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We study the dynamics of a granular gas heated by a stochastic thermostat. From a Boltzmann description,
we derive the hydrodynamic equations for small perturbations around the stationary state that is reached in the
long time limit. Transport coefficients are identified as Green-Kubo formulas obtaining explicit expressions as a
function of the inelasticity and the spatial dimension.
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I. INTRODUCTION

Granular assemblies—composed of macroscopic solid
bodies undergoing dissipative interactions—have been shown
[1,2] to frequently exhibit flows similar to those of normal
fluids, and, for practical purposes, are often described by
phenomenological hydrodynamic equations, i.e., equations
for the density, flow velocity, and energy density. This is so
even if energy is not a conserved variable (the condition is
that the energy mode be a slow variable compared to the
rest of excitations). When the dynamics of the grains can
be partitioned into sequences of two-body collisions, there
is support both from experiments and computer simulations
for the usefulness of a kinetic theory description. This occurs,
schematically, when there are no clusters nor jamming and
the system remains fluidized [3]. In the low-density limit, the
relevant dynamics is encoded in the one-particle distribution
function, which obeys the inelastic Boltzmann equation [4,5].
This is the starting point for many of the formal derivations of
hydrodynamic equations by applying similar tools and ideas
as those used in the context of ordinary fluids [6]. In the
free-cooling case the study of the existence and applicability
of a hydrodynamic regime is rather complete for the inelastic
hard sphere (IHS) model. The Navier-Stokes equations have
been derived by the Chapman-Enskog expansion [7] and
also via the linearized Boltzmann equation [8–10], yielding
equivalent Green-Kubo formulas for the transport coefficients
[11]. The problem for arbitrary densities has also been tackled
in Refs. [12–14] applying linear response methods. Although
the successful of the Navier-Stokes equations is remarkable,
granular systems often require to go beyond this level of
description. For these cases and close to a stationary state,
a modification of the Chapman-Enskog expansion has been
carried out, taking into account rheological effects [15,16].

The IHS model is also useful to rationalize driven situations,
beyond the free-cooling case, where a stationary state is
reached, see e.g., Refs. [17,18]. When in a vibrated system
the stationary state is quasihomogeneous, or when the grains
are immersed in an interstitial medium that acts as a thermostat
[19–22], the setup can be effectively modelled as an IHS
system driven by some random energy source. The energy
injection can be performed by applying a random force to
each particle. Depending on the stochastic properties of this
force, different kinds of thermostats are obtained [23], one of

the most used being the so-called stochastic thermostat, which
consists of a white noise force acting on each grain [24–37].
This model has been less studied that its unforced version (free-
cooling case). To our knowledge, the only derivations of the
hydrodynamic equations are the one made in Ref. [29] which
consider some variants of the present stochastic thermostat
in which the heating may depend on the local temperature.
The objective of this work is to go further in this direction
and to derive the hydrodynamic equations for the actual
homogeneous stochastic thermostat model in the low-density
limit. It is arguably the most commonly employed model in
the simulations. At the Boltzmann equation level, we will
consider states that are close to the homogeneous stationary
regime, thereby obtaining linear equations for the deviations
of the hydrodynamic fields around their homogeneous coun-
terparts, with explicit Green-Kubo formulas for the transport
coefficients. Let us note that, very recently, a study along
the same lines has been performed in Ref. [37] by use of a
different method, applying the Chapman-Enskog expansion to
the Enskog equation.

The plan of the paper is as follows. The model is first
defined in Sec. II. We summarize the main properties of the
most general hydrodynamic state through which the stationary
regime is reached in the long time limit. This state was
analyzed in detail in Ref. [38] and, as will be shown, plays an
essential role in the hydrodynamic description for the present
model. In Sec. III, the linearized Boltzmann equation is written
and the relevant modes for the hydrodynamic description
are identified. These properties are subsequently exploited
in Sec. IV to derive the linearized hydrodynamic equations.
Finally, in Sec. V, we present a short summary of the results
obtained in the paper while details of the calculations are given
in seven appendixes, at the end of the text.

Before starting the analysis, a comment on the comparative
merits of the Chapman-Enskog expansion and linearized
Boltzmann approach is in order. The Chapman-Enskog method
considers nonlinear excitations but assumes the existence of
a normal solution. Within the linearized Boltzmann equation
framework, linear excitations only are addressed, and scale
separation is assumed. In this context, the asymptotic behav-
iors of the hydrodynamic fields are calculated as an exact
property of the spectrum of the linearized Boltzmann operator.
In addition, the analysis is somewhat simpler within the linear
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approach. In any case, it should be kept in mind that the
Navier-Stokes equations must be the same independently of
the method of derivation.

II. THE MODEL

Let us consider a dilute gas of N smooth inelastic hard
spheres (d = 3) or disks (d = 2) of mass m and diameter σ .
These bodies collide inelastically with a coefficient of normal
restitution α, independent of the relative velocity. If at time t

there is a binary encounter between particles i and j , with
velocities Vi(t) and Vj (t), respectively, the postcollisional
velocities V′

i(t) and V′
j (t) are

V′
i = Vi − 1 + α

2
(σ̂ · Vij )σ̂ ,

(1)

V′
j = Vj + 1 + α

2
(σ̂ · Vij )σ̂ ,

where Vij ≡ Vi − Vj is the relative velocity and σ̂ is the unit
vector pointing from the center of particle j to the center of
particle i at contact. Between collisions, the system is heated
uniformly by adding a random velocity to the velocity of each
particle independently with certain frequency and with a given
probability distribution. Let us define the jump distribution,
P�t (�v), as the probability that a particle experiences a jump
�v in the time interval �t , that will be assumed to fulfill

lim
�t→0

∫
dyyjP�t (y) = 0, lim

�t→0

1

�t

∫
dyy2

j P�t (y) = ξ 2
0 ,

j = 1, . . . ,d, (2)

where ξ 2
0 is the strength of the noise. If the variance of this

distribution is small compared to the velocity scale in which
the one-particle distribution, f (r,v,t), varies, the evolution
equation is, in the low-density limit, the Boltzmann-Fokker-
Planck equation [25,39],[

∂

∂t
+ v1 · ∂

∂r1

]
f (x1,t)

= σd−1
∫

dx2δ(r12)T̄0(v1,v2)f (x1,t)f (x2,t)

+ ξ 2
0

2

∂2

∂v2
1

f (x1,t), (3)

where we have introduced the field variable x ≡ {r,v} and the
binary collision operator T̄0,

T̄0(v1,v2) =
∫

dσ̂�(v12 · σ̂ )(v12 · σ̂ )
(
α−2b−1

σ − 1
)
. (4)

Here the operator b−1
σ replaces the velocities v1 and v2 by the

precollisional ones v∗
1 and v∗

2 given by

v∗
1 = v1 − 1 + α

2α
(σ̂ · v12)σ̂ ,

(5)

v∗
2 = v2 + 1 + α

2α
(σ̂ · v12)σ̂ .

Under the conditions noted above, the evolution equation does
not depend on the details of the distribution P�t but only on
its second moment through the coefficient ξ 2

0 .

It is convenient to introduce the hydrodynamic fields in the
standard kinetic theory fashion, as the first velocity moments
of the one-particle distribution function

n(r,t) =
∫

dvf (r,v,t), (6)

n(r,t)u(r,t) =
∫

dvvf (r,v,t), (7)

d

2
n(r,t)T (r,t) =

∫
dv

m

2
[v − u(r,t)]2f (r,v,t). (8)

Let us also introduce the local thermal velocity through

v(r,t) =
[

2T (r,t)
m

]1/2

. (9)

We will see that, in terms of the homogeneous hydrodynamic
fields, we can specify some relevant states at the Boltzmann
equation level. It is known numerically that for a wide class
of initial conditions, the system reaches a homogeneous
stationary state [26]. Assuming that total momentum is zero,
i.e.,

∫
dvvf (v,0) = 0, the state is characterized by an isotropic

stationary distribution, fs(v), which was studied in detail in
Ref. [25]. There, the distribution was written as

fs(v) = n

vd
s

χs(c), c = v
vs

, (10)

where n is the total density and vs is the stationary thermal
velocity. We have also introduced the scaled distribution
function, χs , which is independent of the strength of the noise
ξ 2

0 , i.e., all the dependence of the distribution on ξ 2
0 is written in

terms of the temperature. As this distribution is quite close to a
Maxwellian, an expansion in terms of Sonine polynomials [6]
does make sense. In the so-called first Sonine approximation
the function reads [25]

χs(c) ≈ χM (c)
[
1 + as

2S2(c2)
]
, (11)

where χM is the Maxwellian distribution with unit temperature,
S2(c2) = d(d+2)

8 − d+2
2 c2 + 1

2c4 is the second Sonine polyno-
mial, and as

2 is the kurtosis of the distribution. Within this
approximation and neglecting nonlinear contributions in as

2,
the distribution function can be calculated as [25]

as
2(α) = 16(1 − α)(1 − 2α2)

73 + 56d − 24dα − 105α + 30(1 − α)α2
, (12)

with a stationary temperature,

Ts = m

[
d
(d/2)ξ 2

0

2π
d−1

2 (1 − α2)nσd−1

(
1 − 3

16
as

2

)]2/3

. (13)

