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Abstract—The rational function fitting method has been found
useful in the derivation of closed-form expressions of spatial-do-
main Green’s functions for multilayered media. However, former
implementations of the rational function fitting method lead to
Green’s functions expressions that are not accurate in the far
field when this far field is dominated by the continuous spectrum
instead of being dominated by surface waves (as it happens, for
instance, in the case of lossy multilayered media). In this paper, the
authors introduce a novel implementation of the rational function
fitting method, which leads to Green’s functions expressions that
are accurate in the far field when this is dominated either by the
continuous spectrum or by surface waves. In the new approach,
the far-field contribution of the continuous spectrum to the
Green’s functions is numerically fitted in terms of functions with
closed-form Hankel transforms, and this far-field contribution
is explicitly added to the total least squares approximations of
the Green’s functions. The numerical results obtained for the
Green’s functions with the new approach have been compared
with numerical results obtained via direct numerical integra-
tion of Sommerfeld integrals, and excellent agreement has been
found despite the contribution—continuous spectrum or surface
waves—dominating the far field.

Index Terms—Green’s functions, layered media, Sommerfeld in-
tegrals.

I. INTRODUCTION

T HE application of the method of moments to the solu-
tion of mixed potential integral equations has proven to

be an efficient numerical tool for the analysis of planar cir-
cuits and antennas [1]–[4]. In fact, several commercial software
products that are currently used in the design of planar struc-
tures (such as Ansoft Designer, Zeland IE3D, and Agilent Mo-
mentum) are based on the solution of mixed potential integral
equations by means of the method of moments. In order to solve
the mixed potential integral equations arising from the analysis
of planar structures, it is necessary to calculate the spatial-do-
main Green’s functions for the scalar and vector potentials in
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multilayered media [5], [6]. These Green’s functions can be
determined by computing infinite integrals of spectral-domain
Green’s functions that are commonly known as Sommerfeld in-
tegrals. Unfortunately, the highly oscillatory nature of the inte-
grands involved makes the brute-force numerical computation
of Sommerfeld integrals cumbersome and time consuming [5].

Among the many different techniques that have been pro-
posed for speeding up the evaluation of Sommerfeld integrals
(see the references in [7]), the most efficient ones are those that
approximate the spectral-domain Green’s functions in terms
of simple functions that lead to closed-form expressions for
the Sommerfeld integrals (and, therefore, the spatial-domain
Green’s functions). These latter techniques can be sorted in
two groups. The first group uses the so-called discrete com-
plex image method, and tries to obtain approximations of the
spatial-domain Green’s functions that primarily consist of
spherical waves, where the amplitudes of the spherical waves
are computed via Prony’s method or matrix pencil method
[8], [9]. The main problem with the discrete complex image
method is that it may lead to closed-form expressions of the
spatial-domain Green’s functions that deteriorate in the far
field in an unpredictable way [10]–[12]. This far-field problem
can be alleviated if a surface waves term is extracted from the
Green’s functions before the application of the method [13],
[14]. The second group of techniques for the derivation of
closed-form spatial Green’s functions uses the rational function
fitting method. In this method, the quasi-static part of the spec-
tral-domain Green’s functions is derived in closed form and the
dynamic part is approximated in a pole-residue form, which
yields expressions of the spatial-domain Green’s functions that
primarily consist of cylindrical waves [7], [15]. The amplitudes
and propagation constants of these cylindrical waves can be
obtained as the solutions to an eigenvalue problem [16], [17]
via an iterative vector fitting algorithm [15] or via the method
of total least squares [7]. In the first papers dealing with the ra-
tional function fitting method, it was found that the closed-form
expressions obtained for the spatial Green’s functions produced
unacceptable numerical errors in the near field [16], [15],
which were due to the nonphysical singularities provided by
the Hankel functions representing the cylindrical waves. The
authors of this paper have recently introduced a procedure that
mathematically cancels these nonphysical singularities, and
thus makes it possible to obtain closed-form Green’s functions
that are accurate in the near field [7]. An alternative solution to
the near-field problems of the rational function fitting method
has been recently addressed in [18], where the rational function
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fitting method is hybridized with the discrete complex image
method.

Both the discrete complex image method with surface waves
extraction and the rational function fitting method seem to be
suitable methods for reproducing the far-field behavior of the
spatial-domain Green’s functions of a multilayered substrate,
as demonstrated in [7], [13], and [15]. The reason for it is that
the far-field behavior is frequently dominated by cylindrical
surface waves whose amplitudes and propagation constants are
well predicted by both methods (e.g., see [7, Table I] and [15,
Table I]). However, the far-field behavior of the spatial-domain
Green’s functions is not only contributed by the surface waves,
but is also contributed by the so-called continuous spectrum
[19], [20]. The surface waves are related to poles of the spec-
tral-domain Green’s functions located on the proper Riemann
sheet, and the continuous spectrum is related to the existence
of branch point singularities in the spectral-domain Green’s
functions [19], [20]. In lossless multilayered media, the surface
waves contribution usually dominates over the continuous
spectrum contribution in the far field [20] (except for the case
of Green’s functions without TM spectral proper poles, as will
be shown in Section II), and then the methods described in [7],
[13], and [15] tend to provide accurate results in the far field.
However, in lossy multilayered media, the cylindrical surface
waves attenuate and, after a certain distance between source
and observation points, the continuous spectrum dominates the
far field [20]. As a consequence of this, in this case, both the
discrete complex image method with surface waves extraction
[13] and the rational function fitting method [7], [15] cannot
provide accurate results in the far field.

