
RESEARCH ARTICLE

Detect coastal disturbances and climate

change effects in coralligenous community

through sentinel stations
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Abstract

This study was implemented to assess the Sessile Bioindicators in Permanent Quadrats

(SBPQ) underwater environmental alert method. The SBPQ is a non-invasive and low-cost

protocol; it uses sessile target species (indicators) to detect environmental alterations (natu-

ral or anthropic) at either the local or global (i.e., climate change) scale and the intrusion of

invasive species. The SBPQ focuses on the monitoring of preselected sessile and sensitive

benthic species associated with rocky coralligenous habitats using permanent quadrats in

underwater sentinel stations. The selected target species have been well documented as

bioindicators that disappear in the absence of environmental stability. However, whether

these species are good indicators of stability or, in contrast, suffer variations in long-term

coverage has not been verified. The purpose of this study was to assess the part of the

method based on the hypothesis that, over a long temporal series in a highly structured and

biodiverse coralligenous assemblage, the cover of sensitive sessile species does not

change over time if the environmental stability characterising the habitat is not altered. Over

a ten-year period (2005–2014), the sublittoral sessile biota in the Straits of Gibraltar Natural

Park on the southern Iberian Peninsula was monitored at a 28 m-deep underwater sentinel

stations. Analyses of the coverages of target indicator species (i.e., Paramuricea clavata

and Astroides calycularis) together with other accompanying sessile organisms based on

the periodic superimposition of gridded images from horizontal and vertical rocky surfaces

allowed us to assess the effectiveness of the method. We conclude that no alterations

occurred during the study period; only minimal fluctuations in cover were detected, and the

method is reliable for detecting biological changes in ecosystems found in other geographi-

cal areas containing the chosen indicator species at similar dominance levels.

Introduction

The long-term evaluation and quantification of changes in species are crucial for our knowl-

edge of various marine ecosystems [1, 2] and constitute useful tools for the environmental
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monitoring, management, and conservation of coastal zones and their associated marine pro-

tected areas.

Historically, methodological difficulties related to the monitoring and study of subtidal

communities have led to their neglect in many environmental monitoring programs [3], par-

ticularly in relation to rocky habitats because of their wide heterogeneities, the fixed nature of

the resident sessile organisms, the frequent difficulty of achieving access, and the fact that the

sampling must be undertaken through indirect methods from boats. Warwick [4] indicated

that the study of these communities on wide spatial scales involves a series of technical and

implementation difficulties that are not present for work on soft bottoms, the water column,

or the intertidal zone. For these reasons, studies related to the environmental monitoring, sur-

veillance, and impacts of various factors on the sublittoral benthic environment have focused

on endofauna (macroinvertebrates) associated with soft substrates [5–12]. Many biotic indices

based on these animals have been proposed [13–15], and many of these indices have been used

for or adapted to the requirements of the European Community Water Framework Directive

[16–18].

Indeed, regarding monitoring methods based on indicators in the scope of the European

Community Directives [19–20], the research has centred on macroalgae on hard substrates

[21–28] and seagrasses [29–32], whereas macroinvertebrates associated with high-diversity

rocky subtidal habitats (which have greater abundances of sensitive indicator species) have

been less well studied. However, some studies have sought to establish the ecological statuses

of coralligenous assemblages [33–39]. The environmental information that can be provided by

these assemblages is very powerful and reliable [40–43]; therefore, this faunal approach to

rocky habitats could help to fill an important knowledge gap within the European Community

Directives [19–20].

Of particular importance is the information that can be provided by pre-coralligenous and

coralligenous rocky bottoms because of their high biodiversities and the abundances of sensi-

tive colonial species with long life cycles. Although there are some long-term studies of species

that are representative of coralligenous communities [44–49] short- and medium-term studies

are more common [50,51].

In contrast, growing concern about the effects of climate change has led to more studies of

epibenthic (rocky bottom) species in relation to coral bleaching [52–54], seagrass meadows

[55], invasive alien species [56,57], and even the role of the marine reserve biota in climate

change monitoring [58–60]. These studies have also highlighted the severe environmental

impacts on benthic organisms that have arisen from abnormal temperature increase events in

the western Mediterranean [61–63].

The great fragility of highly structured and mature benthic communities associated with

hard substrates, such as those of pre-coralligenous and coralligenous areas, has encouraged

non-invasive study methods based on video footage or photos of species that are fixed to the

substrate in random quadrats [36,51,64–75]. However, the absence of long-term series that

have empirically validated these methodologies as systems for detecting changes in communi-

ties has been limiting.