It has recently been shown that, in a homogeneous situation,
the initial condition is “forgotten” before the stationary state
has been reached [38]. The system approaches the stationary
state through a universal route in which all the time dependence
of the distribution function, fH (v,t), goes through the instan-
taneous temperature, TH (t) (in the following we will denote
the universal state with the subindex H ). In contrast with the
free-cooling case, due to the parameter ξ 2

0 , we can construct
an additional quantity with dimensions of temperature apart
from the instantaneous temperature, namely the stationary
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temperature given by Eq. (13). Then, by dimensional analysis
the distribution function has a two-parameter scaling form,

fH (v,t) = n

vH (t)d
χ (c,β), c = v

vH (t)
, β = vs

vH (t)
. (14)

Let us remark that we have redefined the variable c compared
to the one introduced in Eq. (10) and we have introduced the
instantaneous thermal velocity, vH (t). In Ref. [38] it was shown
that this state actually exists and the dynamics is partitioned
in a first rapid stage where initial conditions matter and a
subsequent universal relaxation towards stationarity, where
only the distance to the steady state is relevant, through
the dimensionless inverse typical velocity β = vs/vH (t),
i.e.,

f (v,t |f0) −→ n

vd
H (t)

χ (c,β) −→ fs(v). (15)

Let us note that a similar two parameter scaling occurs in
the uniform shear flow of granular gases [40,41]. In this
case, after a quick transient, the system forgets the initial
condition and evolves to the stationary state through a normal
state, where the role of β is played by the dimensionless
shear rate, a∗ = a[nσd−1v0(t)]−1. As in the stationary state,
numerical simulations show that the scaled distribution is close
to a Maxwellian and it can be calculated in the first Sonine

approximation,

χ (c,β) ≈ χM (c)[1 + a2(β)S2(c2)], (16)

where, by definition, we have∫
dcχ (c,β) = 1,∫

dccχ (c,β) = 0, (17)∫
dcc2χ (c,β) = d

2
.

Introducing the approximated distribution (16) into the
Boltzmann equation, and neglecting the nonlinear terms in
a2(β), it is possible to identify the universal distribution, i.e.,
the universal a2(β), to be characterized by [38]

a2(β) = as
2

[
1 + 1 − β3

B − 1
2F1

(
−1

3
,1;

4B − 1

3
; β3

)]
, (18)

valid for 0 < β < 1, and

a2(β) = − 4Bas
2

7β3(1 − 1/β3)
4B
3

2F1

(
7

3
,1 + 4B

3
;

10

3
;

1

β3

)
(19)

for β > 1. Here we have introduced the hypergeometric
function, 2F1 [42], and the coefficient

B = 73 + 8d(7 − 3α) + 15α[2α(1 − α) − 7]

16(1 − α)(3 + 2d + 2α2) + as
2[85 + d(30α − 62) + 3α(10α(1 − α) − 39)]

. (20)

As in the long time limit the distribution tends to the stationary
state we have

lim
β→1+

a2(β) = lim
β→1−

a2(β) = as
2. (21)

We also have that the first derivative is continuous,

lim
β→1+

d

dβ
a2(β) = lim

β→1−

d

dβ
a2(β), (22)

an important property that will be needed in the following
sections.

The evolution equation for the temperature (or equivalently
for the thermal velocity, vH ) in the universal state can
be calculated by inserting the scaling form (14) into the
Boltzmann equation and taking the second velocity moment.
When this is done, we obtain

dvH (t)

dt
= −1[μ(1)β3 − μ(β)]vH (t)2, (23)

where we have introduced the dimensionless coefficient

μ(β) = − 1

2d

∫
dc1

∫
dc2χ (c1,β)χ (c2,β)T0(c1,c2)

(
c2

1 + c2
2

)
.

(24)

The operator T0 is

T0(c1,c2) =
∫

dσ̂�(c12 · σ̂ )(c12 · σ̂ )(bσ − 1), (25)

where bσ replaces the velocities v1 and v2 by the postcollisional
ones v′

1 and v′
2 given by

v′
1 = v1 − 1 + α

2
(σ̂ · v12)σ̂ ,

(26)

v′
2 = v2 + 1 + α

2
(σ̂ · v12)σ̂ .

By inserting the function χ in the first Sonine approximation,
Eq. (16), an approximate evolution equation for vH can be
obtained. Nevertheless, we will be only interested in situations
where we are close to the stationary state, β = 1, and then
equation (23) can be linearized, obtaining

dvH (t)

dt
= −γ

vs


[vH (t) − vs] , (27)

where we have introduced the dimensionless coefficient

γ = 3μ(1) − dμ(β)

dβ

∣∣∣∣
β=1

. (28)

The coefficient γ is calculated in Appendix A in the first Sonine
approximation. Let us note that the difference of Eq. (27) with
the equivalent one in Ref. [26] is just the term dμ(β)

dβ
|β=1, which,

although small, is shown in the Appendix to be of the same
order as a2. The solution of Eq. (27) is

vH (t) = vs + [vH (0) − vs] e−γ vs


t , (29)
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which shows that the relaxation of vH to the stationary value
is given in terms of the coefficient γ .

The universal state that we have identified, which in the
following will be referred to as the β state, is analogous,
for heated granular gases, to the homogeneous cooling state
for unforced systems [7]. It represents the most general
homogeneous hydrodynamic state and, as will be seen in
the next sections, its existence is crucial in the study of the
relevance of a hydrodynamic description for granular gases
heated by the stochastic thermostat.

III. THE LINEARIZED BOLTZMANN EQUATION

Let us consider states close to the stationarity, so we can
write

δf (x1,t) = f (x1,t) − fs(v1), |δf (x1,t)| � fs(v1). (30)

The evolution equation for this function is obtained from the
Boltzmann equation (3) by neglecting the nonlinear terms in
δf , obtaining

∂

∂t
δf (x1,t) + v1 · ∂

∂r1
δf (x1,t) = K(v1)δf (x1,t), (31)

where K(v1) is a linear operator defined by

K(v1) = σd−1
∫

dv2T̄0(v1,v2)(1 + P12)fs(v2) + ξ 2
0

2

∂2

∂v2
1

,

(32)

with P12 an operator that interchanges the label 1 and 2 in the
function on which it acts. Now, let us introduce a dimensionless
space variable as

l = r

,  = (nσd−1)−1, (33)

where  is proportional to the mean free path, and a dimen-
sionless time,

s = vs


t, (34)

which is proportional to the number of collisions per particle
in the interval (0,t). It is also convenient to introduce the
dimensionless distribution, δχ , through

δf (x,t) = n

vd
s

δχ (l,c,s). (35)

The equation for δχ reads

∂

∂s
δχ (l,c,s) =

[
�(c) − c · ∂

∂l

]
δχ (l,c,s). (36)

Here we have introduced the homogeneous linearized Boltz-
mann collision operator, �, defined by

�(c1) =
∫

dc2T̄0(c1,c2)(1 + P12)χs(c2) + ξ̃ 2

2

∂2

∂c2
1

, (37)

where

ξ̃ 2 = ξ 2
0 

v3
s

≈ π
d−1

2 (1 − α2)√
2d
(d/2)

(
1 + 3

16
as

2

)
(38)

is the dimensionless amplitude of the noise calculated in the
first Sonine approximation. Since the equation is linear and
the linearized Boltzmann collision operator does not change

the space variable, it is convenient to introduce the Fourier
component

δχk(c,s) =
∫

dle−ik·lδχ (l,c,s). (39)

For an infinite system or with periodic boundary conditions,
the evolution equation for these components is

∂

∂s
δχk(c,s) = [�(c) − ik · c] δχk(c,s). (40)

Equation (36) or the Fourier counterpart, Eq. (40), is the
so-called linearized Boltzmann equation and it describes the
dynamics of any small perturbation around the homogeneous
stationary state. This provides us with our starting point for the
study of the possibility of a hydrodynamic description close to
the stationary state.

The solution of Eq. (40) can be written formally as

δχk(c,s) = e[�(c)−ik·c]sδχk(c,0), (41)

which shows clearly that the excitations of the gas are
determined by the spectrum properties of the linear operator
�(c) − ik · c. This suggests the study of the eigenvalue
problem

[�(c) − ik · c]ξj (k,c) = λj (k)ξj (k,c), (42)

which is posed in a Hilbert space of functions of c with scalar
product

〈g|h〉 =
∫

dcχ−1
s (c)g∗(c)h(c), (43)

with g∗ the complex conjugate of g. The search for hydrody-
namic excitations, which are defined as the ones associated to
the slowest modes, can be carried out by assuming that the
modes are analytic in k and looking first for the k = 0 solution
of Eq. (42). Let us then consider the homogeneous eigenvalue
problem

�(c)ξj (c) = λjξj (c), (44)

where we have introduced the notation ξj (k = 0,c) = ξj (c)
and λj (k = 0) = λj . We will now see that the special universal
solution studied in the previous section allows us to identify a
family of exact solutions of the linearized Boltzmann equation
related to d + 2 modes of the homogeneous linearized col-
lision operator, �. The idea is similar in spirit to the one
introduced in Refs. [8–10] to calculate the hydrodynamic
eigenfunctions in the free-cooling case. Let us consider the
family of exact solutions of the homogeneous nonlinear
Boltzmann equation

fH (v,t) = n̄

v̄H (t)d
χ

[
v − u
v̄H (t)

,
v̄s

v̄H (t)