In this paper, we present an enhanced version of the rational
function fitting approach reported in [7], which provides accu-
rate Green’s functions in the far field when the far field is dom-
inated by surface waves, as well as by the continuous spectrum.
In the new approach, the far-field contribution of the continuous
spectrum to the Green’s functions is first derived in closed form.
This contribution is then numerically fitted in terms of func-
tions that provide closed-form expressions for the continuous
spectrum both in the spatial and spectral domains. Once this
far-field contribution is available, its spectral version is explic-
itly extracted from the spectral-domain Green’s functions and
the method of total least squares is subsequently applied to the
resulting expressions [7]. This procedure leads to closed-form
expressions of the spatial-domain Green’s functions that ex-
plicitly contain information about the far-field contributions of
both the surface waves and the continuous spectrum. Thus, these
closed-form expressions accurately reproduce the far-field be-
havior of the spatial-domain Green’s functions in all scenarios.
It should be pointed out that the expressions derived in this
paper for the far-field contribution of the continuous spectrum
could also be explicitly incorporated in the discrete complex
image method so that this method could accurately reproduce
the far field of multilayered Green’s functions in those circum-
stances where the far-field contribution of the continuous spec-
trum dominates over the far-field contribution of the surface
waves.

This paper is organized as follows. Section II provides all
the mathematical derivations that lead to the expressions of the

far-field contributions of the continuous spectrum both in the
spatial and spectral domains. These mathematical derivations
are presented for Sommerfeld integrals involving Hankel trans-
forms of order 0 and order 1. In Section III, the numerical re-
sults obtained for the spatial-domain Green’s functions with the
approach of this paper are compared with numerical results ob-
tained via the approach of [7] and with numerical results ob-
tained through direct numerical integration of Sommerfeld in-
tegrals. This comparison shows that whereas the approach of [7]
fails to provide accurate far-field results in the cases where the
far field is dominated by the continuous spectrum, the approach
of this paper provides accurate far-field results both when the
far field is dominated by surface waves and when the far field is
dominated by the continuous spectrum. Conclusions are sum-
marized in Section IV.

II. ANALYSIS

The method developed by the authors in [7] clearly shows its
efficiency in a great variety of situations. One of the key points
of our proposal was the ability to derive, in a systematic way,
quasi-analytic expressions for the spatial-domain multilayered
Green’s functions thatarevalid inawiderangeofdistances.Thus,
the singular, near-field, and far-field behaviors of the different
Green’s functions used in the mixed-potential integral-equation
were altogether well accounted for by our method. Specifically,
our procedure in [7] assumed that the corresponding spectral-do-
main Green’s functions can be approx-
imated by means of a rational fitting procedure, or equivalently
by means of the following pole-residue ( ) representation:

(1)

plus an asymptotic term to build

(2)

where the index stands for a different type of
mixed-potential Green’s functions, as explained in [6] and [7],

represents the behavior of for large
values of (thus determining the behavior of
in the vicinity of ), and

is numerically obtained via the method of
total least squares [7], [21], [22]. Concerning the quasi-static part
of the spectrum (namely, ), the results presented
in [7] and [15] seem to indicate that is correctly
approximated by a singular term (corresponding to the source
in a homogeneous medium) plus one or two static images. Our
numerical simulations have shown that when the thickness of
the layers surrounding the source and field points is electrically
small (i.e., roughly smaller than , with being the
free-space wavelength), additional static images should be in-
cluded in for a correct performance of (1) and (2).
These static images can be either exactly obtained by using the
algorithm presented in [23] or approximately obtained with very
little computational burden by means of Prony’s method [24],
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Fig. 1. Multilayered lossy medium terminated by a PEC at the bottom. The
source and field points of the Green’s functions can be arbitrarily placed inside
the multilayered medium.

as explained in [25]. This issue was not commented upon in [7]
since all the results presented in that paper were for multilayered
substrates containing electrically thick layers (i.e., the thickness
of the layers always happened to be larger than for all the
structures analyzed in that paper).

The work presented in [7] was basically aimed at developing a
new procedure rather than exploiting all its capabilities in order to
cover thewiderangeofpossiblephysical situations thatcanbeen-
countered inpractice.Thus, [7] focusedon theanalysisof lossless
structureswithoutconsideringsome“complex”situationsthat in-
volve “anomalous” far-field behaviors [20], [26]. In this way, all
the Green’s functions with far-field behaviors of the type
were well accounted for by the convenient expansion of surface
waves proposed in [7] (i.e. by a short series of Hankel functions
whose complex amplitudes and wavenumbers can be computed
by means of a total least squares approach). Next, our attention
will especially focus on those situations not covered in [7] with
the purpose of making our approach as general as possible.

