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Abstract-This work reports an efficient and systematic proce- 
dure to obtain the complete modal spectrum of multilayer boxed 
planar lines. The complex propagation constants are obtained by 
computing the zeros of a properly built analytic complex function. 
This function is the product of two factors. One of them is the 
determinant function provided by the spectral domain-Galerkin 
analysis (SDA). The other factor is a function which cancels out 
the poles of the former factor without introducing additional 
poles nor zeros. The elimination of the poles overcomes numer- 
ical difficulties usually found in the zero searching process. In 
addition, powerful zero-searching integral techniques can be 
applied without problems. The numerical aspects involved in 
the computation of the spectral series are considered to speed 
up the computations. The features of an arbitrary number of 
propagating, evanescent, backward or complex modes of three 
important boxed structures (microstrip, finline, and coplanar 
waveguide) can be systematically studied with our method. 

I. INTRODUCTION 
HE ANALYSIS OF discontinuities between boxed planar T lines has been carried out by means of a wide variety 

of techniques. Among them, modal solution procedures are 
frequently chosen owing to a number of advantageous features 
discussed in the literature on this topic, e.g., [ll-[5]. In this 
context, microstrip, finline or CPW normal modes are likely 
the best choice as the basis for the modal expansion [6]. 
Nevertheless, tens of modes may be required to analyze a 
typical discontinuity [3], [5]. Consequently, it is convenient 
to develop a method to compute the propagation constants of 
an eventually large number of modes. The method should be 
reliable (avoiding missing of solutions), accurate (preserving 
mode orthogonality) and quick (saving CPU time). This paper 
tries to give a response to those requirements within the frame 
of the SDA. 

The techniques used to analyze uniform planar lines usually 
lead to an homogeneous matrix equation that only can be 
solved for certain particular values (eigenvalues) of a parame- 
ter (the unknown propagation constant). These eigenvalues are 
complex solutions of a nonlinear equation which is obtained 
enforcing the determinant of the system matrix to vanish. 
Accuracy and reliability mainly depend on two factors: (1) 
accurate evaluation of the system matrix and (2) use of a 
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Fig. 1. Cross-section of the boxed lines in layered medium studied in this 
paper: (a) microstrip, (b) finline, and (c) coplanar waveguide (CPW). Dashed 
line stands for electrichagnetic wall. Anisotropic materials can be considered. 

suitable method to solve the nonlinear dispersion equation. 
The numerical solution of this equation is difficult due to 
the existence of steep gradients and poles (often very close 
to the desired solution). In spite of its importance, only 
a few attempts of solving this problem can be found in 
the literature. In this way, the mode spectrum of finline 
[7], [8] and microstrip [4], [9] have been computed using 
the singular integral equation technique (SIE); the transverse 
resonance diffraction (TRD) method is applied in [ lo] to the 
unilateral finline. Particular interest deserves the space domain 
formulation reported in [ 111 to analyze a lossless single layer 
microstrip line. The zero-search problem is emphasized in 
those papers and treated using some a priori knowledge about 
pole location. Unfortunately, this is only feasible for particular 
situations. More recently, the singular value decomposition 
(SVD) method has been proposed in [12]-and used for the 
analysis of the quasi-TEM modes of multistrip structures in 
[ 131-as a useful technique to relax the root location problem. 
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This paper offers an alternative method presenting some 
advantages over the above mentioned procedures. We propose 
a general technique (a first step on which was reported in [ 141) 
to deal with the computation of the modal spectrum of the 
generalized boxed planar lines in Fig. 1. Our method makes 
use of the well-established SDA formulation. Some authors 
sustain that SDA is suitable for the first few modes but not 
for higher order modes (e.&., [2l, [3], [7], [SI). We have found 
that the possible drawbacks of the SDA are likely related to 
numerical inaccuracy when a relatively high number of basis 
functions is required and the lack of a suitable zero searching 
procedure. 