]
, (45)

which are parameterized by the density, n̄, the constant
velocity flow, u, and the thermal velocity, v̄H (t). The bars
on the quantities refer to variables that differ from (n,vH )
introduced earlier, v̄H (t) being the thermal velocity of the
β state corresponding to n̄. If we consider states close to
stationarity, the function v̄H (t) is known and given by Eq. (29).
But then the family

δf (v,t) = n̄

v̄H (t)d
χ

[
v − u
v̄H (t)

,
v̄s

v̄H (t)

]
− fs(v), (46)
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to linear order in the fields, has to be a solution of the linearized
Boltzmann equation. In Appendix B δf is calculated to linear
order, which leads to the corresponding scaled distribution,

δχ (c,s) = δn

n

[
χs(c) + 1

3

∂

∂c
· [cχs(c)]

]
− u

vs

· ∂

∂c
χs(c)

−
[

δn

3n
+ δvH (0)

vs

]
e−γ s

[
∂

∂c
· [cχs(c)]

+ ∂

∂β
χ (c,β)

∣∣∣∣
β=1

]
, (47)

where δn = n̄ − n and δvH (0) = v̄H (0) − vs . The functions
given by (47) generate a family of solutions of the homo-
geneous linearized Boltzmann equation, which can be seen
as the superposition of d + 2 modes. We, consequently, have
identified the following eigenfunctions of �:

ξ1(c) = χs(c) + 1

3

∂

∂c
· [cχs(c)], (48)

ξ 2(c) = − ∂

∂c
χs(c), (49)

ξ3(c) = − ∂

∂c
· [cχs(c)] − ∂

∂β
χ (c,β)

∣∣∣∣
β=1

, (50)

with the corresponding eigenvalues,

λ1 = λ2 = 0, λ3 = −γ, (51)

where the null eigenvalue is (d + 1)-fold degenerate. More-
over, Eq. (47) can be rewritten as

δχ (c,s) =
3∑

j=1

eλj s〈ξ̄j (c)|δχ (c,0)〉ξj (c), (52)

with the following definitions of the functions ξ̄i :

ξ̄1(c) = χs(c), ξ̄ 2(c) = χs(c)c, ξ̄3 = χs(c)

(
c2

d
− 1

6

)
.

(53)

These functions are just the linear combinations of the the first
two velocity moments, {1,c,c2}, normalized to enforce

〈ξ̄i |ξj 〉 = δij , i,j = 1,2,3. (54)

In fact, the functions ξ1 and ξ 2 have been previously identified
in Refs. [33,34,43], where they were used to study the
fluctuations of quantities like the total energy in the stationary
state. There, it was also proven that ξ̄1 and ξ̄ 2 are eigenfunctions
of the adjoint operator of the linearized collision operator,
�+, associated to the null eigenvalue. This follows from the
conservation of the number of particles and momentum:∫

dc�(c)h(c) =
∫

dcci�(c)h(c) = 0. (55)

Then, if we assume that eigenfunctions of �, {ξi}∞i=1, form a
complete set, in the expansion

f (c) =
∞∑

j=1

Cjξj (c), (56)

we have C1 = 〈ξ̄1|f 〉 and C2 = 〈ξ̄ 2|f 〉. With the aid of
Eq. (47), we are able to identify a new eigenfunction, ξ3, that,

as seen in Eq. (50), depends on the derivative with respect
to β of the universal state χ in the stationary regime. Let us
remark that ξ̄3 is not an eigenfunction of �+. We only have
C3 = 〈ξ̄3|f 〉 if the function f belongs to the space generated
by the set {ξi}3

i=1.
In the elastic case, i.e., α = 1 and ξ 2

0 = 0, the spectrum
of �(k,c) has been analyzed in detail and it is known that
the modes associated to the locally conserved quantities, the
hydrodynamic modes, are the slowest ones in the k → 0 limit,
where the respective eigenvalues vanish [44]. Furthermore, it is
known that the spectrum is analytic in k around k = 0 and that
there is scale separation, i.e., the hydrodynamic modes are
isolated from the rest of modes. For the inelastic linearized
collision operator, no such result is available. We have
nevertheless shown that d + 1 of the d + 2 identified modes
are associated to the vanishing eigenvalue, and the remaining
mode is associated to γ , which itself vanishes in the elastic
limit. We therefore expect that a similar property will hold
with the identified modes—at least close to the elastic limit,
although we expect it to apply also beyond—and these modes
will henceforth be coined hydrodynamic. In the following, we
will assume that they are the slowest ones and that they are
analytic. Under this proviso, the asymptotic behavior of the
one particle distribution function for k � 1, s � 1 is

δχk(c,s) ≈
d+2∑
j=1

Kje
λj (k)sξj (c), (57)

where the {Kj }d+2
j=1 depend on the initial condition. Note that, as

seen in Eqs. (46) and (47), the hydrodynamic eigenfunctions
given by Eqs. (48)–(50) expand the subspace of functions
generated by the difference of a local β state with the stationary
state. Then, Eq. (57) can be rewritten in the original variables as

δf (r,v,t) ≈ n(r,t)
v(r,t)d

χ

[
v − u(r,t)

v(r,t)
,
v̄s[n(r,t)]

v(r,t)

]
− fs(v).

(58)

This shows that for small gradients (or, equivalently, for
k � 1) and in the long time limit, i.e., in the time in
which the nonhydrodynamic modes have decayed, all the
time dependence in the distribution function is through the
hydrodynamic fields. Moreover, the distribution function
takes the form of a local β-state distribution, which plays, in
this context, the role of a reference state. To evaluate explicitly
the time evolution of the fields, it is necessary to calculate
{λj (k)}d+2

j=1. If we assume that they are analytic in k, this can
be used to study the eigenvalue problem, Eq. (42), by use of
standard perturbation theory, as was performed in Refs. [8,10]
for the free-cooling case. In the next section, we will evaluate
the eigenvalues to Navier-Stokes order, i.e., k2 order, but by
use of a different method, deriving the evolution equations for
the linear deviations of the hydrodynamic fields.

IV. LINEAR HYDRODYNAMICS AROUND
THE STATIONARY STATE

The objective of this section is to derive evolution equations
for the deviations of the hydrodynamic fields around its
stationary values at Navier-Stokes order. The analysis of
these equations will clarify the differences and analogies with
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respect to the elastic case. The hydrodynamic eigenvalues,
{λj (k)}d+2

j=1, will be obtained by identifying the asymptotic
behavior of the solutions in the proper limit. Let us start writing
the deviations of the hydrodynamic fields as

ρ(l,s) ≡ n(r,t) − n

n
=

∫
dcδχ (l,c,s), (59)

w(l,s) ≡ u(r,t)
vs

=
∫

dccδχ (l,c,s), (60)

θ (l,s) ≡ T (r,t) − Ts

Ts

=
∫

dc
(

2c2

d
− 1

)
δχ (l,c,s), (61)

which can be expressed in terms of the scalar products of
the distribution function with the functions {ξ̄j }d+2

j=1. In Fourier
space, they read

〈ξ̄1(c)|δχk(c,s)〉 = ρk(s), (62)

〈ξ̄ 2(c)|δχk(c,s)〉 = wk(s), (63)

〈ξ̄3(c)|δχk(c,s)〉 = 1
2θk(s) + 1

3ρk(s). (64)

Now, let us define the relevant projector in the hydrodynamic
subspace,

Ph(c) =
d+2∑
j=1

〈ξ̄j (c)|h(c)〉ξj (c), (65)

and also the orthogonal one,

Q = I − P, (66)

where I is the identity operator. As alluded to above, 〈ξ̄3|h〉 is
not the actual component of h into ξ3 but Eq. (65) still defines
a projector as P2 = I (we also have Q2 = I).

If we apply the projectors P and Q to the linearized
Boltzmann equation (40), we obtain the following set of
coupled equations:[

∂

∂s
− P[�(c) − ik · c]P

]
Pδχk(c,s)

= [P�(c) − Pik · c]Qδχk(c,s), (67)[
∂

∂s
− Q[�(c) − ik · c]Q

]
Qδχk(c,s)

= −Qik · cPδχk(c,s), (68)

where we have used that Q�P = 0. However, P�Q = 0
because ξ̄3 is not a left eigenfunction of �. In fact, we have

P�(c)Qh(c) = ξ3(c)〈ξ̄3(c)|�(c)Qh(c)〉. (69)

The d + 2 components of Eq. (67) are the evolution equations
for the hydrodynamic fields

∂

∂s
ρk(s) + ik · wk(s) = 0, (70)

∂

∂s
wk(s) + i

2
k [ρk(s) + θk(s)] + ik · ←→� k(s) = 0, (71)

∂

∂s
θk(s) + γ

[
2

3
ρk(s) + θk(s)

]
+ 2i

d
k · wk(s)

+ 2i

d
k · φk(s) = δζk(s), (72)

where we have introduced the pressure tensor and heat flux

←→
� k(s) =

∫
dc

←→
� (c)Qδχk(c,s),

(73)
φk(s) =

∫
dc�(c)Qδχk(c,s),

with

�jp(c) = cj cp − c2

d
δjp, �j (c) =

(
c2 − d + 2

2

)
cj , (74)

and the deviation of the cooling rate

δζk(s) =
∫

dc
2c2

d
�(c)Qδχk(c,s). (75)

Let us note that the operator Q can be skipped in Eq. (73)
because, due to symmetry properties, we have

〈χs(c)�jp(c)|ξβ(c)〉 = 〈χs(c)�j (c)|ξβ(c)〉 = 0
(76)

j,p = 1, . . . ,d, β = 1, . . . d + 2.