A. Decomposition of the Green’s Function

Fig. 1 shows a multilayered medium consisting of lossy layers
of complex permittivity ( will be
assumed to be given by for layers characterized by
a conductivity ) and thickness . The mul-
tilayered medium is assumed to be limited by free space at the
upper end, and by a perfect electric conductor (PEC) at the lower
end. In order to understand the appearance of far-field behaviors
different from in the Green’s functions of the structure of
Fig. 1, a convenient decomposition will be carried out in the
Sommerfeld integrals that appear in the computation of those
Green’s functions in the spatial domain. The Sommerfeld inte-
grals appear when performing an inverse Hankel transform to
compute the spatial counterpart of the spectral-domain Green’s
functions [20]

(3)

(4)

Fig. 2. Original SIP to carry out the inverse Hankel transform. The SIP is de-
formed to the paths C and C . Only one surface wave pole (k ) is assumed
to be located on the proper Riemann sheet.

where is the Bessel function of order is the
Hankel function of order and second type, is the horizontal
distance between source and field points (see Fig. 1), and the
Sommerfeld integration path (SIP) in (4) is shown in Fig. 2.
After deforming the original SIP to the paths shown in Fig. 2,
the integral in (4) can be split into two contributions that account
for the discrete and continuous spectra [19], [20], [27]–[30]

(5)

The discrete-spectrum contribution

(6)

comprises a series of above-cutoff surface wave modes whose
wavenumbers are given by the poles of
the spectral-domain Green’s function located on the proper Rie-
mann sheet ( are the residues of at these
poles), and the continuous spectrum part

(7)

corresponds to the integral along the Sommerfeld branch cut.
From a physical point of view, the above treatment can be

viewed as a decomposition of the Green’s function into a series
of surface waveguide modes plus an additional term (here called
the spatial wave) accounting for the reactive and/or radiating
fields. The surface wave contribution gives rise to an asymptotic
behavior for large of the type

(8)

The spatial wave has been associated with the branch cuts
of the spectral-domain Green’s function. For the case of the
grounded layered medium considered in Fig. 1 (whose upper
boundary is free space), the branch points are located at (the
free-space wavenumber) and, therefore, the spatial wave would
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radiate into free space. Its associated asymptotic behavior for
large is given by [19], [26], [30], [31]

(9)

If the layered medium of Fig. 1 is lossless, both asymptotic
behaviors usually appear simultaneously and the dominant
far-field behavior of the Green’s functions is given by (8)
(namely, by the set of surface waveguide modes above cutoff),
thus masking the far-field behavior of the spatial wave. It is in
these common situations where the procedure reported in [7]
works properly. However, there are at least three situations as
follows in which the surface wave terms of (8) do not determine
the far-field behavior.
Case 1) Lossless materials when the spectral-domain

Green’s function does not have proper poles.
As pointed out in [5, Sec. 7.2.2], this case occurs to
the function of the layered medium
of Fig. 1 at low frequencies. This component of
the vector-potential spectral Green’s dyad only
has poles associated with TE surface waves [1],
and since all these surface waves have nonzero
cutoff frequency, below the cutoff frequency of the
dominant TE surface wave, does
not have proper poles. Thus, the only singularities
of this Green’s function are the branch points at

, which causes that its corresponding far-field
behavior is determined by the spatial wave given
in (9).

Case 2) Lossy materials [20].
In this case, the far-field behavior of the surface
waves fades out because of the exponential atten-
uation factor that appears in the numerator of (8)
(due to losses, now ). As a conse-
quence, the dominant far-field behavior is again de-
termined by the spatial wave in (9), whose exponen-
tial term does not show attenuation (assuming the
upper half-space is lossless).

Case 3) When a pole is very close to the branch point.
This situation occurs at those frequency ranges
around the cutoff frequencies of the surface wave
modes (and, in particular, around the cutoff fre-
quency of the first TE mode in case 1). It should
be reminded that the pole associated with a sur-
face waveguide mode below cutoff is located in the
improper Riemann sheet, and this pole makes an ex-
cursion on this sheet as frequency increases running
to the branch point, through which it moves to the
proper sheet [19], [32]–[35]. The presence of this
pole in the neighborhood of the branch point gives
rise to a sort of mixed far-field behavior, which is a
combination of those in (8) and (9) [20].

The above three cases can more easily be grouped into
two different cases, i.e.: i) the far-field behavior is dominated
by the spatial wave [which includes previous Cases 1) and
2)] and ii) the far-field behavior is determined by the mixed
contribution of surface waves and spatial wave mentioned in
the previous Case 3). Although the above two cases are clearly

Fig. 3. Deformation of the integration path C . The improper pole k is cap-
tured in the deformation. The shadowed region is located on the improper sheet.

different, the former is a particular case of the latter since the
spatial-wave far-field behavior can be viewed as a simplifica-
tion of the mixed surface wave/spatial-wave far-field behavior.
For this reason, in the following, only this latter situation will
be considered in detail.

