
Analytical Circuit Model for Stacked Slit Gratings 

Carlos Molero*, Raul Rodrfguez-Berral*, Francisco Mesa*, Francisco Medinat, and Alexander B. Yakovlev+ 

*Dept. of Applied Physics 1, University of Sevilla, 41012 Seville, Spain. 

Email: mesa@us.es 
tDept. of Electronics and Electromagnetism, University of Sevilla, 41012 Seville, Spain. 

Email: medina@us.es 
+ Dept. of Electrical Engineering, The University of Mississippi, University, MS 38677 USA. 

Email: yakovlev@olemiss.edu 

Abstract-This work presents a rigorous circuit model to 
compute the transmission/reflection properties of a finite number 
of stacked slit gratings printed on dielectric slabs of arbitrary 
thickness. A key aspect of the present approach is that the circuit 
model itself leads us to find fully analytical expressions for the 
finite stacked-grating structure. An analytical model to obtain 
the Brillouin diagram for the fully periodic structure (infinite 
number of identical unit cells) is also provided. 

Index Terms-Bloch waves, equivalent circuit modeling, metal 
gratings, periodic structures. 

I. INTRODUCTION 

Periodic structures consisting of planar periodic distribu

tions of metallic scatterers printed on one or more dielectric 

substrates have been studied for decades in the microwaves 

and optics literature [1], [2]. The simplest case corresponds to 

an infinite 1D periodic array of slits made in a thin metal plate 

printed on a dielectric slab [3]-[5]. Nowadays, the analysis of 

this kind of structures is mostly carried out using commercial 

software, although recently a lot of attention is being paid in 

the literature to the development of circuit-like models [6], 

[7]. These models provide closed-form analytical expressions 

for the transmission, reflection and absorption properties of 

that kind of geometries; see, for instance, the quasi-heuristic 

approaches for 2D arrays of slots in [8], for 2D arrays of 

patches in [9] or for strip/slit-like structures in [10], as well 

as the rigorous circuit-model derivation in [11] for 1D arrays 

of strips/slits. It should be noted that all the above mentioned 

papers only consider the case of a single structured periodic 

metallic surface (the periodicity is assumed to be in the 

transverse directions). The extension of the circuit-like models 

to the case of cascaded (stacked) structured surfaces is of 

great interest [see Fig. l(a)]. Thus, for instance, controlled 

transmission and rejection bands appear associated with the 

quasi-periodic nature of the system along the propagation 

direction of the wave when Cl = C2 = . . .  = CN and 

d1 = d2 = . . .  = d N. This extension is relatively simple when 

the distance between the structured metal surfaces is large 

enough to preclude high-order mode interaction (i.e., when the 

interaction between metallic surfaces is due to the fundamental 

TEM propagating mode) [12]. However, interaction through 

the first few high-order modes drastically modifies the physics 

of the problem and makes the analysis much more compli

cated. The purpose of the present contribution is to present a 

simple and efficient procedure to extend the analysis reported 

in [11] in order to account for the electromagnetic properties 

of a densely packaged set of slit-like structures consisting 

of a finite (or infinite) number of screens [Fig. 1 (a)]. To the 

authors' knowledge, a closed-form solution to this problem is 

here reported for the first time. 

II. DERIVATION OF THE CIRCUIT MODEL 

Before addressing the case of the stacked gratings in 

Fig. l(a), it will be first considered the problem of two coupled 

gratings shown in Fig. l(b). An equivalent circuit solution for 

this problem was already reported in [11], where fully analyt

ical circuit models are given for the even and odd excitations 

of the symmetric structure, corresponding respectively to the 

magnetic and electric wall half-problems shown in Fig. l(c). 

For the case of TM polarization of the incident wave (TE

polarized waves hardly interact with the gratings and thus 

they are not considered here), the equivalent admittance shown 

in Fig. l(c) is found to be [11] 

where 
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with e being the incidence angle of the impinging plane 

wave. At this point, following [11], it is important to realize 

that all the modes excited at the discontinuities (that is, the 

different harmonics) are explicitly considered. It means that 

the present analysis rigorously account for the high-order 

mode interactions between metallic screens. 

Our purpose now is to find the equivalent 1r-network shown 

in Fig. 2(a) that describes the behavior of the coupled-screens 
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Fig. 1. (a) Stacked structure under study. (b) Transverse view of a symmetrical 
structure consisting of two coupled slit gratings with slit width wand period 
p printed on each side of a dielectric slab of permittivity q = OrIOO and 
thickness dl. (c) Equivalent even/odd excitation (magnetic/electric wall) half
problems and their equivalent circuits. 
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Fig. 2. (a) Equivalent circuit for the structure in Fig. l(b), in which the coupled 
screens are represented by a 1r-network. (b) and (c) show the corresponding 
equivalent circuits for the even and odd excitation of the circuit in (a), 
respectively. 

structure in Fig. l(b). By placing open and short circuit ter

minations in the middle plane of this 7r circuit, the resulting 

equivalent circuits for the even and odd excitations are those 

shown in Figs. 2(b) and 2(c), respectively. By comparison with 

Fig. l(c), it is clear that the parallel and series admittances in 

the 7r-circuit can readily be obtained from the even and odd 

excitation equivalent admittances as 
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Fig. 3. (a) Equivalent circuit for the coupled gratings in Fig. I(b), showing the 

decomposition of the parallel element into an external admittance Yp(O) and 

an internal admittance Yp(I) (b) Equivalent circuit for four stacked screens. 
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where the prime means that the fundamental harmonic n = 0 
(namely, the harmonic associated with the impinging, re

flected, and transmitted plane waves) is excluded in the series. 