To evaluate the hydrodynamic equations to k2 order, we need
the fluxes given by Eq. (73) and, consequently, δχk to first order
in k. This is evaluated in Appendix C for an initial condition of
the form Qδχk(c,0) = 0 and neglecting all the k contributions
in the kinetic modes, yielding

Qδχk(c,s) ≈ −
∫ s

0
ds ′eQ�(c)Q(s−s ′)Qik · cPδχk(c,s ′). (77)

Note that as the hydrodynamic eigenfunctions expand the
subspace of functions generated by the difference of a local
β state with the stationary state, the condition Qδχk(c,0) = 0
represents an initial condition of the local β-state form. For an
arbitrary initial condition, there would be an additional initial
transient till the distribution function reaches the form given by
Eq. (57). When (77) is inserted in Eq. (73), taking into account
the symmetries of the system as discussed in Appendix C, the
following expressions for the fluxes are obtained,

�k,jp(s) = −i

∫ s

0
ds ′Gxy(s − s ′)

[
kjwk,p(s ′) + kpwk,j (s ′)

− 2

d
δjpk · wk(s ′)

]
(78)

and

φk,j (s) = −ikj

∫ s

0
ds ′

{
ρk(s ′)

[
H1(s − s ′) + 1

3
H3(s − s ′)

]
+ 1

2
θk(s ′)H3(s − s ′)

}
, (79)

where we have introduced the “correlation” functions,

Gxy(s) =
∫

dc�xy(c)e�(c)scxξ2,y(c) (80)

and

Hj (s) =
∫

dc�x(c)e�(c)scxξj (c), j = 1,3. (81)

It is important to remark that, as �xy and �x are orthogonal
to the hydrodynamic modes, the functions Gxy(s) and Hj (s)
decay with the kinetic modes. Under the same hypothesis as
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for the fluxes, the cooling rate, δζk, is evaluated in Appendix D
to k2 order, with the result

δζk(s) = −2i

∫ s

0
ds ′k · wk(s ′)Z(s − s ′)

− 2k2
∫ s

0
ds ′

{
ρk(s ′)

[
Z1(s − s ′) + 1

3
Z3(s − s ′)

]
+ 1

2
θk(s ′)Z3(s − s ′)

}
. (82)

We have introduced here the functions

Z(s) = 〈ξ̄3(c)|[�(c) − λ3]e�(c)scxξ2,x(c)〉 (83)

and

Zj (s) = 〈ξ̄3(c)|[�(c) − λ3]
∫ s

0
ds ′e�(c)(s−s ′)cxQe�(c)s ′

cxξj (c)〉,
j = 1,3, (84)

which, due to the biorthogonality condition, Eq. (54), also
decay with the kinetic modes. Note that, at variance with the
free-cooling case [7], there is here a first order in k contribution
to the cooling rate in the low-density limit (for moderate
densities the contribution is also present in the free-cooling
case [3,45]).

It also proves convenient to introduce the parallel and
transversal components of the velocity

wk,||(s) = k̂ · wk(s), w
(j )
k,⊥ = k̂(j )

⊥ · wk(s),

j = 1, . . . ,d − 1, (85)

where k̂ = k/k is a unit vector in the direction of k and
{k̂(j )

⊥ }d−1
j=1 is an orthogonal basis of the subspace orthogonal to

k. In terms of these components, the hydrodynamic equations
are

∂

∂s
ρk(s) + ikwk,||(s) = 0, (86)

∂
∂s

w
(j )
k,⊥(s) + k2

∫ s

0 ds ′Gxy(s − s ′)w(j )
k,⊥(s ′) = 0,

(87)
j = 1, . . . ,d − 1,

∂

∂s
wk,||(s) + i

2
k [ρk(s) + θk(s)] + 2

d − 1

d
k2

×
∫ s

0
ds ′Gxy(s − s ′)wk,||(s ′) = 0, (88)

∂

∂s
θk(s) + γ

[
2

3
ρk(s) + θk(s)

]
+ 2i

d
kwk,||(s)

+ 2ik

∫ s

0
ds ′Z(s − s ′)wk,||(s ′)

+ 2

d
k2

∫ s

0
ds ′[G1(s − s ′)ρk(s ′) + G3(s − s ′)θk(s ′)] = 0,

(89)

where we have introduced the new correlation functions

G1(s) = H1(s) + 1

3
H3(s) + dZ1(s) + d

3
Z3(s),

(90)

G3(s) = 1

2
H3(s) + d

2
Z3(s).

It is noteworthy that, apart from the assumption of an initial
condition in the hydrodynamic subspace, the only approxima-
tions made in the derivation of Eqs. (86)–(89) are the expansion
to second order in the gradients of the hydrodynamic fields and
the neglect of the k contribution in the memory kernels that
all decay with the kinetic modes. Of course, the kernels are
for the moment unknown, but we will see later that they can
be calculated approximately. Before doing so, we evaluate the
asymptotic behavior of Eqs. (86)–(89) in the hydrodynamic
limit [under which Eq. (57) was derived].

Due to the structure of the equations, it is convenient to
introduce the Laplace transforms of the fields,

f̄ (z) =
∫ ∞

0
dse−zsf (s), f (s) = 1

2πi

∫ c+i∞

c−i∞
dzezs f̄ (z),

(91)

where c is bigger than the real part of all the poles of f̄ . In the
Laplace space the convolutions transform into products and
Eqs. (86)–(89) become

zw̄
(j )
k,⊥(z) + k2Ḡxy(z)w̄(j )

k,⊥(z) = w
(j )
k,⊥(0), j = 1, . . . ,d − 1.

(92)

[zI + A(k,z)]

⎛⎜⎝ ρ̄k(z)

w̄k,||(z)

θ̄k(z)

⎞⎟⎠ =

⎛⎜⎝ ρk(0)

wk,||(0)

θk(0)

⎞⎟⎠ , (93)

where we have introduced the matrix

A(k,z)

=

⎛⎜⎝ 0 ik 0
i
2k 2 d−1

d
Ḡxy(z)k2 i

2k

2
3γ + 2

d
Ḡ1(z)k2 iq̄(z)k γ + 2

d
Ḡ3(z)k2

⎞⎟⎠ ,

(94)

with

q̄(z) = 2

d
[1 + dZ̄(z)]. (95)

The equation for the transverse velocity, Eq. (92), is analyzed
in detail in Appendix E. Assuming that Gxy(s) is a linear
combination of kinetic modes (as is expected to be), we obtain
in the hydrodynamic limit

w
(j )
k,⊥(s) ≈ w

(j )
k,⊥(0)e−ηk2s , (96)

where we have introduced the shear viscosity

η =
∫ ∞

0
dsGxy(s). (97)

In the same limit, the solution of the coupled hydrodynamic
equation (93), is analyzed in Appendix F, obtaining

|y(k,s)〉 ≈
3∑

β=1

〈φβ |y(k,0)〉eλβ (k)s
∣∣ψ (0)

β

〉
, (98)

where we have introduced the notation

|y(k,s)〉 ≡

⎛⎜⎝ ρk(s)

wk,||(s)

θk(s)

⎞⎟⎠ . (99)
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The functions {|ψ (0)
β 〉}3

β=1 are the zeroth order in k contribution
to the expansion of the eigenfunctions, |ψβ(k,z)〉, of the matrix
A(k,z)

|ψβ(k,z)〉 = ∣∣ψ (0)
β (z)

〉 + k
∣∣ψ (1)

β (z)
〉 + k2

∣∣ψ (2)
β (z)

〉 + · · · ,

(100)

with A(k,z)|ψβ(k,z)〉 = aβ(k,z)|ψβ(k,z)〉. They are calculated
in Appendix F obtaining

∣∣ψ (0)
1

〉 =

⎛⎜⎝ −6√
6

4

⎞⎟⎠ ,
∣∣ψ (0)

2

〉 =

⎛⎜⎝ 6√
6

−4

⎞⎟⎠ ,
∣∣ψ (0)

3

〉 =

⎛⎜⎝ 0

0

1

⎞⎟⎠ ,

(101)

where we see that they do not depend on z. The other set of
functions, {〈φβ |}3

β=1, is the biorthogonal set

〈φ1| =
(

− 1

12
,

1

2
√

6
,0

)
,

〈φ2| =
(

1

12
,

1

2
√

6
,0

)
, (102)

〈φ3| =
(

2

3
,0,1

)
,

which is constructed to have 〈φβ |ψ (0)
β ′ 〉 = δβ,β ′ . The scalar

product 〈u|v〉 between two vectors |u〉 and |v〉 is the usual
Euclidean scalar product. There is no confusion with the
one introduced in Eq. (43) because they appear in different
contexts. The explicit expressions of the hydrodynamic eigen-
values, {λβ(k)}3

β=1, to k2 order are

λ1(k) = + i√
6
k −

[
d − 1

d
η + 1

4γ

(
2

3
+ q0

)]
k2, (103)

λ2(k) = − i√
6
k −

[
d − 1

d
η + 1

4γ

(
2

3
+ q0

)]
k2, (104)

λ3(k) = −γ +
[

1

3γ
+ 1

2γ
qw − 2

d
(̃κ + ζθ )