We have developed a technique that improves accuracy and 
numerical stability, although the stress is here put on the 
development of a systematic strategy to find all the desired 
modes avoiding missing of solutions. This strategy is based 
on the cancellation of the poles of the characteristic dispersion 
equation. Thus, the dispersion relation is given in terms of the 
zeros of an analytic complex function (i.e., a function fulfilling 
the Cauchy-Riemman conditions). Note that, even though 
the method in [ 121 incorporates the important advantage of 
working with a function having no poles, that function is not 
analytic. On the contrary, our proposal takes advantage of 
the analyticity in the zero searching task. On the other hand, 
since our technique requires (such as many other methods) to 
evaluate the dispersion function many times, special attention 
has been paid to avoid redundant computation of the spectral 
series (most of the computing effort is concentrated in the 
first evaluation of the Galerkin matrix). This reduction of 
computation work and the aforementioned analyticity of the 
dispersion equation have been combined to implement a 
reliable, fast and systematic computer code for the analysis 
of the modal spectrum of the lines in Fig. 1. 

11. PROBLEM STATEMENT 

The analysis of the structures in Fig. 1 is conveniently 
carried out by means of the SDA. The spectral dyadic Green’s 
function (SDGF), G(a,. y, w )  - CY, is the Fourier variable, 
y = - ,)a, the unknown complex propagation constant and 
w the angular frequency -, may be computed using the so- 
called EBM method [lS], [I61 (EBM allows us to deal with a 
complex linear layered medium). Once the SDGF is known, an 
integral equation is written either for the strip surface current 
(microstrip case) or for the slot electric field (finline and CPW 
cases). This spectral integral equation is solved via Galerkin’s 
method, which leads to an homogeneous equations system. Its 
non trivial solution condition 

det[A(y.w) ] = 0 (1) 

stands for the characteristic equation whose complex roots 
are the desired propagation constants (yl: i = 1, . . .  . x). 
Two points concerning the solution of (1) should be now 
considered: 

A.  Proper Computation of [A(y,  w ) ]  

Computational efficiency is essential at this step of the 
analysis because it determines CPU time and accuracy. First 

of all we have to use adequate basis functions. We use first 
and second kind Chebyshev polynomials weighted with the 
Meixner edge condition [15], since this set of functions is 
specially suitable for the analysis of planar lines. Unfortu- 
nately, the spread spectrum of these functions yields very 
slowly convergent series. A huge number of Fourier terms 
could have to be retained to avoid serious truncation errors 
[ 171. Moreover, the truncated spectral representation does 
not account for the edge singularity; therefore, the power 
of the weighted basis functions set can be only exploited 
if a suitable summation technique is provided. The problem 
becomes more noticeable for high order modes and very 
narrow stripsklots [IS]. In this paper we use acceleration 
techniques that substantially relax all these inconveniences. 
Our technique has the additional virtue of avoiding redundant 
computations in the zero search process. A brief outline of the 
method can be found in the Appendix. 

B. Suitable Scheme for Complex Roots Searching 

The solution of (1)  implies to seek for the zeros of a com- 
plex function of complex variable F ( y ,  w) d(d[A(y. w ) ] ,  
for each fixed frequency value. F ( 7 . w )  is not analytic but 
meromorphic. Its poles arise either from the poles of the 
SDGF (microstrip), or from the poles of its inverse (finline 
and CPW). The presence of poles always makes difficult the 
zero searching task. Poles and zeros may be so close each 
other that numerical difficulties arise even if pole locations are 
known in advance, as in [ 111. Therefore, we have developed 
an approach completely different from the one used in [7l, 
[IO]-[ 121. Our strategy consists in obtaining the characteristic 
function of the nonstandard eigenvalue problem ( I )  in the 
form of a complex function which is analytic in the traced 
region. This function has smooth behavior so making easy the 
application of differential zero-searching algorithms (Muller 
or Davidenko’s methods). However, we have exploited the 
advantages arising from the analyticity of that function since 
systematic integral methods based on well-known complex 
variable theorems can be then applied. We have implemented 
an improved version of the Delves-Lynnes 1191 technique to 
obtain the number and location of all the zeros within a given 
region. The knowledge of the number of roots is useful so as to 
explore the complex plane systematically, so avoiding missing 
of solutions and redundancy. Although this technique gives 
very accurate results, additional accuracy is obtained-without 
increasing too much the CPU time-if these results are used 
as initial guesses of an iterative Muller algorithm. 