Additionally, previous studies have focused on characterising and/or monitoring benthic

communities, which implies greater complexity with respect to implementation mainly due to

the high diversity of species present in these enclaves, which, in turn, entails greater effort and

difficulty associated with the identification of the taxa. However, the Sessile Bioindicators in

Permanent Quadrats (SBPQ) methodology, which was proposed by one of the authors of the

present paper [43], differs from other methodologies, mainly in that the quadrats are perma-

nently fixed to the rocky bottom and that the coverage of a previously selected target species

must be at least 10% within each quadrat. Fixed quadrats allow changes in the coverage of

PLOS ONE Detect coastal disturbances in coralligenous

PLOS ONE | https://doi.org/10.1371/journal.pone.0231641 May 5, 2020 2 / 23

Funding: This research supported by the Regional

Activity Centre for Special Protected Areas (RAC/

SPA) and the Mediterranean Protected Areas

Network (MedPAN) projects, Consejerı́a de Medio

Ambiente de la Junta de Andalucı́a, and co-

financed by Autoridad Portuaria de Sevilla,

Compañı́a Española de Petróleos S.A.U. (CEPSA)
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target species and the rest of the benthic community to be detected without the need for a high

number of replicates, and with the certainty that these differences are not due to the character-

istic spatial heterogeneity of this kind of habitat. The simplicity and relatively low cost of the

method allows the monitoring of the stations to be repeated in the short term, which is essen-

tial in the detection of invasive species or other anthropogenic disturbances that require rapid

action. The method is not intended to assess the biodiversity or ecological status of these com-

munities, but to establish an early warning system that allows the detection of changes in the

coverage of target species. Based on the detection of these changes, specific studies can be

designed to assess the degree and origin of the disturbance.

Objectives

This study aims to assess the underwater environmental SBPQ alert method, which focuses on

monitoring preselected sessile and sensitive benthic species associated with rocky coralligen-

ous habitats using permanent quadrats in underwater sentinel stations. The selected target spe-

cies have been well documented as bioindicators that disappear in the absence of

environmental stability via acute impacts. However, it has not been verified if these species are

good indicators of long-term stability. The purpose of the present study was to assess the por-

tion of the method based on the hypothesis that, over a long temporal series (a ten-year period

in this study) in a highly structured and biodiverse coralligenous assemblage, the cover of sen-

sitive sessile species (i.e., the target species) does not change over time if the environmental sta-

bility of the habitat is not altered.

Materials and methods

Study zone

This study was performed on the benthic community of two sentry stations on a rocky bottom.

The station is situated within the Strait of Gibraltar Natural Park (southern Spain) inside the

Grade A protection zone (i.e., the maximum protection area within the Natural Park) charac-

terized by rocky bottoms with a moderate slope that host a high biodiversity and species rich-

ness, dominated by species such as Eunicella sp., Paramunicea clavata, Astroides calycularis,
Pentapora sp., Crambe crambe and Salmacina sp. in the Punta Carnero locality (Algeciras), but

it is proximal to zones under strong anthropic pressure (Fig 1).

Despite its enormous ecological wealth and high level of protection, the SBPQ sentry station

is at notable risk of anthropogenic disturbance. This is due to both to its proximity to the par-

ticularly industrialised Bay of Algeciras, where many different pollution sources can be found

(thermal power plant, chemical industry, petrochemicals, bunkering activities, etc.) [76,77]

and the high level of marine traffic through the area. Due to the second factor, the last decade

has seen polluting events related to hydrocarbon spills of varying magnitudes including serious

spills from the ships Sierra Nava and New Flame, both of which occurred in 2007 [78].

Data regarding the bottom water temperature in the study area were obtained from data

base of the regional environmental authorities [79]. The implementation of the study was noti-

fied to the managers of the the Strait of Gibraltar Natural Park and to the competent environ-

mental authority of Andalusia Government (Regional Ministry of Environment and Territory

Planning, CMAYOT). In fact, the CMAYOT has funded the publication of the spanish verison

book where the methodology SBPQ is included (43). In adition the first author of the current

study is part of the governing board of the Strait of Gibraltar Natural Park. No permits were

required for this work.
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Application of the SBPQ methodology for its validation: Target species,

permanent grids, and underwater sentinel stations

The SBPQ method was proposed by Garcı́a-Gómez [43] together with an identification guide

for sensitive indicator species vs. tolerant species, and was published by The Regional Activity

Centre for Specially Protected Areas (RAC/SPA). The RAC/SPA was established in Tunis in

1985 and is responsible for assessing the status of the natural heritage and helping Mediterra-

nean countries to implement the Protocol concerning Specially Protected Areas and Biological

Diversity in the Mediterranean (SPA/BD Protocol), which came into force in 1999.