]
k2, (105)

where the shear viscosity, η, is given in Eq. (97), and we have
introduced the heat conductivity, κ̃ , as

κ̃ = 1

2

∫ ∞

0
dseγ sH3(s). (106)

The expressions for the other transport coefficients are

q0 = 2

d
+ 2

∫ ∞

0
dsZ(s), (107)

qw = 2

d
+ 2

∫ ∞

0
dseγ sZ(s), (108)

ζθ = d

2

∫ ∞

0
dseγ sZ3(s). (109)

Equations (96) and (98) with the expressions for the
transport coefficients, Eqs. (97) and (106)–(109), are the main
results of the paper. It is important to remark that the equations
are valid in the linear regime close to the stationary state,
but the transport coefficients depend on the structure of
the nonstationary β state through the eigenvalue γ and the
third eigenfunction. Actually, similar effects are shown to
be essential to understand the dynamics of a homogeneous

perturbation of the temperature close to the steady uniform
shear flow for granular gases [46]. Let us also note that,
although there is a coupling between the heat flux and the
density as it is seen in Eq. (79), this coupling is not reflected
at the level of Navier-Stokes linear hydrodynamic [there is
no contribution from H1(s) in the transport coefficients].
This is also the case in the free-cooling case where the
hydrodynamic eigenvalues to k2 order do not depend on
the diffusive conductivity [8,10] (the coupling is expected to
appear beyond k2 order). Moreover, the memory kernel Z(s)
appears in q0 and qw weighted in different ways, reflecting
the non-Markovian character of Eqs. (86)–(89). Nevertheless,
as we shall see in the remainder, these effects are expected
to be small. We also emphasize that the viscosity and heat
conductivity have been calculated in Ref. [37] applying the
Chapman-Enskog expansion to the inelastic Enskog equation,
obtaining equivalent expressions for both transport coefficients
in the low-density limit. This can be seen by performing
formally the time integral in the Green-Kubo expressions for
the transport coefficients, Eqs. (97)–(106).

Our goal is now to calculate all the correlations functions,
Gxy(s), G1(s), G3(s), and Z(s), that appear in the hydro-
dynamic equations, Eqs. (86)–(89), in an approximate way.
With this, we will be able to obtain explicit formulas for
all the transport coefficients. The idea is reminiscent of that
used for free-cooling systems [47] and consists in treating the
functions ξ̄3(c), χs(c)�jp(c), and χs(c)�j (c) as if they were
eigenfunctions of the adjoint linearized Boltzmann operator,
�+ [the adjoint is taken with the scalar product of Eq. (43)].
That is, we assume

�+(c)ξ̄3(c) ≈ λ3ξ̄3(c) (110)

and

�+(c)χs(c)�jp(c) ≈ λ
(1)
NHχs(c)�jp(c),

(111)
�+(c)χs(c)�j (c) ≈ λ

(2)
NHχs(c)�j (c),

where λ
(1)
NH and λ

(2)
NH are two nonhydrodynamic (kinetic)

eigenvalues that have to be calculated consistently. Within this
approximation we trivially have

Z(s) ≈ 0, Zj (s) ≈ 0, j = 1,3, (112)

so

q0 ≈ 2

d
, qw ≈ 2

d
, ζθ ≈ 0, (113)

and

G1(s) ≈ H1(s) + 1
3H3(s), G3(s) ≈ 1

2H3(s). (114)

Assuming the property (111) holds, the functions Gxy(s),
H1(s), and H3(s) follow, by straightforward calculations,

Gxy(s) = 1

2
eλ

(1)
NHs , H1(s) = − (d + 2)

(
2 + as

2

)
12

eλ
(2)
NHs , (115)

H3(s) =
[

(d + 2)

(
1

2
+ as

2

)
− d + 2

4

da2(β)

dβ

∣∣∣∣
β=1

]
eλ

(2)
NHs ,

(116)
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FIG. 1. Reduced viscosity of a two-dimensional system (left) and three-dimensional system (right) as a function of the inelasticity. The
solid line is the theoretical prediction given by Eq. (117), the dashed line is the theoretical prediction of Ref. [29], and the dots are the simulation
results of Ref. [29].

where the eigenvalues λ
(1)
NH and λ

(2)
NH are calculated in Ap-

pendix G in the approximation of Eq. (111). With these
functions, the transport coefficient are easily calculated,

η = 1

2
∣∣λ(1)

NH

∣∣ ,
κ̃ = 1

2
(∣∣λ(2)

NH

∣∣−γ
)[

(d + 2)

(
1

2
+ as

2

)
−d + 2

4

da2(β)

dβ

∣∣∣∣
β=1

]
,

(117)

where, as shown in Appendix A, the contribution coming from
da2(β)

dβ
|β=1 is of the same order as the one coming from as

2. Let
us note that, as the approximation (110) and (111) implies that
ζθ = 0 and kills the difference between q0 and qw, our results
agree with the ones of Garzó et al. [37] when our thermostat
is considered and the low-density limit is taken. The only
difference is the explicit approximate expressions for η and
κ̃ (although, as said, the exact expressions for both transport
coefficients are the same).

In Fig. 1 the reduced viscosity η(α)
η(1) is plotted as a function

of the inelasticity for d = 2 and d = 3, and in Fig. 2 the same
is done but for the reduced conductivity κ̃(α)

κ̃(1) . Although strictly
speaking, we do not consider the exact same thermostating
mechanism as in Ref. [29] where the driving amplitude is
chosen—for convenience—to depend on the local tempera-
ture, it is nevertheless relevant to compare our predictions
to those of Ref. [29]. In the case of the shear viscosity, we
obtain exactly the same result. The differences in Fig. 1 are
due to the approximate method to evaluate the coefficient,
yielding a smoother curve with the present method. In contrast,
for the reduced conductivity, we obtain strong discrepancies.
Equation (117) predicts an enhanced of the conductivity as the
inelasticity increases while the prediction of Ref. [29] goes
in the opposite direction. For completeness, we have reported
some simulation data available in the literature. For the shear
viscosity, the results were taken from Ref. [29] for d = 3. The
agreement with the theoretical prediction is good. For the heat
conductivity, we have taken the results of Ref. [35], pertaining
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FIG. 2. Reduced conductivity of a two-dimensional system (left) and three-dimensional system (right) as a function of the inelasticity.
The solid line is the theoretical prediction given by Eq. (117), the dashed line is the theoretical prediction of Ref. [29], and the dots are the
simulation results of Ref. [35].
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also to dissipative hard spheres for the smallest density and
wave vector. The agreement with equation (117) in this case
is very good for the two values of the coefficient of normal
restitution. Let us note that the transport coefficients were also
evaluated for moderate densities in Ref. [48] via the Enskog
equation and the density dependence agreed qualitatively well
with the simulation results of Ref. [35].

V. CONCLUSIONS AND PERSPECTIVES

In this paper we have derived the Navier-Stokes hydrody-
namic equations for a system of hard particles heated by the
so-called stochastic thermostat. We have restricted the study
to situations close to the homogeneous stationary state that the
system reaches in the long time limit. Under these conditions,
the system is described by the Boltzmann equation linearized
around the stationary state. We could calculate the eigenvalues
and eigenfunctions of the operator describing the dynamics of
the system that are relevant in the hydrodynamic description.
Let us remark that, although we are considering linear response
around the stationary state, the modes depend on the properties
of the time-dependent β state through quantities related to
∂χ(c,β)

∂β
|β=1. The properties of the β state brought to the fore

were summarized in Sec. II and in particular, β − 1 can
be viewed as measuring the distance to stationarity. With
the aid of these modes, we derived the linear Navier-Stokes
equations obtaining formulas for the transport coefficients that
are expressed as Green-Kubo relations. Assuming that the time
correlation functions that appear in these formulas decay with
only one kinetic mode, we calculated explicitly the transport
coefficients as functions of the inelasticity, α, and the spatial
dimension, d. Let us note that, at this level, the dynamics also
depends on the properties of the β state through the transport
coefficients. Moreover, as it is reflected in Eq. (58), the β

state plays the role of reference state in the sense that, in the
hydrodynamic scale a local β-state distribution is reached.
This fact is in connection with the results of Ref. [15] where
it is seen that, close to a stationary state, the zeroth order in
the gradients distribution is not merely the local stationary
distribution but a more complex one (in our case played by
the β state). In this sense, for situations where nonlinear
effects are important, the complete hydrodynamic equations at
Navier-Stokes order could be derived by the Chapman-Enskog
scheme taking into account these ideas. We hope this work will
contribute to stimulate more studies in this direction and also at
the level of computer simulations by, for example, measuring
the transport coefficients. Also, since many effects shown in
the paper depend on the two-parameter distribution of the β

state, it is expected that similar phenomena will occur for other
sorts of homogeneous thermostats.
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APPENDIX A: EVALUATION OF γ IN THE FIRST
SONINE APPROXIMATION

In this Appendix we calculate the coefficient γ given by
Eq. (28),

γ = 3μ(1) − dμ(β)

dβ

∣∣∣∣
β=1

, (A1)

in the first Sonine approximation. By substituting the approxi-
mate expression of χ (c,β) given by Eq. (16) into the definition
of μ(β) [see Eq. (24)], we obtain

μ(β) = μM + μSa2(β), (A2)

where

μM = − 1

2d

∫
dc1

∫
dc2χM (c1)χM (c2)T0(c1,c2)

(
c2

1 + c2
2

)
(A3)

and

μS = − 1

d

∫
dc1

∫
dc2χM (c1)χM (c2)S2

(
c2

1

)
× T0(c1,c2)

(
c2

1 + c2
2

)
. (A4)

The integrals can be readily performed with the result

μM = π
d−1

2 (1 − α2)√
2d
(d/2)

, μS = 3π
d−1

2 (1 − α2)

16
√

2d
(d/2)
. (A5)

Finally, the expression for γ is

γ = 3μM +
[

3a2(1) − da2(β)

dβ

∣∣∣∣
β=1

]
μS, (A6)

where the expression of a2(β) has been provided in the main
text. In Fig. 3, γ is plotted as a function of the inelasticity.
The approximate expression of the Ref. [25], γvN = 3μ(1), is
also plotted, finding very similar results. Nevertheless, let us
note that, as shown in Fig. 4, the difference between the two
expressions, γvN − γ = da2(β)

dβ
|β=1μS , is of the order of a2(1).