B. Far-Field Behavior of the Residual Wave for Zeroth-Order
Hankel Transforms

As mentioned above, some of the possible problems to be
found in the implementation of the rational function fitting pro-
cedure reported in [7] when dealing with “anomalous” cases are
related to the approximation of the far-field behavior of the con-
tinuous-spectrum contribution of the Green’s function. Thus,
the following sections will present a detailed analysis of this
subject, and how this problem can be handled to be incorpo-
rated in the rational function fitting procedure of [7]. For sim-
plicity, this section will only consider the zeroth-order Hankel
transform , i.e.,

(10)

where function stands for any of the spectral-domain
Green’s functions , and mentioned in [36,
Form. C].

In order to simplify the problem, a further decomposition of
the continuous-spectrum part of the Green’s functions is sug-
gested. This decomposition is based on a deformation of the in-
tegration path in (7) to the paths shown in Fig. 3 [35], [37]
(the new path can be recognized as the steepest descent path
when [33]), which allows us to write

(11)

where

(12)

will be denoted as the “residual wave” following the notation
used in [37] (residual in the sense that it is the part of the Green’s
functions that is not accounted for by proper and improper
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modes), and

(13)

with being the residue of at the th
improper pole, , located in the shadowed
region of Fig. 2 (these improper poles are the only associated
with physically meaningful leaky modes when [19],
[37]).

For large values of , the asymptotic residual-wave contribu-
tion can be evaluated as

(14)

where has been substituted by its asymptotic behavior
[38]. Now following the procedure described in [37] and [39],
after applying the change of variable to (14), the
following expression is obtained:

(15)

where represents the function
in the proper (improper) Riemann

sheet. In order to obtain an asymptotic approximation of the
integral of (15), the term multiplying in the integrand is
substituted by its limit as [37], [39], i.e.,

(16)

where

(17)

is now approximated in the neighborhood of
by the following convenient quotient of first-order

polynomials in :

(18)

which makes

(19)

where and . In the fol-
lowing, an implicit dependence on and will be always as-
sumed in and (and then it will not be explicitly written).
It should be noted that the denominator of (19) can properly
account for the presence of a pole close to the branch point sin-
gularity (located at ). If there is not such a pole close to

, the behavior of for small values of will be
of the type [where since will be negli-
gible when compared with in the denominator of (19)].

From a numerical point of view, the coefficients and
can be obtained through the following overdetermined system
of linear equations:

(20)

where the values of can be taken in logarithmic scale ranging,
for example, from to . The overde-
termined system can be solved, for instance, by means of a total
least squares approach (in our experience, provided
sufficient accuracy) [22]. For the particular case of a grounded
dielectric slab when the field and point sources are located at
the air–dielectric interface (namely, in Fig. 1),
Appendix I provides closed-form expressions for and for
the different relevant Green’s functions.

When (16) and (19) are introduced in (15), and is not in
the fourth quadrant of the complex plane (as should be found
for any physical situation), it is found that (see [39, App.])

(21)

where is the complementary error function. In order to
account for the effect of the residual wave in the spectral Green’s
functions expansions of (1) and (2), it would be very convenient
to incorporate the spectral-domain version of
in these equations in an explicit way before applying the method
of total least squares. However, to the best of our knowledge,
the Hankel transform of the function , shown in
(21), cannot be obtained in closed form. Using the asymptotic
expansion of the complementary error function of complex ar-
gument for [38, eq. (7.123)], it is possible to
show that the function of (21) can be written
for large in two different ways depending on the value of
(see the comments following [31, eq. (21)]), namely,

(22)

The upper term of (22) matches the asymptotic behavior of
in a wide range of values of when the pole

of is very close to the branch point
at (i.e., when ), and the lower term of (22)
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dominates the asymptotic behavior when the pole is far from
the branch point ( ). In order to combine the two
asymptotic behaviors of (22) in a single expression, we pro-
pose the use of the following far-field ( ) asymptotic behavior
of :

(23)

which fulfills the conditions of (22) for and
(assuming ) provided and

. The unknown coefficients
and have to be chosen in such a way that is
a good fitting of for large . According to (21)
and (23), this can be accomplished when the following condition
is satisfied:

(24)

In this paper, we have obtained and
by enforcing that (24) is exactly satisfied at the samples

, and by
applying Prony’s method [24]. Numerical simulations have
shown that when we choose and ,
the values obtained for and ensure
that is a good fitting of in the
far field.

The term has been introduced in (23) to avoid
that contributes the near field of
(in fact, whereas as when ,
and as when [7], it turns out
that as ). It should be noted that
the key advantage of (23) over (21) is that the spectral-domain
counterpart of (23) can be obtained in closed form, and is given
by

(25)

with

(26)

(27)

In case the pole of (19) gives place to a pole in the plane,
, that explicitly contributes to the final expression

of (either because it is a proper pole contained in
the discrete spectrum of (6) or because it is an improper pole
located in the shadowed region of Fig. 3), numerical simulations
have shown that this pole should be explicitly incorporated in
the Green’s functions expansions of (1) and (2) before applying
the method of total least squares. This can easily be done by
adding the following contribution in the spatial domain:

(28)

while its spectral-domain counterpart is given by

(29)

where

(30)

In (30), the minus sign must be chosen when is proper and the
plus sign must be chosen when is improper. The proper/im-
proper nature of can readily be deduced from the numerical
analysis of the sign of

with . In fact, turns out to be proper if and
improper if .