This methodology has been designed as a simple, non-invasive, underwater environmental

alert tool for the potential early detection of environmental impacts of anthropic origin in the sub-

littoral system: in the short term (local alterations derived from pollutants from industries or emis-

sions of urban origin, coastal dredging or civil engineering works on the coast, intrusion of exotic

Fig 1. Location of the sampling point in the Strait of Gibraltar Natural Park.

https://doi.org/10.1371/journal.pone.0231641.g001
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species with invasive potential, among other sources of alteration of coastal waters), and in the

medium or long term (global warming). Even though the method is able to detect the presence of

invasive species, further studies are required to test the reliability of the method for detecting other

potential impacts of anthropic origin. Recently, the SBPQ methodology has already been used suc-

cessfully in the early detection of exotic species with invasive potential, in particular the invasive

seaweed Rugulopterix okamurae [80]. The Fig 2 shows a temporal variation of benthic mean per-

cent species coverage at Tarifa Island monitoring by SBPQ method from years 2013 to 2017.

It is focused on the management of sensitive indicator target species (benthic and sessile)

vs. tolerant species in the Western Mediterranean and can be used in other parts of the world

once the native species have been selected. The SBPQ method has been proposed for wide-

spread use, not only by scientists, but by sports divers linked to diving clubs or centres that

could be involved in underwater environmental monitoring of the coastal environment (Citi-

zen Science and “Working with Nature” philosophies).

Synthetic adaptation of the SBPQ protocol

1. Choice of vertical walls of pristine rocky bottoms, preferably between 20 and 35 metres

deep, biologically structured and of high biodiversity, with the presence of adult-sized target

species, sensitive, benthic and sessile indicators, that are visible underwater, preferably colo-

nial, with a long life cycle, and abundant compared to the local macrobiota.

2. Selective installation of three to five permanent quadrats of 1x1 m2 (not chosen at random),

located on patches of at least one previously selected target species that represents at least

10% of the total coverage per quadrat (Fig 3). The method has recently been updated with

the objective of minimizing the degree of intrusion on these fragile habitats. For this pur-

pose, a single hole is drilled on the rock and a small plastic bar marks off four 50 x 50 cm

detachable monitoring quadrats that are fitted each time monitoring is carried out. This

Fig 2. Temporal variation of benthic mean percent species coverage at Tarifa Island monitoring station fixed quadrats from years 2013 to 2017 (1, 2, 3, 4

refer to random sampling times within each year). Species with less than 10% coverage (Alcyonium sp., Aplidium sp., Asparagopsis armata, Crambe sp, Ircinia
sp. and Polycitor adriaticum) were grouped under ‘Other species’. Taken from (Garcı́a-Gómez et al., 2020).

https://doi.org/10.1371/journal.pone.0231641.g002

PLOS ONE Detect coastal disturbances in coralligenous

PLOS ONE | https://doi.org/10.1371/journal.pone.0231641 May 5, 2020 5 / 23

https://doi.org/10.1371/journal.pone.0231641.g002
https://doi.org/10.1371/journal.pone.0231641


avoids the use of permanent fixed quadrats with many screws, therefore reducing effort,

cost, maintenance and, most importantly, the impact on communities. As explained above,

three to five of such monitoring points would be installed per site (Fig 4). A hand drill (Fig

4A), used in climbing, is proposed in the method. This tool is a cheap and relatively simple

way to fix the pieces to the rock and can be supplied to diving clubs that are interested in

being part of the monitoring network.

The anthozoans Astroides calycularis (Pallas, 1766) and Paramuricea clavata (Risso, 1826),

which are currently listed as ’vulnerable’ by the IUCN, were selected for monitoring. These spe-

cies are vulnerable to increases in temperature and sensitive to deterioration of the environmen-

tal quality of the marine environment. Both species are well referenced in ecological studies of

coastal benthos [42,43,63, 81–88]. These species should always be moderate to large (preferably

colonial) and highly visible while immersed. Moreover, some studies have indicated that typical

coralligenous species, such as Paramuricea clavata, exhibit extremely low temporal variability

[88]. Additionally, these species are highly representative of the community under study. There-

fore, the quantitative stability (cover) of these sensitive species over time in the absence of phe-

notypic signs of stress (e.g., epibiosis, partial necrosis, bleaching) would allow us to infer that the

community has remained healthy. Therefore, focusing the monitoring effort on sensitive species

that are representative of the community should allow the appropriate inferences to be drawn.