APPENDIX B: EVALUATION OF THE
HYDRODYNAMIC EIGENFUNCTIONS

Let us evaluate the expression

δf (v,t) = n̄

v̄H (t)d
χ

[
v

v̄H (t)
,

v̄s

v̄H (t)

]
− fs(v) (B1)

to linear order in δn = n̄ − n and δvH (0) = v̄H (0) − vs . We
consider the case u = 0, for assuming u = 0 is a straightfor-
ward generalization. Let us rewrite Eq. (B1) as

δf (v,t) = n̄

v̄H (t)d
χ

[
v

v̄H (t)
,

v̄s

v̄H (t)

]
− n̄

v̄d
s

χs

(
v
v̄s

)
+ n̄

v̄d
s

χs

(
v
v̄s

)
− fs(v). (B2)

The first two terms on the left-hand side of the equation then
are the difference between the β state and its corresponding
stationary state (both are linked to the same density, n̄), while
the last two terms are just the difference between two very
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FIG. 3. Eigenvalue γ as a function of the inelasticity for a two-dimensional system (left) and three-dimensional system (right). The solid
line is the theoretical prediction for γ and the dashed lined is the one of Ref. [25], γvN .

close stationary states. For the last two terms and, taking into
account that

nv3
s = n̄v̄3

s = K(α), (B3)

as follows from from Eq. (13) which defines the unspecified
function K and, thus,

n̄

v̄d
s

χs

(
v
v̄s

)
− n

vd
s

χs

(
v
vs

)
= K

v̄d+3
s

χs

(
v
v̄s

)
− K

vd+3
s

χs

(
v
vs

)
≈ Kδvs

[
− (d + 3)

vd+4
s

χs(c) + 1

vd+3
s

∂

∂vs

χs

(
v
vs

)]
, (B4)

where δvs = v̄s − vs . It is more convenient to write this
expression in terms of the difference in densities. Due to
Eq. (B3), we have

δn

n
= −3

δvs

vs

, (B5)

0 0.2 0.4 0.6 0.8 1
α

-5

-4

-3

-2

-1

0

(d
a 2/d

β)
β=

1/a
2(1

)

FIG. 4. Quotient between da2(β)
dβ

|β=1 and a2(1) as a function of the
inelasticity for d = 2 (solid line) and d = 3 (dashed line). Note that
a2(1) = as

2.

so

n̄

v̄d
s

χs

(
v
v̄s

)
− n

vd
s

χs

(
v
vs

)
≈ n

vd
s

δn

n

{
χs(c) + 1

3

∂

∂c
· [cχs(c)]

}
. (B6)

Now, let us evaluate the other difference,

n̄

v̄H (t)d
χ

[
v

v̄H (t)
,

v̄s

v̄H (t)

]
− n̄

v̄d
s

χs

(
v
v̄s

)
≈ ∂

∂vH (0)

{
n

vH (t)d
χ

[
v

vH (t)
,

vs

vH (t)

]}
s

[v̄H (0) − v̄s],

(B7)

where the subscript s refers to the functional in the stationary
state, i.e., F [n,vH (0)]s = F [n̄,v̄s]. The functional derivative
is

∂

∂vH (0)

{
n

vH (t)d
χ

[
v

vH (t)
,

vs

vH (t)

]}
= − n

vH (t)d+1

{
∂

∂c
· [cχ (c,β)] + β

∂

∂β
χ (c,β)

}
∂vH (t)

∂vH (0)
,

(B8)

while the partial derivative can be calculated, taking into
account Eq. (29), giving[

∂vH (t)

∂vH (0)

]
s

= e−γ v̄s
̄

t . (B9)

Then, by substituting Eq. (B8) into Eq. (B7) and defining
c̃ = v/v̄s , we have

n̄

v̄H (t)d
χ

[
v

v̄H (t)
,

v̄s

v̄H (t)

]
− n̄

v̄d
s

χs

(
v
v̄s

)
≈ − n̄

v̄d
s

{
∂

∂ c̃
· [̃cχs (̃c)] + ∂

∂β
χ (̃c,β)

∣∣∣∣
β=1

}
× e−γ v̄s

̄
t v̄H (0) − v̄s

v̄s
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GARCÍA DE SORIA, MAYNAR, AND TRIZAC PHYSICAL REVIEW E 87, 022201 (2013)

≈ − n

vd
s

{
∂

∂c
· [cχs(c)] + ∂

∂β
χ (c,β)

∣∣∣∣
β=1

}
× e−γ vs


t

[
δvH (0)

vs

+ 1

3

δn

n

]
, (B10)

where we have substituted n̄ by n and v̄s by vs (that can be
done to linear order) and we have used that

v̄H (0) − vs + vs − v̄s

vs

= δvH (0)

vs

+ 1

3

δn

n
. (B11)

Taking into account (B6) and (B10), we finally arrive at the
result reported in the main text for u = 0,

δχ (c,s)

= δn

n

[
χs(c) + 1

3

∂

∂c
· [cχs(c)]

]
−

[
δn

3n
+ δvH (0)

vs

]
e−γ s

×
[

∂

∂c
· [cχs(c)] + ∂

∂β
χ (c,β)

∣∣∣∣
β=1

]
. (B12)

APPENDIX C: EVALUATION OF THE FLUXES
TO FIRST ORDER IN k

In this Appendix, we evaluate the fluxes given by Eq. (73)
to first order in k. The function Qδχk fulfills Eq. (68) and can
be integrated formally as

Qδχk(c,s) = eQ(�−ik·c)sQδχk(c,0)

−
∫ s

0
ds ′eQ(�−ik·c)Q(s−s ′)Qik · cPδχk(c,s ′).

(C1)

Choosing the initial condition in the hydrodynamic subspace,
i.e., Qδχk(c,0) = 0, and neglecting the k contribution in the
kinetic modes, we have

Qδχk(c,s) ≈ −
∫ s

0
ds ′eQ�Q(s−s ′)Qik · cPδχk(c,s ′). (C2)

Inserting the above equation into the expression of the pressure
tensor and taking into account that∫

dc�jp(c)Q�(c)Qh(c) =
∫

dc�jp(c)�(c)h(c), (C3)

we obtain that

�k,jp(s) ≈ −
∫

dc�jp(c)
∫ s

0
ds ′e�(s−s ′)ik · cPδχk(c,s ′)

= −
∫

dc�jp(c)
∫ s

0
ds ′e�(s−s ′)ik

· c
d+2∑
β=1

〈ξ̄β(c)|δχk(c,s ′)〉ξβ(c)

= −
∑

r

∑
q

ikr

∫ s

0
ds ′wk,q(s ′)

×
∫

dc�jp(c)e�(s−s ′)crξ2,q(c), (C4)

where we have taken into account that there is no coupling with
the density nor with the temperature. Finally, by symmetry

considerations, we arrive at the expression used in the main
text,

�k,jp(s) ≈ −i

∫ s

0
ds ′Gxy(s − s ′)[kjwk,p(s ′) + kpwk,j (s ′)

− 2

d
δjpk · wk(s ′)], (C5)

where

Gxy(s) =
∫

dc�xy(c)e�scxξ2,y(c). (C6)

To evaluate the heat flux to first order in k, we substitute
expression (C2) into the heat flux and. taking into account∫

dc�j (c)Q�(c)Qh(c) =
∫

dc�j (c)�(c)h(c), (C7)

we obtain

φk,j (s) ≈ −
∫

dc�j (c)
∫ s

0
ds ′e�(s−s ′)ik · cPδχk(c,s ′)

= −
∫

dc�j (c)
∫ s

0
ds ′e�(s−s ′)ik

· c
d+2∑
β=1

〈ξ̄β(c)|δχk(c,s ′)〉ξβ(c)

= −ikj

∫
dc�j (c)

∫ s

0
ds ′e�(s−s ′)cj

× [〈ξ̄1(c)|δχk(c,s ′)〉ξ1(c) + 〈ξ̄3(c)|δχk(c,s ′)〉ξ3(c)],

(C8)

where we have used that there is no coupling with the flow
velocity. Finally, taking into account Eqs. (62) and (64) and
symmetry considerations, we arrive at the expression of the
main text,

φk,j (s) = −ikj

∫ s

0
ds ′

{
ρk(s ′)

[
H1(s − s ′) + 1

3
H3(s − s ′)

]
+ 1

2
θk(s ′)H3(s − s ′)

