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José A. Rosendo Macı́as Antonio Gómez Expósito
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Abstract - In this paper, a comparison of existing
methods for harmonic calculation in digital relaying
is presented. Pros and cons of recursive, approximate
non-recursive and exact non-recursive algorithms are
discussed. A compromise between speed and numer-
ical robustness is obtained by a recently introduced
modification of the pruned short-time discrete Fourier
transform.
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1 INTRODUCTION

DIGITAL relays extract the information required
to perform their function from the N waveform

samples currently included in a sliding rectangular
window [1]. Most times, one or several complex har-
monics, or simply their magnitudes, are needed, for
which the discrete Fourier transform (DFT) is the ba-
sic computational tool. This type of DFT is known
in the literature as the short-time DFT [2],[3] but,
also, as the moving-window, sliding or running DFT.
When the full spectrum is required, the standard ap-
proach consists of using the well-known fast Fourier
transform (FFT), whose complexity in the general
case is N · log2 N . However, the FFT is not com-
petitive when a single or a few unrelated harmonics
are needed, as in digital protections. In such cases,
the DFT has been obtained traditionally by different
methods: either directly from its definition or, indi-
rectly, by previously computing less expensive trans-
forms (e.g. Walsh, Haar or rectangular transforms),
and then obtaining approximate Fourier harmonics
[4], [5], [6], [7]. It is also possible to use recursive
algorithms [8], [9], whose computational cost is in-
dependent of N in the moving-window case. How-
ever, the long-term response of these recursive filters
may not be acceptable in certain cases.

In the last few years, the following improvements
in the field of non-recursive algorithms have arisen
which are not being used in digital relaying:

• There is a non-recursive way of computing the
sliding FFT, whose complexity is O(N ) [10].

• From the above method, a pruned algorithm
can be implemented to obtain an individual
running harmonic by means of O(log2 N ) ad-
ditions and O(log2 N ) multiplications [11].

• Very recently, a new modification, based on the
sliding DFT frequency-shifting property, has
been proposed by which the cost of computing
a single harmonic reduces to O(log2 N ) addi-
tions and only 2 complex multiplications [12].

In this paper, those recent developments will be
reviewed and compared with classical approaches for
computing running harmonics. The comparisons will
be based on a window with N = 16 samples, assum-
ing that only the fundamental harmonic is required.

2 DIRECT METHOD FOR HARMONIC
CALCULATION

The short-time DFT of the N samples embraced
by a sliding rectangular window at instant n can be
expressed as [1],[2]:

Xn(k) =
N−1
∑

i=0

x(i + n − N + 1)e−j 2πk
N

i (1)

Denoting the vector of N DFT components as
Xn, and the vector of the last N samples by xn,
yields:

Xn = GF xn (2)

where the elements of matrix GF are given by,

GF (k, i) = e−j 2πk
N

i

When the full spectrum is required, using (2) in-
volves O(N 2) operations. A cheaper alternative is the
so-called fast Fourier transform (FFT), whose com-
plexity in the general case is N · M (M = log2 N ).
However, the FFT is not competitive when a single or
a few individual harmonics are needed, as happens in
digital relaying.



In such cases, each harmonic is obtained directly
from (1) or by more elaborated algorithms, like that
of Goertzel [13], requiring always O(N ) computa-
tions.

3 APPROXIMATE NON-RECURSIVE
ALGORITHMS

The DFT components can be also obtained indi-
rectly, by previously computing less expensive trans-
forms, and then obtaining approximate Fourier har-
monics [6], [7]. The total number of operations re-
quired by any of these methods to obtain a generic
harmonic is again of O(N ).

3.1 DFT based on the Walsh transform

The Walsh transform can be expressed in matrix
form as

Wn = GW xn

where, except for a scaling factor,

GW (k, i) =
i−1
∏

u=0

(−1)bu(i)bi−1−u(k)

and bk(z) stands for the k-th bit of number z.