As commented in [7], the Hankel function of (28)
presents a logarithmic singularity when that may deteri-
orate the near-field approximation of , especially
when (see [7, Fig. 8]). In order to eliminate this near-field
problem, we have followed the approach of [31, eq. (8)] and sub-
stituted the pole contributions of (28) and (29) by the following
corrected pole ( ) contributions:

(31)

(32)

where must be a large positive real number. In particular, we
have chosen .
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The Hankel function introduced in (31) is an an-
nihilating function that both prevents from being
singular as and makes it possible that

when [31]. Note that de-
cays like for large , which is to be expected for the ze-
roth-order Hankel transform of a surface wave term, which does
not lead to nonphysical near-field singularities in the spatial do-
main [7].

C. Far-Field Behavior of the Residual Wave for First-Order
Hankel Transforms

For the spectral Green’s function (here, stands for
the functions and in
[36, Form. C]), the inverse Hankel transform to be evaluated is
given by

(33)

where the integration path is the same as that used in (10).
Following the same rationale as in Section II-B, it is pos-

sible to show that the asymptotic behavior of the corresponding
residual wave is given by

(34)

where and are computed by means of (20), but in this
case, has to be substituted by .

Since the Hankel transform of cannot be
obtained in closed form, the following alternative far-field be-
havior with closed-form Hankel transform is proposed for the
residual wave [see (23)]

(35)

As happens in (23), the term has been introduced
in (35) to avoid that masks the near-field
behavior of (in fact, whereas for most values
of and as , it turns out that

as ). The spectral-domain counter-
part of (35) is given in Appendix II.

If the pole explicitly contributes to , then
it should be incorporated in (1) and (2) as discussed in
Section II-B. In the present case, the corresponding corrected

pole contribution to be added in the spatial domain is

(36)

where is the residue of at , and and
must be two different large positive real numbers, which have

been chosen as and . Owing to the two anni-
hilating Hankel functions and , it turns
out that as , and this avoids that the
singularity of introduces a nonphysical behavior in
the approximation of (see [7, Fig. 10]). The spec-
tral-domain counterpart of (36) is given by

(37)

Note that decays like for large ,
which is the behavior expected for the first-order Hankel
transform of a surface wave term, which does not lead to a
nonphysical near-field behavior in the spatial domain [7].

D. Application of the Total Least Square Procedure

Once the far-field behavior of both the residual wave and the
contribution of the pole have been estimated in closed form,
both in the spatial and spectral domains, their spectral-domain
versions can be added to the approximations of (2) in the fol-
lowing way:

(38)

This means that the total least squares procedure reported in [7]
can now properly deal with “anomalous” cases, thus making it
possible to cover most of the physical situations encountered in
practice. The corresponding spatial-domain counterpart of (38)
can be given in the following quasi-analytical way:

(39)

where it has been possible to express in closed
form in terms of known functions. These functions depend on
a number of coefficients that can easily be determined via the
methods of Prony and total least squares with very low compu-
tational effort. It should be pointed out that, apart from the term

of (38) related to the pole , the sur-
face wave modes associated with the proper poles that appear in
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the discrete spectrum of the Green’s functions [see (6)], as well
as the leaky wave modes related to improper poles that appear
in the continuous spectrum of the Green’s functions [see (13)]
would be well accounted for by the pole-residue expansion of
(38) via the method of total least squares [7], and no extra ef-
fort should be carried out to incorporate these terms explicitly
in (38).

From a computational point of view, the inclusion of the con-
tinuous spectrum only represents a computational overload of
20% at most when compared with the “simplified” total least
squares approach reported in [7].

III. NUMERICAL RESULTS

In this section, the theory presented above will be validated
in situations where the far field of the Green’s functions is dom-
inated by surface waves (the far field is given by (8)) and in
“anomalous” situations where the far field is dominated by the
continuous spectrum [the far field is given by (9)]. For this pur-
pose, on the one hand, the exact ( ) values of the spectral-do-
main function

(40)

will be compared with the values of the fitting spectral-domain
function of (1) obtained via the method of
total least squares. On the other hand, the approximate values of
the spatial-domain Green’s functions provided by (39) will be
compared with numerical data obtained by a direct numerical
integration of Sommerfeld integrals.