}
, (C9)

where

Hj (s) =
∫

dc�x(c)e�scxξj (c), j = 1,3. (C10)

APPENDIX D: EVALUATION OF THE COOLING
RATE TO SECOND ORDER IN k

We work out here the cooling rate given by Eq. (75)
to second order in k. As in Appendix C, choosing an
initial condition with Qδχk(c,0) = 0, and neglecting the k

contribution in the kinetic modes, we have to k2 order in the
hydrodynamic fields

Qδχk(c,s)

≈ −
∫ s

0
ds ′eQ�Q(s−s ′)Qik · cPδχk(c,s ′)

−
∫ s

0
ds ′

∫ s−s ′

0
ds ′′Qe�(s−s ′−s ′′)k · cQe�s ′′

k · cPδχk(c,s ′),

(D1)
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where the identity for any two operators A and B

e(A+B)t = eAt +
∫ t

0
dt ′eA(t−t ′)Be(A+B)t ′ , (D2)

has been used in order to perform the expansion. The first term
of the right-hand side of (D1) is the first order in k contribution,
Qδχk(c,s)(1), calculated in Appendix C, while the second term
is the k2 contribution, Qδχk(c,s)(2). By substituting (D1) into
(75) the cooling rate to k2 order is obtained. The first order
contribution is

δζ
(1)
k (s) = −

∫
dc

2c2

d
�(c)

∫ s

0
ds ′Qe�(s−s ′)ik · cPδχk(c,s ′)

= −2〈ξ̄3(c)|�(c)
∫ s

0
ds ′Qe�(s−s ′)ik · cPδχk(c,s ′)〉,

(D3)

where we have used Eq. (53). Taking into account that

〈ξ̄3(c)|�(c)Qh(c)〉 = 〈ξ̄3(c)|[�(c) − λ3]h(c)〉, (D4)

it can be rewritten as

δζ
(1)
k (s)

= −2〈ξ̄3(c)|[�(c) − λ3]
∫ s

0
ds ′e�(s−s ′)ik · cPδχk(c,s ′)〉

= −2i
∑

p

kp

∫ s

0
ds ′wk,p(s ′)〈ξ̄3(c)|

× [�(c) − λ3]e�(s−s ′)cpξ2,p(c)〉, (D5)

where we have used that, by symmetry considerations, there is
only coupling with the flow velocity. Finally, we can transform
(D5) to write it as in the main text

δζk(s)(1) = −2i

∫ s

0
ds ′k · wk(s ′)Z(s − s ′), (D6)

where

Z(s) = 〈ξ̄3(c)|[�(c) − λ3]e�scxξ2,x(c)〉. (D7)

By similar manipulations, the second order in k contribution
can be written as

δζ
(2)
k (s) = −2〈ξ̄3(c)|[�(c) − λ3]

∫ s

0
ds ′

∫ s−s ′

0
ds ′′e�(s−s ′−s ′′)k · cQe�s ′′

k · cPδχk(c,s ′)〉

= −2〈ξ̄3(c)|[�(c) − λ3]
∫ s

0
ds ′

∫ s−s ′

0
ds ′′e�(s−s ′−s ′′)k · cQe�s ′′

k · c[ρk(s ′)ξ1(c) + 〈ξ̄3(c)|δχk(c,s ′)〉ξ3(c)]〉

= −2k2〈ξ̄3(c)|[�(c) − λ3]
∫ s

0
ds ′

∫ s−s ′

0
ds ′′e�(s−s ′−s ′′)cxQe�s ′′

cx[ρk(s ′)ξ1(c) + 〈ξ̄3(c)|δχk(c,s ′)〉ξ3(c)]〉, (D8)

which can be recast as

δζ
(2)
k (s) = −2k2

∫ s

0
ds ′[ρk(s ′)Z1(s − s ′)

+〈ξ̄3(c)|δχk(c,s ′)〉Z3(s − s ′)], (D9)

where

Zj (s) = 〈ξ̄3(c)|[�(c) − λ3]
∫ s

0
ds ′e�(s−s ′)cxQe�s ′

cxξj (c)〉,
j = 1,3. (D10)

or, as written in the main text,

δζ
(2)
k (s) = −2k2

∫ s

0
ds ′

{
ρk(s ′)

[
Z1(s − s ′) + 1

3
Z3(s − s ′)

]
+1

2
θk(s ′)Z3(s − s ′)

}
. (D11)

APPENDIX E: ANALYSIS OF THE EQUATION
FOR THE TRANSVERSAL VELOCITY

In Laplace space, the transversal velocity is given by
Eq. (92),

w̄k,⊥(z) = wk,⊥(0)

z + k2Ḡxy(z)
, (E1)

where we have skipped the superscript j . This formula depends
on Ḡxy(z) that, in principle, can be a complicated object. We
already know that in real time it decays with the kinetic modes
and in the free-cooling case it has been shown numerically
that it is very well fitted by a single exponential (single
mode approximation). Let us consider this simple form for
the general case can be performed in a similar way. In this
approximation, we have

Gxy(s) = Ce−λs, Ḡxy(z) = C

z + λ
, (E2)

and Eq. (E1) is just

w̄k,⊥(z) = wk,⊥(0)(z + λ)

z(z + λ) + Ck2
, (E3)
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which can be inverted exactly in terms of two exponentials
[49]. The function given by Eq. (E3) has the two poles

z1(k) = −λ + √
λ2 − 4Ck2

2
≈ −C

λ
k2, (E4)

z2(k) = −λ − √
λ2 − 4Ck2

2
≈ −λ + C

λ
k2, (E5)

and it can be written as

w̄k,⊥(z) = A(k)

z − z1(k)
+ B(k)

z − z2(k)
. (E6)

We then have

wk,⊥(0)(z + λ)

= A(k)[z − z2(k)] + B(k)[z − z1(k)]

≈ A(k)

(
z + λ − C

λ
k2

)
+ B(k)

(
z + C

λ
k2

)
, (E7)

with which we identify the constant A and B to zeroth order
in k,

A ≈ wk,⊥(0), B ≈ 0. (E8)

With Eqs. (E6) and (E8) we obtain the expression for the
transversal velocity of the main text, Eq. (96),

wk,⊥(s) ≈ wk,⊥(0)e−ηk2s , (E9)

with

η = C

λ
=

∫ ∞

0
dsGxy(s). (E10)

If the function Gxy(s) is a linear combination of kinetic
modes, the analysis can be performed following the same lines
obtaining Eq. (E9) with η = ∫ ∞

0 dsGxy(s).

APPENDIX F: ANALYSIS OF THE COUPLED
HYDRODYNAMIC EQUATIONS

We evaluate here the asymptotic behavior of Eq. (93),

[zI + A(k,z)]

⎛⎜⎝ ρ̄k(z)

w̄k,||(z)

θ̄k(z)

⎞⎟⎠ =

⎛⎜⎝ ρk(0)

wk,||(0)

θk(0)

⎞⎟⎠ , (F1)

in the hydrodynamic limit. The matrix A(k,z) is given in
Eq. (94) and can be written as

A(k,z) = A0 + ikA1(z) + k2A2(z), (F2)

where

A0 =

⎛⎜⎝ 0 0 0

0 0 0
2
3γ 0 γ

⎞⎟⎠ , A1(z) =

⎛⎜⎝0 1 0
1
2 0 1

2

0 q̄(z) 0

⎞⎟⎠ , (F3)

A2(z) =

⎛⎜⎝ 0 0 0

0 2 d−1
d

Ḡxy(z) 0
2
d
Ḡ1(z) 0 2

d
Ḡ3(z)

⎞⎟⎠ . (F4)

In terms of the eigenvalues and eigenfunctions of the matrix
A(k,z)

A(k,z)|ψβ(k,z)〉 = aβ(k,z)|ψβ(k,z)〉, (F5)

the solution can be written explicitly as

|ȳ(k,z)〉 = [zI + A(k,z)]−1|y(k,0)〉

=
3∑

β=1

〈ψ̄β(k,z)|y(k,0)〉
z + aβ(k,z)

|ψβ(k,z)〉, (F6)

where we have introduced the notation

|y(k,s)〉 ≡

⎛⎜⎝ ρk(s)

wk,||(s)

θk(s)

⎞⎟⎠ , |ȳ(k,z)〉 ≡

⎛⎜⎝ ρ̄k(z)

w̄k,||(z)

θ̄k(z)

⎞⎟⎠ , (F7)

and the functions {〈ψ̄β(k,z)|}3
β=1 are the left eigenfunctions of

A(k,z). Let us introduce the expansion in powers of k of the
eigenvalues and eigenfunctions

|ψβ(k,z)〉 = ∣∣ψ (0)
β (z)

〉 + k
∣∣ψ (1)

β (z)
〉 + k2

∣∣ψ (2)
β (z)

〉 + · · · , (F8)

aβ(k,z) = a
(0)
β (z) + ka

(1)
β (z) + k2a

(2)
β (z) + · · · . (F9)

In the hydrodynamic limit, and applying the same ideas as in
Appendix E, we obtain

|ȳ(k,z)〉 ≈
∑

β

〈φβ |y(k,0)〉
z − λβ(k)

∣∣ψ (0)
β

〉
, (F10)

where {λβ(k)}3
β=1 are the hydrodynamic eigenvalues that

appear as the smallest root of equation z + aβ (k,z) = 0. The
set {〈φβ |}3

β=1 is the biorthogonal set constructed to have

〈φβ |ψ (0)
β ′ 〉 = δβ,β ′ . The problem is then to calculate the sets

{|ψ (0)
β 〉}3

β=1, {〈φβ |}3
β=1 and {aβ(k,z)}3

β=1. As {λβ(k)}3
β=1 is

needed to k2 order, {aβ(k,z)}3
β=1 have to be calculated at the

same order, which can be done by use of standard perturbation
theory.