Computation of Wn is less expensive than that
of the DFT, and its components can be subsequently
used to obtain Xn from,

Xn = GF xn = GF G−1
W Wn

As the numerical values of the elements within
each row of matrix GF G−1

W greatly differ in size, ap-
proximate expressions can be obtained by neglect-
ing the less significant ones. Denoting by Cn(k)
and Sn(k) the real and imaginary components, re-
spectively, of Xn(k), the fundamental harmonic for
N = 16 samples can be approximated by,

Cn(1) = 0.125[Wn(1) + Wn(9)] +

+0.62Wn(3) + 0.26Wn(5)

Sn(1) = −0.125[Wn(3) + Wn(11)] +

+0.628Wn(1) − 0.26Wn(7)

3.2 DFT based on the Haar transform

The Haar transform is based on the set of rect-
angular and orthogonal Haar functions. In the time
interval 0 ≤ t ≤ 1, these functions can be expressed

as [14],

H(0, t) = 1 0 ≤ t ≤ 1

H(1, t) =

{

1 0 ≤ t ≤ 1/2
−1 1/2 ≤ t ≤ 1

H(2p + n, t) =

{

√
2

p
n/2p ≤ t ≤ (n + 1/2)/2p

−
√

2
p

(n + 1/2)/2p ≤ t ≤ (n + 1)/2p

0 elsewhere

where p = 1, 2, · · · and n = 0, 1, 2, · · · , 2p − 1.
Using those functions, except for the scaling fac-

tor, to build the rows of a matrix GH , the Haar trans-
form can be expressed in matrix form as,

Hn = GHxn

Neglecting small coefficients, as in the previous
section, the DFT harmonics are approximated by

Cn(1) = 0.628[Hn(2) − Hn(3)] +

+0.312[Hn(5) − Hn(7)]

Sn(1) = 0.628Hn(1) − 0.312[Hn(4) − Hn(6)]

3.3 DFT based on the Rectangular transform

Real and imaginary parts of the rectangular trans-
form are defined respectively by

CR(k) =
N−1
∑

i=0

xisgn(cos θki)

SR(k) =
N−1
∑

i=0

xisgn(sin θki)

where

sgn(y) =

{

y/|y| y 6= 0
0 y = 0

Retaining only the most significant coefficients,
the DFT fundamental harmonic components can be
approximately obtained from:

Cn(1) = 0.753Rn(1) + 0.208Rn(5)

Sn(1) = 0.753Rn(2) − 0.208Rn(6)

3.4 Custom FIR filters

The following approximate expressions have
been also proposed in the literature [15] as a means
of saving multiplications when computing the funda-
mental harmonic:

Cn(1) = x(n − 15) + x(n − 14) + x(n − 13) + x(n − 12)

−x(n − 11) − x(n − 10) − x(n − 9) − x(n − 8)



−x(n − 7) − x(n − 6) − x(n − 5) − x(n − 4)

+x(n − 3) + x(n − 2) + x(n − 1) + x(n)

Sn(1) = x(n − 15) + x(n − 14) + x(n − 13) + x(n − 12)

+x(n − 11) + x(n − 10) + x(n − 9) + x(n − 8)

−x(n − 7) − x(n − 6) − x(n − 5) − x(n − 4)

−x(n − 3) − x(n − 2) − x(n − 1) − x(n)

Similar expressions can be found for the 2nd and
5th harmonics.

4 EXACT NON-RECURSIVE ALGORITHMS

4.1 Fast short-time DFT

It has been shown that the short-time FFT can
be obtained at the cost of O(N ) operations by taking
advantage of the similar contents of consecutive win-
dows [10, 16]. This idea allows a single harmonic
to be non-recursively and accurately computed by
means of just O(M ) mult/adds [11].

In this section, the O(N ) short-time FFT is first
reviewed by means of an example, and then the sin-
gle harmonic case is discussed.

Consider the FFT butterflies for N = 8 at in-
stants n = 7 and n = 8, shown respectively in figures
1 and 2.
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Figure 1: FFT butterfly structure for N = 8 at instant n = 7.
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Figure 2: FFT applied to the same sequence of figure 1 one
sample later (n = 8). Only butterflies shown in thicklines need
re-evaluation.

When a new sample, in this case x(8), enters the
window, the oldest one, x(0), is discarded. This is ac-
complished by merely shifting all the butterflies up-
wards, as shown in Figure 2. Note that, for conve-
nience, all intermediate variables have been shifted
in the same way as the input data.

Comparing both figures, by simple inspection,
it can be concluded that many butterflies are sim-
ply shifted replicas of formerly computed butterflies.
More specifically, only the lowest butterfly in the first
layer, two butterflies in the second layer and four but-
terflies in the third layer are actually new. As a con-
sequence, only 7 out of the 12 butterflies must be
recomputed in the moving-window FFT case, pro-
vided certain intermediate variables are systemati-
cally stored.