As a first example, Fig. 4 shows results for the scalar poten-
tial Green’s function of a grounded dielectric slab in the par-
ticular case reported in ([7, Figs. 3 and 4]). This figure shows
that the new approach described in Section II works as effi-
ciently as that presented by the authors in [7] both in the spec-
tral and spatial domains. The case studied in Fig. 4 was also
treated in [20, Fig. 6(a)], where it was pointed out that the pres-
ence of a proper pole very close to the branch point (this
pole, , is associated with the first TE mode
of the grounded dielectric slab) influences the far field of the
continuous spectrum. However, this case was successfully dealt
with by the theory presented in [7] because the scalar potential
Green’s function presents another proper pole that is not close to
the branch point (this pole, , is associated
with the dominant TM mode of the grounded dielectric slab).
Since the surface wave associated to this latter pole dominates
the far field of , which is of the type , the contribu-
tion of the continuous spectrum to the far field of is masked
in this case and the approach of [7] works without a problem.
Owing to the fact that the far field of is dominated by a sur-
face wave, one expects that the contribution of the continuous
spectrum does not have to be explicitly incorporated when ap-
proximating via the method of total least squares. Anyway,
the results of Fig. 4(b) make apparent that the inclusion of the
continuous spectrum, as in (39), does not affect the good perfor-
mance of the method of total least squares (in fact, the relative

Fig. 4. (a) Real and imaginary parts of the spectral-domain functions ~K

(solid and dashed lines) and ~K (�; �) along path C of [7, Fig. 1]. Max-
imum relative error: � 0:005. (b) Magnitude of the spatial-domain Green’s
function K . Numerical integration results (+) are compared with those ob-
tained via (39) (�). The relative error (�) between these two sets of results
is also shown. Parameters of the total least squares (TLS): A = 0:1; T =
2:2;M = 12;N = 27 [7]. Parameters of the structure: f = 4:075 GHz,
z = z = 0;N = 1" = 4:4; tan � = 0; h = 10 mm.

error in the spatial domain is below 0.4% along all the seven
decades shown).

In Fig. 5, we plot the Green’s function of the grounded
dielectric slab of Fig. 4 at a lower frequency ( GHz) where
no TE modes are above cutoff. The situation studied in Fig. 5 is
very different from that studied in Fig. 4. Since only has
poles associated with TE modes, at 3 GHz the only singularities
of this spectral Green’s function in the proper Riemann sheet
are the pair of branch points at . Specifically in Fig. 5(a),
the fitted values provided by the method of total least squares
are compared with the exact values when both the approach of
this paper and the approach of [7] are followed. Both fittings via
the method of total least squares have given excellent results (the
maximum relative error for both curves is less than 0.5%). How-
ever, Fig. 5(b) shows that whereas the results obtained for
via the present approach (circles) match well with the results
obtained by direct numerical integration within the considered
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Fig. 5. (a) Magnitude of the spectral-domain functions ~K and
~K along path C of [7, Fig. 1]. The solid line and (�) represent

the total least squares fitting followed in [7, eq. (6)]. The dashed line and
(�) represent the approach followed in this paper [see (1) and (40)]. Max-
imum relative error: � 0:003. (b) Magnitude of the spatial-domain Green’s
function K . Numerical integration results (�) are compared with those
obtained via [7, eq. (13)] (�) and with those obtained via (39) (�). Maximum
relative error between � and � is smaller than 0.005. Parameters of the
total least squares (TLS): A = 0:1; T = 2:4;M = 12; and N = 27.
Parameters of the structure: f = 3 GHz, z = 0:5 mm, z = �0:5 mm,
N = 1; " = 4:4; tan � = 0; h = 10 mm.

range of values of (the maximum relative error between these
two set of results is less than 0.5%), the results provided by the
procedure of [7] (diamonds) are only valid for the near and in-
termediate field zones despite the good fitting provided by the
method of total least squares in the spectral domain. Certainly, in
this case, the method of [7] cannot give reasonable results in the
far field since the contribution of the continuous spectrum dom-
inates the far field, and this contribution is not considered in the
approach of [7]. It is interesting to note that whereas the results
of Fig. 5(b) obtained with the current approach predict a correct
far-field behavior of the type for [see (9)] thanks to the
contribution of , the approach of [7] predicts
a far-field behavior of the type for , which is supplied
by the quasi-static term (see [7, eq. (45)]) and is
clearly wrong.

Fig. 6. Magnitude of the spectral-domain function ~K defined in (17) as
a function of the normalized real variable s=k . The exact values of ~K
(solid line) are compared with the values obtained via the approximation of (19)
(�), which is valid as s ! 0. Parameters as in Fig. 5.

In Fig. 6, the spectral-domain function de-
fined in (17) is plotted at three different frequencies for the struc-
ture analyzed in Fig. 5. It should be noted that
is well fitted by the single pole approximation given in (19) pro-
vided that . The structure of Fig. 5 is again ana-
lyzed in Fig. 7, where the values of are plotted in a wide
range of distances at the three frequencies analyzed in Fig. 6.
A very good agreement is found in Fig. 7 between the results
obtained through the approach of Section II and the results ob-
tained by numerical integration for the three frequencies con-
sidered. The strong correlation that exists between the results of
Fig. 6 and the results of Fig. 7 will be discussed in detail below.
A similar discussion was reported in [40, Fig. 15] in connec-
tion with the excitation of the continuous spectrum in microstrip
lines.