111. DISPERSION FUNCTION AS AN 
ANALYTIC COMPLEX FUNCTION 

We have already discussed the advisability of formulating 
the dispersion problem in terms of the zeros of an analytic 
complex function. In this section we explain how to built this 
function. Let us begin with the microstrip configuration. In 
this case, (1) has the same poles than the SDGF. They are 
the propagation constants of the modes supported by the inho- 
mogeneous waveguide remaining when the strip is removed, 
namely, the background waveguide (see Fig. 2(a)): only when 
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the SDGF has a pole we can have hnite nonvanishing field in 
the absence of printed current. Although direct search for these 
poles is possible [ 113, this task could present difficulties when 
applied to a complex multilayer structure or when poles and 
zeros are in close proximity. So we have followed a different 
method that overcomes numerical problems. In [20] it was 
reported a procedure to compute the propagation constants 
of a laterally open waveguide with a bianisotropic layered 
medium in terms of the zeros of an unbounded analytic 
complex function. We follow here the guidelines contained 
in [20] but adapting the m a t h  to account for the metallic 
enclosure so as to get an analytic characteristic equation for the 
Cigenmodes of the background waveguide. Let E k ( a , )  and 
J k ( a , )  be the Fourier transforms of the tangential electric 
field and surface current at the kth interface (a dependence 
on the Fourier variable Q, will be assumed henceforth for all 
the physical quantities). Using notation and formulas in [15] 
and [16] we can write two useful relationships between those 
quantities at the top, N ,  and bottom, 0, interfaces (see Fig. 1) 

(e.w. = electric wall; m.w. = magnetic wall), where 

The 2 x 2 matrix functions [L]k  in (4) are computed using the 
following recurrence algorithm: 

( 5 )  [ L l k  = [glk,k - [g lk ,k- l  . [LI& . [g lk- l ,k  

IC = 2 ,  . . ' ,  N - 1 

which has to be initialized with the expressions 

IL11 = [g11,1; (y = 0 e.w.) ( 6 4  

[Lll = [gl1,1 - 2 [ g l 1 , 0 .  [gIo,1; (Y = 0 m.w.1. (6b) 

The 2 x 2 matrix functions [ g ] i , j  in (3)-(6) are known in 
closed form and are given in [15] and [16]. It should be 
emphasized that the 2 x 2 [I?,] matrices in (2) and the SDGF 
are simultaneously computed. Therefore, the evaluation of 
[r,] requires negligible additional computation. 

Now, the presence of the _upper conducting plate is taken 
into account by imposing EN = 0. Then, the nontrivial 
solution condition for (2a) or (2b) 

det[r ,(y,w)] = 0 (n = 0 , 1 , 2 , .  . .) (7) 

gives the propagation constants of the modes in the inhomoge- 
neous background waveguide. For our purpose, an important 
feature of (7) is that det[I',(y, w ) ]  does not have any poles 

tY t Y  

(a) (b) 

Fig. 2. Structures whose propagation constants are the poles of the dispersion 
characteristic equation (a) for the microstrip line and (b) for finline and CPW. 

in the y complex plane [20]. We w& take advantage of 
this property later but, before going on, let us discuss the 
finline/CPW case. For any of these structures, the kernel of 
the integral equation for the slot electric field is the inverse of 
the SDGF, i.e., [G(a, ,y ,w)  I-'. The singularities in (1) now 
arise from the modes corresponding to the two waveguides 
resulting from the substitution of the printed Mth interface by 
a continuous conducting plate (see Fig. 2(b)). We can write 
for the lower ( L )  and upper (V)  waveguides 

EM = [I$] . Jo or EM = [rk] . Eo (8a) 

EN = [r,U]. J, (8b) 

where [r:] and [I?:] are obtained by following the same steps 
reported for the microstrip case. If we redefine 

[r,(Y,w)l = [CI . [CI 
condition (7) still determines the propagation constants in this 
case. 