Sampling procedure

Four fixed 1-m2 PVC quadrats were installed in two different locations. One setup had a verti-

cal orientation (shady), and the other had a horizontal orientation (sunny) at a depth of 28 m

Fig 3. Sentinel station showing permanent quadrats of 1x1m located on patches of target species.

https://doi.org/10.1371/journal.pone.0231641.g003
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(coordinates 36˚ 4,770 N - 05˚ 25,184 W; GPS, DATUM WGS 84). These quadrats were placed

on surfaces containing target species. The covers were monitored over ten consecutive years

(2005–2014) in spring and summer seasons.

A four video footage of 50 x 50 cms were filmed sequentially, covering a total of 1 x 1 m

quadrat, in order to gain higher resolution of the subsequent photos taken from the video.

A total of 320 photographs were digitally manipulated using the Adobe Photoshop 6.0

(2000) program as follows: four 50x50-cm areas were created for each quadrat (Fig 5A); the

contrast and colour saturation were adjusted (Fig 5B); a complete digital frame was created

(Fig 5C); and a digital grid that was adjusted to the perimeter of the monitoring area was

superimposed (Fig 5D). To correct the angular deformation.

To assess the degree of the cover of the target species, a system involving the determination

of the presence/absence of cover using the digital grid was applied. This system aided estima-

tion accuracy [89,90] and optimised the working time [64,91]. Nevertheless, it should be noted

that, in multistratified communities, the system tends to underestimate the cover [64,69,89–

92] because larger species “mask” those that developed underneath them.

Statistical analyses

Repeated measures analysis of variance (RM-ANOVA) was applied to test whether the mean

coverage of the target species significantly varied either through time (intra-subject factor

‘time’; ten levels: 2005 to 2014) or according to orientation (inter-subject factor ‘orientation’;

two levels: horizontal and vertical). Mauchly’s test of sphericity [93] was used to test the

assumption that the variances in the differences between all possible pairs of groups were

equal. When the sphericity condition was not verified, the F test value was corrected with the

Greenhouse-Geisser epsilon index [94,95]. The factors of time and orientation were consid-

ered orthogonal and fixed. The same two-factor design was considered to test for any signifi-

cant differences in the mean coverages via RM-permutational analysis of variance

Fig 4. The updated method with the objective of minimizing the degree of intrusion. A: Hand drill, B: Expansion anchor bolt, C: Drilling and bolt fixing

sequence, D: Metal crosshead fixation, E: Sequential allocation of the detachable quadrat, F: Representation of a complete monitoring point.

https://doi.org/10.1371/journal.pone.0231641.g004
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(RM-PERMANOVA). Univariate analyses were performed using SPSS.13© according to the

guidelines of Pardo and Ruiz [96].

For the multivariate analyses, square root transformations were applied to the data, and the

analyses were performed using the Bray-Curtis similarity. The Bray-Curtis similarity matrix

was used to generate a non-metric multidimensional scaling (nMDS) analysis, and the Kruskal

stress coefficient was calculated to test the ordination [97].

The multivariate analyses were performed using the PRIMER6 software (complete with the

PERMANOVA+ package) [98–101].

Results

The average covers for the five most abundant species (including the two pre-selected sensitive

target species A. calycularis and P. clavata) over the period of 2005 to 2014 at the two locations

(horizontal and vertical) are presented in Figs 6 and 7.

Fig 8 illustrates the evolution of the covers of the sampled indicator species A. calycularis
and P. clavata at both locations (horizontal and vertical) together with the time series of the

Fig 5. Digital manipulation of the captured images prior to analysis.

https://doi.org/10.1371/journal.pone.0231641.g005
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background water temperatures in the sampling zones. These series reflected no anomalous

increases or decreases in temperature and only exhibited oscillations that were attributable to

seasonality. The covers of both species were clearly greater in the vertical orientation than in

the horizontal orientation. An increase and a decrease were observed in the covers of A. calycu-
laris and P. clavata, respectively, but there were no significant differences. This decrease in the

coverage of P. clavata throughout the period studied coincides with that observed in other

studies [47]. Environmental factors such as climate change may be affecting certain species

more slowly these trends may be analyzed when they have a longer period.