Note that the set of updated butterflies forms a
binary tree. For an arbitrary value of N , the num-
ber of such butterflies is clearly N − 1, instead of the
N · M/2 that would be needed using a conventional
in-place computation. Considering that each butter-
fly requires one complex multiplication and two com-
plex additions, the total cost is then N − 1 complex
multiplications and 2N−2 complex additions. These
figures do not take advantage of the trivial values the
twiddle factors take in certain butterflies (±1, ±j).
Further savings are possible in the real-data case by
exploiting the well-known symmetries implicit in the
DFT. The price paid for the computational reduction
is the extra memory required to store the N · M/2
intermediate complex variables (N/2 per layer), in
addition to the N harmonics.

From the above discussion it is also clear that
only M half butterflies (one per layer) have to be
updated when a single harmonic is needed, which
involves M complex mult/adds in the general case.
This set of butterflies constitutes a path in the tree
linking the last sample with the desired harmonic.
See [11] for further mathematical details.

4.2 Fast shifted short-time DFT

The technique discussed in this section is new in
the power system arena.

As shown in [12], the short-time DFT satisfies
the frequency-shifting property, which can be stated
as follows: modulating a signal with the complex ex-
ponential in the discrete-time domain translates into
a shift in the frequency domain plus a rotation.

Mathematically, let us define the following mod-
ulated sequence,

y(i) = x(i) · e−j
2πp

N
i (3)



whose short-time DFT can be expressed as

Yn(k) = e−j
2πp

N
(n+1)·

N−1
∑

i=0

x(i+n−N+1)e−j
2π(k+p)

N
i

(4)
The right-most term in the above equation can be

now identified as the (k+p)-th harmonic of the origi-
nal sequence, x(i). Hence, the following relationship
is obtained

Yn(k) = e−j
2πp

N
(n+1) · Xn(k + p) (5)

It is interesting to note that the harmonic rota-
tion contained in (5) is a direct consequence of the
window shift. This rotation disappears in the sin-
gle window, finite-length sequence, leading to the
well-known frequency-shifting property of the reg-
ular DFT.

The application of this property to reduce the cost
of computing a generic harmonic is based on the ob-
servation that obtaining the zero-frequency harmonic
by the fast procedure described in the former subsec-
tion requires no multiplications. This can be visual-
ized in figure 2, by tracing the path leading to X(0).

Therefore, the p-th harmonic of the input se-
quence, x(i), can be obtained more efficiently from
the zero-frequency harmonic of the modulated se-
quence, y(i), by setting k = 0 in equation (5).

Formally, every time a new sample is available,
the algorithm performs the following three steps:

1. Modulate the input signal

y(n) = x(n)e−j
2πp

N
n

2. Update the path of butterflies required to obtain
Yn(0).

3. Rotate the resulting harmonic Yn(0),

Xn(p) = ej
2πp

N
(n+1) · Yn(0) (6)

The computational cost of this algorithm reduces
to M complex additions (step 2), two real multiplica-
tions (step 1) and a complex multiplication (step 3).
Furthermore, since |Xn(p)| = |Yn(0)|, the complex
multiplication is not required if only the harmonic
amplitude is of interest. This is the lowest compu-
tational effort reported up to date for a non-recursive
algorithm.

As far as memory requirements is concerned, this
algorithm needs N complex locations to store the in-
termediate variables.

5 RECURSIVE ALGORITHMS

The computational cost can be made independent
of N in the moving-window case provided recursive
algorithms are acceptable [8, 9, 17]. Note that despite
these algorithms being recursive, they belong to the
FIR class, like the other algorithms presented in the
paper.

Two different categories are possible, depending
on whether the time origin moves with the window
or remains fixed:

5.1 Class #1: shifting time origin, constant coeffi-
cients

By evaluating (1) at two consecutive instants and
substracting, the following algorithm can be obtained

Xn(k) = [Xn−1(k) + x(n) − x(n − N)]e−j 2πk
N

Assuming real data, the above complex expres-
sion can be written in terms of its real and imaginary
parts as follows:

Cn(k) = (Cn−1(k) + ∆xn) cos θk − Sn−1(k) sin θk

Sn(k) = (Cn−1(k) + ∆xn) sin θk + Sn−1(k) cos θk

where ∆xn = x(n) − x(n − N).

5.2 Class #2: fixed time origin, varying coefficients

The DFT can be also defined with respect to a
static time origin, leading to periodically varying co-
efficients:

XF
n (k) =

N−1
∑

i=0

x(n − N + 1 + i)e−j 2πk
N

(n−N+1+i)

The transform, defined in this way, can be related
to the standard definition by the expression

XF
n (k) = Xn(k)e−jθk(n−N+1)

which means that fixed time origin harmonics are just
rotated versions of its shifting time origin counter-
parts.