The eigenvalues of A0 can be easily calculated, obtaining

a
(0)
1 = a

(0)
2 = 0, a

(0)
3 = γ, (F11)

so the vanishing eigenvalue is twofold degenerate. The
corresponding eigenfunctions are

|u1〉 =

⎛⎜⎝ 3

0

−2

⎞⎟⎠ , |u2〉 =

⎛⎜⎝ 3

1

−2

⎞⎟⎠ , |u3〉 = ∣∣ψ (0)
3

〉 =

⎛⎜⎝0

0

1

⎞⎟⎠ ,

(F12)

and the biorthogonal set is

〈v1| = (
1
3 ,−1,0

)
, 〈v2| = (0,1,0) , 〈v3| = 〈φ3| = (

2
3 ,0,1

)
.

(F13)

In the nondegenerate case, the first contributions to the
expansion are

a
(1)
3 (z) = 〈v3|iA1|u3〉 = 0 (F14)

and

a
(2)
3 (z) = 〈v3|A2|u3〉 + 1

γ

∑
n=3

〈vn|iA1|u3〉〈v3|iA1|un〉

= 2

d
Ḡ3(z) − 1

3γ
− q(z)

2γ
, (F15)
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so we have

a3(k,z) ≈ γ +
[

2

d
Ḡ3(z) − 1

3γ
− q(z)

2γ

]
k2. (F16)

For the degenerate case, we first have to consider the submatrix

iA
(S)
1 (z) =

(〈v1|iA1|u1〉 〈v1|iA1|u2〉
〈v2|iA1|u1〉 〈v2|iA1|u2〉

)
= i

(
− 1

2 − 1
6

1
2

1
2

)
.

(F17)

Its eigenvalues are the first-order correction of the degenerate
eigenvalues

a
(1)
1 (z) = − i√

6
, a

(1)
2 (z) = i√

6
, (F18)

and its eigenfunctions give us the components of the corre-
sponding zeroth-order eigenfunction,(〈

v1

∣∣ψ (0)
1

〉〈
v2

∣∣ψ (0)
1

〉) =
(

−1 −
√

2
3

1

)
,

(F19)(〈
v1

∣∣ψ (0)
2

〉〈
v2

∣∣ψ (0)
2

〉) =
(

−1 +
√

2
3

1

)
,

so

∣∣ψ (0)
1

〉 =

⎛⎜⎝−6√
6

4

⎞⎟⎠ ,
∣∣ψ (0)

2

〉 =

⎛⎜⎝ 6√
6

−4

⎞⎟⎠ , (F20)

which do not depend on z. The corresponding biorthogonal
functions can also be calculated, obtaining

〈φ1| =
(

− 1

12
,

1

2
√

6
,0

)
, 〈φ2| =

(
1

12
,

1

2
√

6
,0

)
. (F21)

With these functions, the k2 corrections to the degenerate
eigenvalues follow from straightforward calculations,

a
(2)
1 (z) = 〈φ1|A2

∣∣ψ (0)
1

〉 − 1

γ
〈φ3|iA1

∣∣ψ (0)
1

〉〈φ1|iA1

∣∣ψ (0)
3

〉
= d − 1

d
Ḡxy(z) + 1

4γ

[
2

3
+ q(z)

]
(F22)

and

a
(2)
2 (z) = 〈φ2|A2

∣∣ψ (0)
2

〉 − 1

γ
〈φ3|iA1

∣∣ψ (0)
2

〉〈φ2|iA1

∣∣ψ (0)
3

〉
= d − 1

d
Ḡxy(z) + 1

4γ

[
2

3
+ q(z)

]
, (F23)

so we have

a1(k,z) ≈ − i√
6
k +

[
d − 1

d
Ḡxy(z) + 1

6γ
+ q(z)

4γ

]
k2,

(F24)

a2(k,z) ≈ + i√
6
k +

[
d − 1

d
Ḡxy(z) + 1

6γ
+ q(z)

4γ

]
k2.

(F25)

The smallest root of z + aβ(k,z) = 0, with aβ(k,z) given
by Eqs. (F24), (F25), and (F16), are the hydrodynamic
eigenvalues given in the main text, i.e., Eqs. (103)–(105).

APPENDIX G: EVALUATION OF
THE KINETIC EIGENVALUES

Let us assume

�+(c)χs(c)�jp(c) ≈ λ
(1)
NHχs(c)�jp(c). (G1)

Multiplying by cxcy and integrating we obtain

λ
(1)
NH

∫
dcc2

xc
2
yχs(c) =

∫
dccxcy�

+(c)χs(c)cxcy

=
∫

dccxcy�(c)χs(c)cxcy, (G2)

so we have

λ
(1)
NH = 4

1 + as
2

I1, I1 =
∫

dccxcy�(c)χs(c)cxcy. (G3)

The heating does not contribute to the integral I1 and we have

I1 =
∫

dc1

∫
dc2c1xc1yT̄0(c1,c2)(1 + P12)χs(c1)χs(c2)c1xc1y.

(G4)

Taking into account

(bσ − 1)(c1xc1y + c2xc2y)

= (1 + α)2

2
(σ̂ · c12)2σ̂x σ̂y

− 1 + α

2
(σ̂ · c12)(c12y σ̂x + c12x σ̂y), (G5)

and the solid angle integrals∫
dσ̂�(σ̂ · c12)(σ̂ · c12)3σ̂x σ̂y = 3π

d−1
2

2

(

d+5
2

)c12c12xc12y, (G6)

∫
dσ̂�(σ̂ · c12)(σ̂ · c12)2σ̂j = π

d−1
2



(

d+3
2

)c12c12j , (G7)

we finally obtain

I1 =
[

3(1 + α)2

4

(

d+5
2

) − 1 + α



(

d+3
2

)]
π

d−1
2

∫
dc1

×
∫

dc2χs(c1)χs(c2)c1xc1yc12c12xc12y

= − (2d + 3 − 3α)(1 + α)π
d−1

2

2
√

2d(d + 2)
(d/2)

(
1 + 23

16
as

2

)
, (G8)

where the last integral has been performed with χs(c) in the
first Sonine approximation.

To calculate λ
(2)
NH, we multiply

�+(c)χs(c)�j (c) ≈ λ
(2)
NHχs(c)�j (c) (G9)

by cx and proceed with an integration over c to obtain

λ
(2)
NH = 4

(d + 2)as
2

I2, I2 =
∫

dccxc
2�(c)χs(c)cx. (G10)

The heating contribution to I2 is simply

I
(H )
2 =

∫
dccxc

2 ξ̃ 2

2

∂2

∂c2
χs(c)cx = d + 2

2
ξ̃ 2, (G11)
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where ξ̃ 2 is given in Eq. (38) and the collisional term is

I
(C)
2 =

∫
dc1c1xc

2
1

∫
dc2T̄0(c1,c2)(1 + P12)χs(c1)χs(c2)c1x.

(G12)

Taking into account

(bσ − 1)
(
c2

1c1x + c2
2c2x

)
=

(
1 + α

2

)2

(σ̂ · c12)2[c1x + c2x + 2(σ̂ · c1)σ̂x

+ 2(σ̂ · c2)σ̂x] − 1 + α

2
(σ̂ · c12)

[
c2

1σ̂x − c2
2σ̂x

+ 2(σ̂ · c1)c1x − 2(σ̂ · c2)c2x

]
, (G13)

and the solid angle integrals∫
dσ̂�(σ̂ · c12)(σ̂ · c12)3 = π

d−1
2



(

d+3
2

)c3
12, (G14)∫

dσ̂�(σ̂ · c12)(σ̂ · c12)3(σ̂ · c1)σ̂x

= π
d−1

2

2

(

d+5
2

) [
c3

12c1x + 3c12c12x(c1 · c12)
]
, (G15)

we have

I
(C)
2 = (1 + α)π

d−1
2

2

(

d+3
2

) ∫
dc1

∫
dc2χs(c1)χs(c2)c1xF(c1,c2),

(G16)

where

F(c1,c2) = 1 + α

d + 3

[
c3

12(c1x + c2x) + 3c12c12x(c1 + c2) · c12
]

− (
c2

1 − c2
2

)
c12c12x + 1 + α

2
c3

12(c1x + c2x)

+ 2c12[(c12 · c2)c2x − (c12 · c1)c1x]. (G17)

Evaluating the integral in the first Sonine approximation we
get

I
(C)
2 = − (1 + α)π

d−1
2

32
√

2d
(d/2)

{
(32 + 16d)(1 − α)

+ as
2[70 + 47d − 3(34 + 5d)α]

}
. (G18)

The eigenvalue can be finally written as

λ
(2)
NH = 4

(d + 2)as
2

(
d + 2

2
ξ̃ 2 + I

(C)
2

)
. (G19)

Let us note that the numerator goes as as
2 in the elastic limit,

so a finite result is obtained in that limit.
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