RM-ANOVA of the cover of each species in each of the two orientations (Table 1) indicated

significant differences (p<0.05) in the covers of Mesophyllum sp. and Salmacina incrustans in

the shady (vertical) location over the time period. Regarding the sunny (horizontal) location,

the covers of Mesophyllum sp. and Crambe sp. exhibited significant differences (p<0.05). No

significant differences (p>0.05) were detected in the covers of the remaining species.

The RM-PERMANOVA analysis indicated significant differences in the coralligenous

assemblages (p<0.05) for the orientation factor (i.e., vertical vs. horizontal) but not for the

time factor. The interaction of these two factors was also not significant (Table 2).

The nMDS analysis (Fig 9) revealed a clear differentiation of the values between the vertical

and horizontal orientations (Stress: 0.14).

Discussion

Sampling procedure and analysis of the submarine images

Previous studies have indicated that fixed monitoring stations constitute one of the most

robust methods for detecting changes in benthic communities over time [69,102–105]. An

area of at least 1 m2 is sufficient for integrating various colonies and individuals of diverse

fauna in a single sample, and such diversity is a typical characteristic of benthic rocky bottom

communities [69,106]. However, the definitive sampling grid size must be defined by the final

Fig 6. Graphic representation of the evolution of the cover of the main species observed at the monitoring stations. H: horizontal; V: vertical.

https://doi.org/10.1371/journal.pone.0231641.g006
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objective of the study [107]. In our case, the objective was not an exhaustive description of the

existing community but rather the evaluation of possible changes in the covers of sessile target

species within the community. Similarly, the number of quadrats or replicates used must be

defined by the target objectives. In other studies of rocky bottoms or surfaces, three [36,108–

109], five [110], six [111], and eight replicates [112] have been employed. In all of these studies,

the replicates had areas of significantly less than 1 m2 with the exceptions of the studies by

Fraschetti et al. [109] and Piazzi et al. [36] who also used areas of 1 m2.

Image analysis based on a monitoring system comprises a non-invasive method that does not

interfere with the natural development or evolution of the studied community [69, 92, 103, 113,

Fig 7. Photos of the same replicate taken in 2005 and 2014 for both orientations.

https://doi.org/10.1371/journal.pone.0231641.g007
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114]. This method also allows for rapid data collection and permanent data record generation.

The images were captured using videos rather than photographs mainly due to video’s greater

speed and versatility when obtaining data [115–117]. Video was thus time-saving and conse-

quently allowed for the optimisation of diving operations, which was very important given the

depth at which the study was performed and the number of replicates that were monitored.

Choices of high biodiversity habitats, target species, and other companion

organisms

In general, sublittoral marine habitats are characterised by diversity that increases with depth

[66, 118, 119]. Deep communities are dominated by animals, are better structured, and exhibit

Fig 8. Graphic representation of the evolution of the cover of the two main indicator species (A. calycularis and P. clavata), together with the bottom

water temperature time series. The bars indicate the standard deviation. H: horizontal; V: vertical.

https://doi.org/10.1371/journal.pone.0231641.g008

Table 1. Results of one-way repeated measures ANOVA on coverage of each species either in vertical and horizontal substrata.

A. calycularis P. clavata Crambe sp. Eunicella sp. Mesophyllum sp. P. fascialis S. incrustans
Source of variation df F P� F P� F P� F P� F P� F P� F P�

Vertical

Time+ 9 1.1592 0.335 1.6472 0.171 0.7932 0.557 0.6321 0.359 3.4742 0.018 2.7352 0.058 2.9312 0.021

Residuals 10

Mauchly’s test of sphericity p<0.001 p<0.001 p<0.05 p = 0.305 p<0.01 - -

Transformation None none none none none none none

Horizontal

Time+ 9 0.6711 0.277 0.5931 0.446 5.7202 0.002 1.7492 0.157 0.9101 0.006 1.0872 0.365 0.8902 0.426

Residuals 10

Mauchly’s test of sphericity p = 0.490 p = 0.052 p<0.01 p<0.001 p = 0.101 - -

Transformation None none none none none none none

� Greenhouse-Geisser correction was used when the sphericity condition was not verified.
+Time correspond with years from 2005 to 2014.
1 Pillai´s trace.
2 Greenhouse-Geisser F.

https://doi.org/10.1371/journal.pone.0231641.t001
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less abrupt dynamics and smaller temporal changes than shallow communities or those domi-

nated by algae [66]. Additionally, as pointed out by Ballesteros [120], within the scope of

marine protected areas (MPAs), the selection of a limited number of representative and/or key

species from such communities is a sound strategy for aiding their understanding and

management.