The doubly infinite set of solutions of (7) is also the set of 
poles of the determinant function (1). In other words, we have 
built up a family of functions 

whose zeros are the poles of F ( y , w )  3 det[A(y;w)]. These 
functions can be now used to eliminate the poles of F(y,  w )  
without introducing additional poles or roots. Thus, the dis- 
persion relation for the boxed transmission line-which was 
initially given in terms of the meromorphic expression (1)-is 
now more conveniently expressed by means of the following 
analytic characteristic equation: 

m 

det [A(r,w)l. J-J F r L ( Y , W )  = 0 (9) 

where, as will be shown later, just a few factors of the infinite 
product are required in practice. 

n=O 

Iv .  SYSTEMATIC SEARCH FOR THE ZERO'S 

Equation (9) turns out to be a rather formal expression, since 
infinite factors should be retained so as to built an analytic 
function in the entire complex plane (except at infinity). 
However, (9) has to be analytic only in that region of the 
complex plane to be traced by the zero-searching algorithm. 

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on July 17,2020 at 14:53:02 UTC from IEEE Xplore.  Restrictions apply. 



C A N 0  rf a /  : MODAL SPECTRUM OF BOXED MICROSTRIP. FINLINE. AND COPLANAR WAVEGUIDES 869 

Therefore only a few values of 
generate a function 

are usually required to 

.V!, 

H ( 7 . w )  E det[A(y.w)] .  F r 2 ( y . w )  (10) 

which is analytic in the region of interest. N ,  in (10) is chosen 
in such a way that, for a given operation frequency, w, and box 
width, u. all the poles in the search region are removed (Le., 
IP21 < (NV7r/a)* - c,.ki, where stands for the modulus of 
the highest relative dielectric constant 171). 

Since H ( y , w )  is analytic in the working region, R, of the 
complex plane, the integral method refereed as C) in 1191 
can be used to search for its zeros. We have chosen this 
method instead of B) in [ 191 because it has been found that 
the numerical evaluation of the derivative of H ( 7 , w )  yields 
much better performance than the scheme proposed in B).  
This technique allows systematic exploration of the region 
R in order to detect the number of zeros in it. We have 
found this method better than other alternatives, specially for 
regions with several and/or very close roots. Complex plane 
integrations are carried out along circular paths by nieans of 
high order Gauss-Legendre quadratures ( 2 0 4 0  points). This 
means that H ( 7 , w )  has to be evaluated many times before 
attaining the solution. Nevertheless, since several m o s  may 
be computed with each set of values of H ( Y . u J ) ,  the total 
number of evaluations of this function might be even smaller 
than those required when iterative methods are used. Thus, 
with similar computational effort, one gets more reliability and 
systematicity in the evaluation of the propagation constants. 
In addition, thanks to the use of the asymptotic techniques 
commented in the Appendix, the main part of the numerical 
effort is concentrated in the first evaluation of H ( 7 .  w ) :  further 
evaluations do not increase too much the overall CPU time. 

r i  =O 

v. DISCUSSION AND RESULTS 
The theory reported in previous sections is the basis for 

a set of computer Fortran codes that analyze the eigenniode 
spectrum of the structures in Fig. 1. (they include a variety 
of versions of the microstrip, tinline, and CPW, including 
symmetrically coupled geometries and anisotropic uni- and 
biaxial substrates). Several aspects of the convergence and 
general performance of the technique have been exhaustively 
investigated (some comments about this are in the Appendix). 
However, in this paper we are more interested in posing and 
solving an adequate dispersion equation than in the numerical 
details involved in the generation of the Galerkin matrix 
(which are left for a next paper), although it is obvious that 
the latter problem had to be properly solved before going on. 
We want only to say than a highly accurate and efficient code 
has been developed which is able to deal with many basis 
functions while keeping numerical stability. 

In Fig. 3 we have plotted the standard meromorphic char- 
acteristic function in ( I ) ,  F ( y . w ) ,  and the modified analytic 
characteristic function in ( lo) ,  H ( 7 . w )  for a range of values 
of ( / j / k o ) ”  For simplicity, we have restricted the picture to 
the real axis (where the functions are real). Nevertheless, the 
conclusions obtained from its examination also apply to the 

0.5 0.6 0.7 0.8 
( Y / k J 2  

Fig. 3. Typical plots of F (  -!. d) (meromorphic), H (  *;. -.) (analytic) dis- 
persion functions. These plots correspond to a centered boxed microstrip on 
isotropic substrate (:, = 8.875) having the following dimensions: It = 1.27 
mm, ( I  = b = 12.7 nim, and Freq. = 28 GHz (this structure has been 
analyzed in [ 1 1  I ) .  

complex case. Fig. 3 shows how both functions have the 
same zeros, but F ( 7 . w )  has also poles, some of which are 
extremely close to the zeros (they could even match). This 
latter fact seriously complicates--or even precludes-the root 
identification with conventional methods, whereas does not 
affect our formulation. 