A recursive expression for this transform can be
obtained as

XF
n (k) = XF

n−1(k) + [x(n) − x(n − N)]e−j 2πk
N

which is valid even for complex data [8].
For the real data case, the following expressions

are obtained:

Cn(k) = Cn−1(k) + ∆xn cos(nθk)

Sn(k) = Sn−1(k) − ∆xn sin(nθk)

Note that N memory locations are also needed
by recursive algorithms to obtain ∆xn



6 COMPARISON

Digital relays frequently rely on the fundamental
component of electric signals, so obtaining Xn(1) is
of main interest. For comparison purposes, the com-
putational effort for obtaining the squared magnitude
of the fundamental component will be considered:

|Xn(1)|2 = C2
n(1) + S2

n(1)

Table 1 compares the computational cost of all
the methods presented in this paper. All of them have
been optimized by saving common partial sums as
intermediate variables whenever possible.

Method Mult. Addit. Total
Conventional DFT 8 21 29
Walsh-based DFT 8 47 55
Haar-based DFT 6 27 33

Rectan.-based DFT 6 42 48
Custom FIR filters 2 17 19

Fast DFT 7 11 18
Fast shifted DFT 4 9 13

Recursive #1 6 6 12
Recursive #2 4 4 8

Table 1: Number of operations required to compute the funda-
mental harmonic (N = 16).

It is worth noting that the four approximate ways
of obtaining the DFT components (based on Walsh,
Haar and rectangular transforms, as well as on cus-
tom FIR filters) have imperfect frequency response
(see the appendix).

On the other hand, recursive algorithms can lead
to unacceptable long-term errors. As explained in
[10], the error variance in the output of such recur-
sive filters grows linearly with time. Other undesir-
able non-linear effects have been described in the lit-
erature regarding the long-term response of recursive
structures [2], [17]. Such long-term errors can be il-
lustrated by means of figure 3, where the response of
recursive algorithms #1 and #2 are compared to that
of the conventional DFT when the input signal is

500(2− e−n/500)
[

sin( 2πn
16

) + 0.2 sin( 4πn
16

) +

+0.15 sin( 10πn
16

)
]

This anomalous behaviour suggests that recur-
sive algorithms should not be recommended for pro-
tection unless some sort of refreshing strategy is car-
ried out.
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Figure 3: Long-term performance of recursive algorithms (16-
bit integer arithmetic).

Since modern CPUs (RISC, Pentium, DSP) take
approximately the same time to carry out one multi-
plication or one addition, the total number of arith-
metic operations, rather than just multiplications,
should be considered for comparison purposes. As
can be seen, the exact non-recursive algorithm named
fast shifted DFT compares well with all of the ap-
proximate techniques, including the customized FIR
filters.

Regarding the recursive filters, it can be seen that
the operation saving with respect to the fast shifted
DFT method is not very significant for N = 16.
Similar results can be obtained for larger windows,
N = 32, N = 64, where the computational cost of
this method increases only in 2 and 4 additions re-
spectively.

Another important issue refers to the memory ac-
cess and logical overhead which, depending on the
processor architecture, could affect the above con-
clusions to a certain extent. Although both recursive
and fast non-recursive methods need O(N ) memory
positions, the latter requires more memory accesses
per sample. However, it is quite difficult to fully as-
sess this factor, as it depends on compiler efficiency,
amount of CPU registers, kind of cache memory, etc.

7 CONCLUSION

In this paper, a comparison of three groups of
methods for harmonic calculation in digital relay-
ing is provided. First, approximate non-recursive al-
gorithms have been introduced, illustrating its non-
exact frequency response.

A second group of exact non-recursive methods



has them been presented. The most effective algo-
rithm of this group has not been used so far in any
power system related application.

The third class corresponds to recursive algo-
rithms, which are slightly cheaper than the best non-
recursive scheme. However, recursive structures are
always prone to long-term output deviations.

It can be stated that non-recursive moving win-
dow DFT algorithms are currently the recommended
choice for most real-time applications.
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APPENDIX: FREQUENCY RESPONSE OF
APPROXIMATE METHODS

Figure 4: DFT spectrum for the fundamental component

Figure 5: Walsh-based DFT spectrum for the fundamental com-
ponent

Figure 6: Haar-based DFT spectrum for the fundamental com-
ponent

Figure 7: Rectangular-based DFT spectrum for the fundamental
component

Figure 8: Custom FIR spectrum for the fundamental component
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