Specific fixed benthic organisms have previously been used as indicators for the monitoring

of various environmental parameters; such species have been used as indicators of global

warming and climate change [63, 121–124], sea level fluctuations [125,126], and the influence

of recreational diving on MPAs [62, 83, 127,128].

Table 2. Results of repeated measures PERMANOVA.

Source df SS MS Pseudo-F P(perm) Unique perms

Time 9 2150.5 238.95 2.4353 0.079 998

Orientation 1 30338 30338 309.2 0.001 998

Ti x Or 9 1207.9 134.21 1.3678 0.359 999

Res 60 5887.1 98.118

Total 79 39583

Transformation None

https://doi.org/10.1371/journal.pone.0231641.t002

Fig 9. Graphic representation of the non-metric MDS analysis for the whole monitoring quadrats.

https://doi.org/10.1371/journal.pone.0231641.g009
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Moreover, the use of representative taxa as proxies for entire communities has proven to be

a reliable alternative for evaluating the state of rocky bottom communities comprising algae

because the loss of information associated with the identification of only some specific taxa

does not greatly alter the results compared with results obtained with complete datasets based

on entire communities [3]. In hard bottom invertebrate communities, it has also been found

that sampling efforts can be reduced without significant losses of information via the selection

of indicator and representative species [129].

A. calycularis, P. clavata, and Eunicella sp. (which were clearly more abundant in the moni-

tored vertical enclaves) play an important structural role in coralligenous assemblages. These

species colonise both horizontal bottoms and vertical walls and offer ideal habitats for numer-

ous other organisms [43, 130, 131]. Several previous studies of coralligenous zones in different

areas of the Mediterranean, such as the coasts of Italy and France, have determined that the

facies of Paramuricea and Eunicella are distinctive [87, 132].

None of these species exhibited significant cover alterations over the entire monitoring

period. Although P. clavata and Eunicella sp. have similar biological and ecological characteris-

tics, including similar rates of growth and production [133–135], this similarity does not extend

to their turnover rates. For P. clavata, this rate oscillates between 7 and 9 years [133,135],

whereas for Eunicella sp., the rate is significantly lower with a range of 3 to 4 years [134]. For

this reason, during the long-term temporal monitoring of fixed, limited points, we would expect

Eunicella sp. to exhibit greater oscillations in cover percentages than those that we observed due

to mortality among the colonies within the monitoring quadrats. Nevertheless, this phenome-

non was not recorded in our work, possibly because the magnitude of the studied area allowed

for the replacement of the dead organisms by new recruits to buffer the potential differences.

Also, it is important to point out that the two main indicator species, A. calycularis and P.

clavata (particularly the latter), are sensitive to changes in normal temperature conditions

[122, 136–138], although they both withstand seasonal fluctuations well [120].

The differences found in the covers of certain species can also be explained by natural pro-

cesses. Mesophyllum alternans is among the organisms responsible for the greatest percentage

of cover (particularly in the horizontal orientation), but it is considered to be opportunistic

[51], which might explain any oscillations in cover in the absence of any significant alterations

to the reference species. The other two species that exhibited significant differences, i.e., Salma-
cina incrustans and Crambe sp., are organisms that account for very low percentages of the

overall cover. Variations in abundances in deep rocky bottom communities are usually much

more noticeable among minor species than among the highly abundant or characteristic spe-

cies [139]. In any case, these two species can be classified as tolerant and relatively resistant to

environmental impacts [43].

Recent studies of coralligenous areas have only used vertical enclaves [132], but, despite com-

prising the same species, the biological communities that occur at the two orientations are clearly

different due to the varying percentages of cover formed by those species. Encrusting algae domi-

nate horizontal enclaves, whereas populations of P. clavata and A. calycularis are more abundant

on vertical walls; these differences have previously been mentioned by other authors [120, 140].

Therefore, wherever possible, stations should be set up in both orientations, although vertical cor-

alligenous enclaves provide more information because they have greater biodiversity, are better

structured spatially and trophically, and have greater numbers of sensitive colonial species.