Our results have been checked against many published data 
computed by means of SDA and other techniques. We have 
found excellent agreement with most of these results within the 
accuracy of usual graphical representations. However, we have 
found that missing of modes is very common. For instance, in 
Fig. 4 we plot the propagating and a few evanescent modes 
of a unilateral finline. Modes having odd (E-modes) and 
even (M-modes) symmetry with respect to the middle plane 
normal to the fin interface have been separated. The figure 
shows our results and results from 121 and [SI. This figure is 
interesting because the authors in [SI express an opinion about 
the suitability of the SDA to account for higher order modes: 
although SDA is a useful and well-founded method to deal 
with planar structures, it is not adequate for reliable and quick 
computation of higher order modes; SIE technique would 
be a better alternative. This opinion has been sustained by 
several authors elsewhere 121, 131, [7], [SI. This conclusion is 
supported in [SI by comparing SIE data with the results in 121 
(SDA) for a finline structure. Following these authors, missing 
of solutions and relatively high computational cost would be 
drawbacks associated to SDA. However, Fig. 4 clearly shows 
that we find all the modes reported in [8] and a few more not 
reported in that paper (including one complex M-type mode). 
In addition, the use of the asymptotic techniques commented 
in the Appendix makes the SDA a very efficient method from 
the perspective of computational cost (of the same order than 
the very efficient SIE technique). An illustrative comparison 
has been carried out against the numerical values reported 
by Omar et nl. 171 (SIE) for a large number of E-modes 
of a unilateral finline. Table I shows our data and the data 
in that paper. Apart from excellent agreement, it can be 
seen that we find three modes not reported in 171. The lost 
modes are some of those having propagation constants very 
close to waveguide modes (singularities in the conventional 
formulation), as shown at the bottom of Table I. This closeness 
is likely the reason for missing of solutions in [7] (since the 
analytical/numerical analysis seems to be very careful). This 
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(b) 
4 

(a)  
(b) 

F44 
(3 

40 
U 

4 1  2 3 4 5 6 7 
0.6824 
0.6820 

-j0.6063 -j0.7444 -11.5953 -j1.6487 -j1.6798 -j1.7468 
-j0.6067 -j0.7448 -j1.5955 -j1.6489 -j1.6800 -j1.7440 

8 (*) 9 10 (*) 11 12 13 14 
- j l .888 -j1.9918 -j2.466 -j2.4746 -j2.5486 -j2.7066 -j3.0732 - -j1.9922 - -j2.4747 -j2.5491 -j2.7070 sj3.0735 

15 16 (*) 17 18 19 20 21 (*) 
-j3.1135 -j3.2064 -j3.2370 -j3.3646 -j3.4763 -j3.4967 -j3.5961 
-j3.1136 -j3.2065 -j3.2372 -j3.3648 -j3.4763 -j3.4969 

22 23 24 25 (*) 26 27 28 
-j3.6056 -j3.6641 -j3.8124 -j3.8786 -j3.9307 -j3.9654 -j4.0196 
-j3.6057 -j3.6648 -j3.8127 -j3.8787 -j3.9308 -j3.9658 -j4.0196 

29 30 31  32 33 
-j4.0760 -j4.2311 -j4.3468 -j4.3637 -j4.4325 
-j4.0770 -j4.2314 -j4.3475 -j4.3637 -j4.4326 

- 

36 

32 

28 

n=2 

24 

20 

n=2 I n=2 I n=4 1 n=2 

1 

944 
(3 
p 40 
h 

36 

32 

28 

24 

20 

Fig. 4.  Dispersion curves of several modes of a unilateral finline in 
WR-28 waveguide ( 3  for propagating modes and (Y for evanescent ones). 
~~1 = ~~3 = 1; hl = h3 = 3.429 mm; E,~Z = 2.22; ha = 0.254 mm; = 
1 mm. (a) E-modes, Le., modes having an electric wall in the middle plane: 
(b) M-modes, i t . ,  those having a magnetic wall. Solid lines: our results; 
symbols: data in [2] and (81. 