In principle, the admittances in (8) and (9) involve an infinite 

number of terms (i.e., a parallel connection of an infinite 

number of elements). However, the same approximation used 

in [11] to separate the contribution of low- and high-order 

harmonics can be used here. Thus, each of the above series 

can be split into a sum of a few low-order term plus a so-called 

"high-order" admittance that incorporates the contribution of 

all the remaining high order harmonics. This high-order admit

tance is given in terms of an infinite series that is independent 

of both frequency and incidence angle, and thus it should be 

computed only once in an eventual and usual frequency/angle 

sweeping analysis. 

Now it is key to note that the series admittance in (9), 

Ys, only depends on the characteristics of the medium in 

region (1) between the gratings (internal region). In turn, the 

parallel admittance in (8) can be written as the sum of an 

external admittance, Yp(O), and an internal admittance, Yp(l), 
as depicted in Fig. 3(a). As shown in this figure, the equivalent 

circuit consists of an internal 7r-circuit (formed by Ys and 

Ys(l» which is connected to the parallel admittances Ys(O) that 

account for the field associated with the high-order harmonics 

(Inl > 0) in the external region and also to the transmission 
lines associated with the propagation of the impinging, re

flected, and transmitted waves (harmonics with n = 0). This 

representation clearly suggests that, by cascading the building 

blocks corresponding to the internal 7r-circuits, it is possible to 

obtain a generalized circuit model for a stack with an arbitrary 

number of gratings. This idea is illustrated in Fig. 3(b) for 

the case of four screens (three dielectric slabs). The more 

general case with different dielectric slabs (either in thickness, 

permittivity, or both) separating each consecutive metallic 

screens is considered in the analysis by simply introducing 

the corresponding values of the thickness and/or permittivity 
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Fig. 4. Transmission coefficient of a TM-polarized plane wave obliquely 
(8 = 20°) impinging on a structure consisting of three slit gratings separated 
by two different dielectric layers. Parameters: w = 0.5 mm, P = 5 mm, 
d1 = 2 mm, E1 = 2.2Eo, d2 = 1.5 mm, and E2 = 4Eo. 

in the admittances of each 7r-circuit building block. 

Finally, it is interesting to note that the equivalent circuit 

derived here also allows for an straightforward computation of 

the dispersion relation of the Bloch modes in the ideal infinite 

stack. Following [13], the dispersion relation is given by 

yy) cos(j3d) = 1 + � . 
III. NUMERICAL RESULTS 

(10) 

First, a finite stack with three slit gratings separated by two 

different dielectric layers is considered. Our analytical results 

for the transmission coefficient of a TM-polarized plane wave 

that impinges obliquely on this structure are shown in Fig. 4 

together with the data provided by the commercial software 

HFSS [14]. The figure shows that the agreement between 

our results and HFSS data is very good over a very wide 

frequency band, even well within the grating-lobe regime (the 

onset of the grating-lobe regime takes place at 44.7 GHz). It 

is important to highlight that, due to the analytical nature of 

our model, our results are computed with an almost negligible 

computational effort while the results provided by HFSS 

require a considerable amount of CPU time. 

Next, Fig. 5 shows the Brillouin diagram obtained using 

the circuit-model approach for an infinite longitudinal periodic 

stack of slit gratings separated by a dielectric substrate. The 

considered frequency range extends up to fe = clp [c is the 

speed of light in free space]; namely, the frequency at which 

the free-space wavelength equals the value of the periodicity. 

This dispersion diagram shows five passbands and four stop 

bands (shaded regions in Fig. 5). The first three passbands are 

of forward nature whereas the last two passbands are back

ward. When this ideal infinitely periodic structure is simulated 

with a finite stack of six slit gratings (five dielectric layers), 

it can be observed in Fig. 6 that the transmission coefficient 
already follows the pass bands and stopbands pattern described 

by the dispersion diagram in Fig. 5. Once again, our results are 

in very good agreement with those provided by HFSS. 
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Fig. 5. Brillouin diagram of an infinite (z-periodic) slit grating structure. The 
parameters of the unit cell are: w = O.lp, d1 = 0.2p, q = 9EO. The upper 
frequency limit is Ie = elp, with e being the speed of light in vacuum. 
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Fig. 6. Circuit-model (solid line) and HFSS (circles) results for the trans
mission coefficient (in dB) of a normally incident TM-polarized plane wave 
impinging on a finite set of 6 stacked slit gratings. The unit cell is the same as 
in Fig. 5. The shaded frequency regions correspond to the stopbands in Fig. 5. 

IV. CONCLUSION 

A fully analytical circuit-model approach to study the 

scattering and dispersion characteristics of periodic and quasi

periodic stacks of slit gratings embedded in a layered dielectric 

environment has been reported. The equivalent circuit accounts 

for the interaction of all the modes and is rigorously derived 

from the analysis of a pair of coupled slit gratings. The model 

has been found to be very accurate over a very wide frequency 

band. The procedure here presented can be extended to stacked 

2-D periodic structures. 
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