Applications of fixed quadrats for the monitoring of rocky bottom habitats

The method tested here would be particularly useful for the WFD/MSFD in relation to the

environmental control of littoral zones based on biological indicators. The WFD/MSFD has
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very few methodological tools for monitoring sessile benthic invertebrates associated with

hard substrates, although the tools that do exist are excellent [141]. The environmental infor-

mation provided by these sessile benthic species is significant because it covers a wide range of

sessile organisms that are long-lived and sensitive to changes in the environment. These spe-

cies can be used as reliable ecological sentries that keep watch over the quality of littoral envi-

ronments because they are not able to flee or be displaced (as adults) when conditions

deteriorate or significantly change.

The effectiveness of this monitoring method was demonstrated over the 10-year period

used to obtain a complete quantitative temporal series. As indicated by Gatti [87,142], such

series are very useful for evaluating both reference conditions and environmental changes in

ecosystems. Indeed, the main macrobiota species in the sublittoral community in this study

were stable and remained in excellent condition from 2005 to 2014.

The use of images is advantageous because, unlike the removal of physical samples by scrap-

ing, it is neither destructive nor aggressive to the surroundings. The scraping approach is not

effective as a monitoring method in zones in which the fauna is distributed in patches because

it entails the destruction of relatively large areas [106]. In protected locations and areas of spe-

cial interest, this scraping option is particularly undesirable.

The present image-based monitoring method is “low cost” in addition to being “low effort”

and requires minimal maintenance (repairs or replacements of the fixed quadrats were neces-

sary only twice over the 10-year monitoring period). Panayotidis [22] indicated that the use of

simple monitoring programs (i.e., those involving taxonomic efforts that are limited to repre-

sentative species and simple statistical treatments) and low budget methods is demonstrably

effective for other rocky bottom communities.

According to recent studies, the minimum replication area required for biodiversity studies

of communities dominated by Paramuricea clavata [143], as well as other hard-substrate ben-

thic invertebrates [92, 144,145], is less than the area used in the replicates in our present work.

Additionally, the captured images remain available for subsequent, more detailed descriptions

of the community. Higher quality images facilitate the visual identification of more of the

macrobenthic species that are present in the community, and the system of photo-quadrats is

more efficient than in situ visual census methods [92] while simultaneously avoiding the

destruction of the monitored areas.

As a final summary, Table 3 presents a comparison of the data from the monitoring area of

the present study with the data from several other studies of coralligenous bottoms in terms of

time and depth. Accounting for both area and time, the present study represents a long-term

monitoring of coralligenous assemblages.

Table 3. Comparison of the data of monitoring area, time and depth of several studies on coralligenous bottoms.

Study Location Area (m2) Depth (m) Time (years)

[139] Peckol P (1984) North Carolina 0.132 20 2

[51] Garrabou J (2000) Medes Islands 1.085 15–19 2

[44] Garrabou J (2002) Marseilles, France 0.4 27 21

[66] Garrabou J (2002) NW Mediterranean 0.372 17–20 2

[146] De Biasi A M (2004) Aegean Sea 33.6 10–35 1

[112] Bussotti S (2006) Southern Italy 13.25 6–8 1

[147] Parravicini V (2009) Ligurian Sea 25 4–5 1

[36] Piazzi L (2017) Ligurian Sea 180 30–40 1

[92] Sant N (2017) Cabrera Archipelago 4.96 0–50 1

Present study 8 27–30 10

https://doi.org/10.1371/journal.pone.0231641.t003
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Finally, the proposed methodology could be extended to the entire geographical area over

which the target species of this study are representative of the rocky bottom benthic communities

that occur at similar depths and share similar biotic structures. This methodology could also be

applied in other areas in which target species can be established and selected by employing the

aforementioned implementation criteria. Additionally, the SBPQ method involves minimal imple-

mentation difficulty both in terms of cost and installation. The a priori selection of the target spe-

cies simplifies the taxonomic difficulty of visual identification. Therefore, this environmental

warning and surveillance system is not only oriented toward the scientific and technical communi-

ties of the relevant coastal countries but also toward environmental volunteers associated with div-

ing centres and clubs. This methodology ultimately entails the aim of setting up geographical

networks in regions with sufficiently high levels of homogeneity (e.g., the Alboran Sea or, on a

larger scale, the western Mediterranean). Citizen science initiatives focusing on the mapping and

monitoring of coralligenous assemblages have recently been implemented [148]. In the future,

these networks could provide early warnings of changes to structured and unpolluted systems, par-

ticularly those in littoral zones close to places subjected to strong anthropogenic pressure, which

could be applied to the detection of local or general environmental alterations (i.e., climate change).