E 

s 
L 

I 

0 

-11 85 -11 90 -11 95 -12 -12 35 9 4 0  -12 45 j 2  50 
Y 

Fig. 5 .  Plot of F ( y )  (gray line) and H(y) (black line) for the structure 
whose modes are given in Table I. Even and odd symmetries with respect to 
the middle plane of each solution is noted. 

Finline (*) 1-11 8884121.12 4666291-13 2064301 J3 596131 1.13 878616 
Waveguidel-11 8884131 32 4666331-13 2064371.13 596134 1-13 878553 

0 5 10 15 20 
Freq (GHz) 

Fig. 6. Dispersion curves for the boxed microstrip (U. = 0.953 mm) whose 
first few modes (at 10 and 20 GHz) are given in Table 11. Circles represent 
modes at 20 GHz not reported in [4] (one evanescent mode and one complex 
mode). 

powerful tool for the analysis of planar structures also when 
very high order modes are traced. More examples and an 

conclusion is in Fig. 5.  This figure shows both the 
meromorphic and the analytic dispersion functions for the case 
considered in Table I: Numerical problems associated to the 
use of the meromorphic function are clearly expected. 

We have also made similar comparisons for the microstrip 
line analyzed in [4] with SIE. Some numerical data reported in 
that paper are compared with our data in Table 11. Once again 
agreement is very good, but we find some modes not reported 
in [4] at 20 GHz. Fig. 6 shows the dispersion behavior of 
the modes in Table 11. Circles correspond to the propagation 
constants not reported in [4]: It is clear that they are not 
spurious solutions. In our opinion, Tables I and I1 and Figs. 
4-6 illustrate that, if properly implemented, SDA is a very 

exhaustive study of the performance of our formulation-in 
contrast with the a wide range Of 

situations (with particular emphasis on the identification of 
complex modes) can be found in [21]. 

We would like to finish this section with an example of CPW 
structure. We have chosen one of the multilayer configurations 
proposed by Liu and Itoh in [22] to avoid leakage in conductor 
backed coplanar waveguides. Fig. 7 shows the mode spectrum 
for that structure when enclosed in a rectangular waveguide. 

VI. CONCLUSION 

In this paper we have proposed a technique to overcome 
some difficulties arising when the conventional SDA is used 
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~ 

87 I 

TABLE 11 
PROPAGATION CONSTANTS, ,j, OF A BOXED MICROSTRIP [4] 

Frequency = 10 GHz 
W = 0.953 m m  W = 4.572 m m  

2 - j O  2484 -j0.2483 -j0.2470 -j0.2469 
3 -30 5547 -j0.5547 -j0.5508 -j0.5508 
4 -30.5887 -j0.5886 -j0.6027 -j0.6027 
5 -10.9657 -j0.9652 -j0.9645 -j0.9640 
6 -31.0208 -j1.0209 -j0.9773 -j0.9773 
7 F 0.00450 F 0.00449 -j1.0733 -j1.0731 
8 F j1.0852 7 j1.0849 -j1.1027 -j1.1023 
9 -71.1078 -71.1075 -71.1237 -i1.1236 

Frequency = 20 GHz 
W = 0.953 m m  W = 4.572 m m  

- q 
-3 L 

-6 : 

-9 1 
-12 c 

1 2  3 4 5 6 7 8 9 10 
Freq (GHz) 

Fig. 7. 
structure. Dimensions: 
mm. -- 

Dispersion curves for a number of modes of a boxed multilayer CPW 
= 15 mm; h l  = 0.635 mm; rI.1 = 2.33; h 2  = 0.06 