For the structure studied in Fig. 5, at GHz, the value
obtained for after solving (20) is far from zero, and the
pole is also far from the branch point . It causes
that the behavior of observed in Fig. 6 for small

is of the type [ will be negligible when compared with
in the denominator of the approximation in (19)]. Since the

magnitude of at 3 GHz is large, the far field of the residual
wave of will be dominated by the lower term of (22) for all
values of , and bearing in mind that the continuous spectrum
dominates the far field of at 3 GHz (see the comments of
Fig. 5), the behavior of this far field must be of the type .
In fact, Fig. 7 clearly shows that this behavior is reached for

at 3 GHz.
At GHz, is found to be very close to zero

and is associated with a improper real pole that is located
very close to the branch point . This
situation is always encountered when the frequency is below
and close to the cutoff frequency of a surface wave mode of
the structure (and now the frequency is below and close to the
cutoff frequency of the first TE mode of the grounded dielec-
tric slab). Since is very small in this case, can no longer
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Fig. 7. Magnitude of the spatial-domain Green’s function K at three dif-
ferent frequencies. Numerical integration results (�) are compared with those
obtained via (39) (�). Parameters as in Fig. 5.

be neglected in the denominator of the approximation in (19)
for small . As a consequence, the behavior of
at 3.95 GHz in Fig. 6 is of the type for (as
it happens at 3 GHz), but it suddenly transitions to a be-
havior for (which is not present at 3 GHz). This
dual behavior of for small will always be
present at those frequencies for which is close to zero (and,
hence, is close to ). Since the improper pole obtained
at 3.95 GHz is not located in the shadowed region of Fig. 3,
it does not contribute to the continuous spectrum of and,
therefore, it does not have to be explicitly incorporated in the ap-
proximation of (39) (in other words, in this case, ).
This means that the residual wave dominates the far field of the
continuous spectrum, and given that 3.95 GHz is still below the
cutoff frequency of the first TE mode, the residual wave will
also dominate the far-field behavior of . Since is small
at 3.95 GHz, the far-field behavior of both the residual wave
and will be a combination of the two behaviors shown in
(22). This is clearly shown in Fig. 7 where the plot of for
3.95 GHz shows an intermediate zone (for )
with a behavior of the type that transitions to a behavior of
the type for [in agreement with the overall be-
havior predicted by (22)]. When Watson’s lemma is applied to
the asymptotic evaluation of the integral in (16) [41], it is easy to
show that the far-field behavior of the type of is related
to the behavior of the type of as , and
the far-field behavior of the type of is related to the be-
havior of the type of as . Thus, the
dual far-field behavior of in Fig. 7 at 3.95 GHz is a direct
consequence of the dual behavior of for small

in Fig. 6 at this frequency.
At a slightly higher frequency, GHz, the TE

mode is just above cutoff, and the pole is now a proper
real pole that is located very close to the branch point

. Due to it, is also
very close to zero and, as it happens at 3.95 GHz, the function

of Fig. 6 experiences at 4.075 GHz a transition

from a behavior of the type to a behavior of the type
when . Since the pole is now located in the
upper Riemann sheet, it belongs to the discrete spectrum of

and, therefore, it has to be explicitly incorporated in the
approximation of (39) (i.e., at 4.075 GHz). In
principle, the far-field behavior of at 4.075 GHz should
be dominated by the TE surface wave mode above cutoff.
However, the effect of the continuous spectrum on the far field
of is strong, mostly because of the term contributed
by the residual wave to the far field of as a consequence
of the small value of (and ultimately, as a consequence of
the behavior of the type shown by in
Fig. 6 for small ). This is shown in Fig. 7 where the values of

for 4.075 GHz show a behavior of the type for a wide
range of distances , and then transition
to a far-field behavior of the type , which is typical of
surface waves.

Next, the lossy structure previously analyzed in [20, Fig. 4(b)]
is reexamined in Fig. 8. Fig. 8(a) shows that the implementation
of the method of total least squares via (38) makes it possible to
obtain a good approximation of the spectral-domain scalar po-
tential Green’s function when losses are present. The spatial-do-
main behavior of is depicted in Fig. 8(b). As it happens
with Fig. 5(b), the results obtained for with the approach
of Section II agree very well with those obtained via numerical
integration both in the near and far fields (the maximum relative
error between these two set of results is below 1% along all the
six decades considered). However, the results obtained with the
approach of [7] slightly deviate from the numerical integration
results in the interval , and strongly differ
from the numerical integration results when . In
Fig. 8(b), the far field of is dominated by the continuous
spectrum since the presence of losses causes the exponential
decay of the surface waves that compose the discrete spectrum
of . This last exponential decay can be observed in the in-
terval , and it changes to a behavior of the type

after a small transition region [this behavior of the type
is the contribution of the continuous spectrum as predicted by
(22)]. The results of Fig. 8(b) obtained via (39) (circles) have
also been compared with the results reported in [20, Fig. 4(b)],
and good agreement has been found.