In contrast, the nature of the method, which is designed to monitor a group of taxa with respect to

the total taxa of the community, implies that it is not useful as such in the ecological study of these

habitats because the analysed information is biased. However, the generated databases (i.e., stored

photographs) will allow for the performance of in-depth studies of the dynamics of the species

within the communities over time, assuming that significant changes can be detected, and could

aid parallel projects that aim to increase our knowledge of coralligenous assemblages.

Conclusions

The study assessed the Sessile Bioindicators in Permanent Quadrats (SBPQ) underwater environ-

mental alert method in relation to the monitoring of pre-selected sensitive and sessile benthic spe-

cies (P. clavata and A. calycularis) associated with rocky coralligenous habitats (which exhibit

high stability and biodiversity) via the use of permanent quadrats fixed on rocky shores in under-

water SBPQ sentinel stations. The obtained results have allowed for assessing the part of the

method based on the initial hypothesis that, over a long temporal duration (a ten-year period in

this study) and in a highly structured and biodiverse coralligenous assemblage, the cover of sensi-

tive sessile species does not change over time if the environmental stability characterising the habi-

tat is not altered. This stability of the cover of the sensitive sessile species is a key aspect for

confirming the reliability and robustness of the SBPQ method. Given that, as in the present study,

the selected species are very sensitive to increases in temperature and deterioration of the environ-

mental quality of the water column, the SBQP method is useful as an underwater environmental

alert system because it should be solely sensitive to changes in the coverages of such species that

result from physico-chemical changes in the system. Such changes include gradual increases in

temperature due to global warming and changes due to the introduction of exotic species.

A future usefulness would be to implement the SBPQ methodology in well-conserved areas

so those areas can act as “SBPQ sentinel stations” in the event of possible disturbances. The

method has been developed as a simple management tool for use by scientists and specialised

technicians in addition to diving clubs that frequent certain areas.

Supporting information

S1 Table. Coverage of each species through the monitoring period. Time: 1 corresponding

to 2005 and 10 to 2014. Slope: H, horizontal; V, vertical.
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Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob Chang

Biol. 2009; 15: 1090–1103.

123. Bianchi CN, Azzola A, Bertolino M, Betti F, Bo M, CattaneoVietti R et al. Consequences of the marine

climate and ecosystem shift of the 1980-90s on the Ligurian Sea biodiversity (NW Mediterranean). Eur

Zool J. 2019; 86:1, 458–487. https://doi.org/10.1080/24750263.2019.1687765

124. Bianchi CN, Azzola A, Parravicini V, Peirano A, Morri C Montefalcone M. Abrupt Change in a Subtidal

Rocky Reef Community Coincided with a Rapid Acceleration of Sea Water Warming. Diversity. 2019;

11, 215. https://doi.org/10.3390/d11110215

125. Laborel J, Laborel-Deguen F. Sea-level indicators, biologic. In: Encyclopedia of Coastal Science (Ed.

Schwartz M.), Wiley, New York. 2005; 833–834.

126. Rovere A, Antonioli F, Bianchi C N. Fixed biological indicators. In: Handbook of Sea-Level Research

(Eds. Shennan I., Long A. J. and Horton B. P.). John Wiley & Sons, Ltd, Chichester, UK. 2015; 268–280.

127. Di Franco A, Milazzo M, Baiata P, Tomasello A, Chemello R. Scuba diver behaviour and its effects on

the biota of a Mediterranean marine protected area. Environ Conserv. 2009; 36: 32–40.

128. Terrón-Sigler A, León-Muez D, Peñalver-Duque P, Espinosa-Torre F. The effects of SCUBA diving on

the endemic Mediterranean coral Astroides calycularis. Ocean Coast Manag. 2016; 122: 1–8.

129. Urkiaga-Alberdi J, Pagola-Carte S, Saiz-Salinas J I. Reducing effort in the use of benthic bioindicators.

Acta Oecologica. 1999; 20: 489–497.

130. Sebens K P. Habitat structure and community dynamics in marine benthic systems. In: Bell S. S.,

McCoy E. D., Mushinsky H. R. (Eds) Habitat structure, Chapman & Hall, London. 1991; 211–234.
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