= 10.5; h l  = IS mm: : , 3  = 1: t r  = .L, = 0.254 mm. 1 -,_ 

2 0.2781 0.2778 0 2754 0.2751 
3 -j0.4126 -j0.4127 -j0.4033 -j0.4032 
4 -j0.4557 -j0.4558 -j0.4801 -j0.4802 
5 -j0.8884 -j0.8880 -10.8627 -j0.8626 
6 -j0.9512 - -jO8989 - 
7 'f 000915 - -j0.9945 - 
8 'f j10156 - -j1.0391 - 
9 -j1.0456 -31 0450 -j1.0631 -j1.0631 

Dimensions. u = 9.52 inni: / I ,  = 0.635 mm; €,.I = 2.32: / I >  = 5.715 mm; e r L  = 
I .  (a) Our results. (b) Results in 141 Mode\ 7 and 8 for w = 0.953 mm are the real (7) 
and imaginary ( R )  pans of a pair of complex modes. 

to calculate the propagations constants of higher order modes 
of planar transmission lines. The limitation of the SDA to 
the computation of the first few modes has been removed by 
means of two concurrent improvements: ( 1 )  drastic enhance- 
ment of the numerical performance of SDA through a suitable 
preprocessing of the spectral series and (2) formulation of 
the dispersion equation in terms of an analytic complex 
characteristic function. The final result is a set of quick, 
accurate and reliable computer codes to obtain the complete 
modal spectrum of the structures shown in Fig. 1. These 
programs are potentially useful for the modal analysis of 
discontinuities in those structures. 

APPENDIX 

A.  Numerical Treatment of the Galerkin Matrix 

Each entry of the SDA Galerkin's matrix, [A(r .w)] ,  is an 
infinite, slowly convergent series involving the product of the 
Fourier transforms of two basis functions and the appropriate 
element of the SDGF. Drastic acceleration is obtained by 
extracting out and analytically adding their asymptotic limit 
behavior [23]. With our choice of basis functions all the 
elements of [A] have the same asymptotic functional limit, 
A&, so we only have to deal with series of the following 
type: 

3L I . .  . 
Aisq = J p ( u  /i).lq((i 7 1 )  F ' ( 7 1 .  w. y) 

n = l  " _  

(AI) 
where Faz(*n. w. y) is an asymptotic simplified approximation 
of an element of the SDGF (or related quantity) and .J, stands 

for the first kind Bessel function of integer order p .  (Y and c 
are functions of the ratio between the strip (or slot) width and 
the box width. The difference between the actual series and its 
asymptotic expression vanishes very quickly if Fa' is properly 
defined. In our case we obtain 1 / r r5  behavior by using: 

where g1,3 are known in closed form [21] (also in 1231 for 
the microstrip case including the special feature of very thin 
layers). 

in (Al) very effi- 
ciently. The part of AEq corresponding to the first second 
hand term in (A2) is associated to the quasistatic limit of the 
problem, and it has been quasianalytically computed in [24] 
and 1251. The method in [24] and [25] consists in transforming 
the numerical series in a convolution/inner product integral in 
the spatial domain which is almost analytically evaluated. For 
the part involving the factor 1 / , r i 3  we have used a similar idea 
[21]. This method is better than the one used in [23] while 
still keeping an important feature also mentioned in [23]: the 
asymptotic part of the computations is carried out just once for 
a given structure (a similar property was also used in [ l  I]). 
This fact is very important because the root searching task 
requires multiple evaluations of the Galerkin matrix. The final 
result from all this algebra is that the number of spectral terms 
to be retained in series summation is drastically reduced: no 
more than a few units or tens of spectral terms are necessary 
for microstrip calculations (fewer terms are typically required 
for finline and CPW). Note that thousands of terms may be 
required if the asymptotic method is not applied (see, for 
instance, [ 171). This makes the efficiency of SDA similar to 
SIE while keeping the generality of SDA. In the context of 
this work, there is another reason for doing this analytical 
processing of the spectral series apart from computational 
speed: the reaction terms in the Galerkin matrix involving high 
order Chebyshev polynomials have to be accurately computed 
when very high order modes are treated in order to keep 
mode orthogonality. We have not either detected spurious 
solutions with our method. For a more detailed study of the 
technique sketched in this Appendix, the reader is referred 
to [21]. 

Our problem reduces to compute 
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