Finally, results for a four-layer microstrip structure con-
taining a lossy silicon layer ( S/m) are plotted in
Fig. 9(a) and (b) in order to show the capabilities of the present
method when dealing with lossy multilayered media both at
low and high frequencies. A similar structure has previously
been analyzed in the case where all the layers are lossless [7],
[42]. The element of the vector potential Green’s dyad that is
studied in Fig. 9 is , which makes it possible to validate
our approach when Hankel transforms of order 1 are involved.
The low-frequency case is first analyzed in Fig. 9(a). In this
situation, two different problems have to be faced, which are:
1) the low-frequency breakdown of any general full-wave
electromagnetic approximation caused by the strong relevance
of the quasi-static contribution in the near field [23] and 2) the
presence of a very lossy substrate (at this low frequency, the
silicon layer presents a very high value of the imaginary part
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Fig. 8. (a) Real and imaginary parts of the spectral-domain functions ~K

(solid and dashed lines) and ~K (�; �) along pathC of [7, Fig. 1]. Max-
imum relative error: � 0:015. (b) Magnitude of the spatial-domain Green’s
function K . Numerical integration results (�) are compared with those ob-
tained via [7, eq. (13)] (�) and with those obtained via (39) (�). Maximum
relative error between � and � is smaller than 0.01. Parameters of the total
least squares (TLS): A = 0:1; T = 2:2;M = 12; and N = 27. Parameters
of the structure: f = 10 GHz, z = z = 0;N = 1; " = 4:4; tan � =
0:02; h = 10 mm.

of the permittivity). After extracting out five static images via
Prony’s method, both problems are appropriately coped with
by the present approach, and this is clearly shown in Fig. 9(a)
where the relative error between our approach and numerical
integration is always below 1%. An additional complication
that appears at this low-frequency concerns the presence of a
proper pole very close to the branch point.
This situation has been well accounted for by the strategy
followed in (36) and (37). The high-frequency case shown in
Fig. 9(b) presents a completely different scenario. In this situa-
tion, the quasi-static fields are hardly relevant, and the far-field
contribution is now the most significant part. Fortunately the
method of Section II can handle this situation satisfactorily as it
is demonstrated by the low values of the relative errors along all
the range of shown in Fig. 9(b). It should also be noted that
the results obtained following [7, eq. (14)] would not provide

Fig. 9. Magnitude of the spatial-domain Green’s function K . (a) Freq =
1 GHz. (b) Freq = 60 GHz. Numerical integration results (+) are compared
with those obtained via (39) (�). The relative error (�) between these two
sets of values is also shown. Parameters of the total least squares (TLS): A =
0:1; T = 3:7;M = 13; and N = 29. Parameters of the structure: z = �1:4
mm, z = �0:4 mm, N = 4; " = 2:1; tan � = 0; h = 0:7 mm;
" = 11:9; tan � = �=(!" " ); � = 10 S/m, h = 0:3 mm; " =
9:8; tan � = 0; h = 0:5 mm; " = 8:6; tan � = 0; h = 0:3 mm.

accurate results in the far-field region because of its inability
to account for far-field behaviors of the type , which are
typical of lossy structures [20].

IV. CONCLUSION

The authors have presented a novel implementation of the ra-
tional function fitting method, which uses the method of total
least squares previously reported in [7] for obtaining closed-
form expressions of the multilayered media Green’s functions
introduced in [36, Form. C] for mixed potential integral equa-
tions. In this novel implementation, special attention has been
paid to obtaining representations of the Green’s functions that
are accurate in the far field when this far field is not only dom-
inated by surface waves, but also when it is dominated by the
continuous spectrum. Thus, the new approach leads to closed-
form Green’s functions that are accurate in the far field in the
cases where lossy materials are involved, in the cases where the
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spectral-domain Green’s functions have no proper poles, and in
the two former cases when the spectral-domain Green’s func-
tions have one proper or improper pole that is very close to the
branch point. The numerical results obtained with the new ap-
proach have proven to be accurate both in the near and far fields
in situations when the far field is dominated either by the con-
tinuous spectrum or by surface waves. This sets our approach
at the same level of generality as, for instance, that reported in
[20]. However, it should be noticed that our method does not
involve any numerical integration and that the highest dimen-
sion of the matrices involved in the numerical computation of
the total least squares method has never gone beyond 30 (that of
the matrices involved in Prony’s method has never gone beyond
5). Thus, despite the generality and robustness of the method
presented for the determination of spatial-domain Green’s func-
tions, the overall computation effort of the method is very com-
petitive when compared with other methods.

APPENDIX I

In the specific case of a grounded dielectric slab of height
and permittivity (i.e., the layered medium
of Fig. 1 with and ), when the field and
source points are located on the air–dielectric interface (

in Fig. 1), the coefficients and of (19) can be
easily obtained in closed form for the different spectral-domain
Green’s functions involved in [36, Form. C]. The expressions of
these coefficients are given by the following.

•

(41)

(42)

where

(43)

•

(44)

(45)

where

(46)

•

(47)

(48)

•

(49)

(50)

APPENDIX II

(51)

with

(52)

(53)
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