages, the first one relative to an information
request from an agent called Agent-1 to the broker agent; the second one is the
reply from the IC to Agent-1. In this case a book instance is returned.

(request :sender Agent-1
 :receiver broker
 :content (

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema#"
xmlns:libro="http://arjona.lsi.us.es/Book#"
xmlns="http://arjona.lsi.us.es/ie#">

<ExtractInfo rdf:ID="EI1">
<rdfs:label>EI1</rdfs:label>
<about>http://arjona.lsi.us.es/Book#Book</about>
<attributeRestrictions>

<attr ibute>
<name>http://arjona.lsi.us.es/Book#isbn</name>
<value>1861003412</value>

</attribute>
</attributeRestrictions>
</ExtractInfo>
</rdf:RDF>

)
 : language daml)

 (inform :sender BookChannel
 :receiver Agent-1
 :content (

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema#"
xmlns:ie="http://arjona.lsi.us.es/ie#">
xmlns="http://arjona.lsi.us.es/Book#">

 <ie:Ok rdf:ID="Request 123332">
<ie:numberRecords>1</ie:numberRecords>
<ie:records>

<Book rdf:ID="A-Book">
<title>Beginning Xml</tit le>
<isbn>1861003412</isbn>
<editorial>Wrox Press Inc</editorial>
<author>Kurt Cagle</author>
<author>Dave Gibbons</author>
<author>David Hunter</author>
<author>Nikola Ozu</author>
<author>Jon Pinnock</author>
<pages>823</pages>

</Book>
</ie:records>

 </ie:Ok>
)
 : language daml)

Fig. 9. Example of messages.

4 Benefits of the Framework
for the Adaptative Hypermedia Community

The Adaptative Hypermedia Community can use the framework presented in
this paper to personalise web sites based on users’ profiles. In this respect, the
information from the web that is interesting to a user can be extracted auto-
matically and displayed in a suitable form.

We illustrate this idea with a fictitious case study whose aim is the person-
alisation of an e-commerce portal that sells VHS, DVDs, and so on. Using the
information infered from the buys by some customers, we can identify who the
the preferred actors are. Once the actors have been indentified, we can develop
an agent that uses the proposed framework. It queries an abstract channel that
is able to extract relevant information about this actor (birth name, location, fil-
mography, ...) from several web sites, for example The Internet Movie Database
(IMDb)1.
1 http://www.imdb.com/

5 Conclusions and Future Work

In this article, we have shown that the process of extracting information from
the Internet can be separated from the business logic of a web agent by means of
abstract channels. They rely on inductive wrappers and can analyse web pages
to get information with its associated semantics automatically.

Our proposal shows that there is no need to annotate every web page, to
extract information with associated semantics. In this sense we are contributing
to bring together the community of agents programmers and the semantic web.

In the future, we are going to work on an implementation of our framework
in which data sources can be more heterogeneous (databases, news servers, mail
servers, and so on). Extraction of information from multimedia sources such as
videos, images, or sound files will be also paid much attention.

References

1. DARPA (Defense Advanced Research Projects Agency). The darpa agent mark
up language (daml). http://www.daml.org, 2000.

2. R. Baumgartner, S. Flesca, and G. Gottlob. Visual web information extraction
with lixto. In 27th VLDB Conference, 2001.

3. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
May 2001.

4. W. W. Cohen and L. S. Jensen. A structured wrapper induction system for ex-
tracting information from semi-structured documents. In Workshop on Adaptive
Text Extraction and Mining (IJCAI-2001), 2001.

5. W3C (The World Wide Web Consortium). Document object model.
http://www.w3.org/DOM/, 2000.

6. O. Corcho and A. Gómez-Pérez. A road map on ontology specification languages.
In Workshop on Applications of Ontologies and Problem solving methods. 14th
European Conference on Artificial Intelligence (ECAI’00), 2000.

7. S. Cranefield and M. Purvis. Generating ontology-specific content languages. In
Proceedings of Ontologies in Agent Systems Workshop (Agents 2001),, pages 29–35,
2000.

8. S.J. DeRose. Xml linking. ACM Computing Surveys, 1999.
9. Finin, T. Labrou, and Y. Mayfield. Kqml as an agent communication language.

Software Agents, MIT Press, 1997.
10. FIPA (The Fundation for Intelligent Physical Agents). Fipa specifications.

http://www.fipa.org/specifications/index.html.
11. H. Garćıa-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, and

J. Widom. Integrating and accessing heterogeneous information sources in tsimmis.
In The AAAI Symposium on Information Gathering, pages 61–64, March 1995.

12. C.F. Goldfarb and P. Prescod. The XML Handbook. Prentice-Hall, 2nd edition,
2000.

13. OMG (Object Management Group). Unified modelling language version 2.0.
http://www.omg.org/uml/, 2001.

14. J. Hendler. Agents and the semantic web. IEEE Intelligent Systems Journal, 2001.
15. C. A. Knoblock. Accurately and reliably extracting data from the web: A machine

learning approach. Bulletin of the IEEE Computer Society Technical Com-mittee
on Data Engineering, 2000.

16. N. Kushmerick. Regression testing for wrapper maintenance. In Proceedings of
the 16th National Conference on Artificial Intelligence (AAAI-1999), pages 74–79,
1999.

17. N. Kushmerick. Wrapper induction: Efficiency and expressiveness. Artificial Intel-
ligence, 118(2000):15–68, 1999.

18. N. Kushmerick. Wrapper verification. World Wide Web Journal, 2000.
19. S. Luke, L. Spector, D. Rager, and J. Hendler. Ontology-based web agents. In

First International Conference on Autonomous Agents, 1997.
20. G. Mecca, P. Merialdo, and P. Atzeni. Araneus in the era of xml. Data Engineering

Bullettin, Special Issue on XML, September 1999.
21. I. Muslea, S. Minton, and C. Knoblock. Wrapper induction for semistructured,

web-based information sources. In Proceedings of the Conference on Automated
Learning and Discovery (CONALD), 1998.

22. J. Odell, H. Van Dyke, and B. Bauer. Extending uml for agents. In AOIS Worshop
(AAAI), pages 3–17, 2000.

23. S. Soderland. Learning information extraction rules for semi-structured and free
text. Machine Learning, pages 1–44, 1999.

24. M. J. Wooldridge and M. R. Jennings. Intelligent agents: Theory and practice.
The Knowledge Engineering Review, 10(2):115–152, 1995.

	1 Introduction
	2 Motivation and Related Work
	3 Our Proposal
	3.1 The Architecture
	3.2 A Case Study
	3.3 Dealing with Pagers and Indexers
	3.4 Using the Information Channel

	4 Benefits of the Framework for the Adaptative Hypermedia Community
	5 Conclusions and Future Work
	References

