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Control of the chaotic behavior of a chemical system can be achieved perturbing periodically some
control parameters of the system. This procedure based on external forcing, which is based on the
phenomenon of resonance, can change a chaotic behavior into a periodical one by means of the
application of a sinusoidal perturbation. In this paper, the influence of a periodical modulation added
to the parameter controlling the oxygen adsorption rate in a cellular automaton �CA� model studying
CO oxidation is analyzed. This CA model considers the oxidation reaction of CO on a catalytic
surface, taking into account the catalyst temperature variation in order to analyze the reaction time
oscillatory behavior. Simulations of the CA model exhibit chaotic and quasiperiodical behaviors,
and it can be shown that the periodical forcing strategy can suppress the chaotic dynamics by means
of the stabilization of periodical solutions. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2141957�

I. INTRODUCTION

Periodical forcing of the kinetics of a reaction by means
of the variation of some external parameters such as, for
example, the rate of a chemical process or the bath tempera-
ture, is one of the most commonly used tools in basic and
applied studies of heterogeneous catalytic reactions.1 Thus,
in experiments focused on the study of catalytic oscillatory
reactions, periodic perturbations are used to stabilize oscilla-
tions of period 1 �P1�. This can be easily achieved if the
external and internal frequencies coincide. In fact, chemical
reactions showing P1 oscillations can exhibit complex be-
havior, including a double period and an irregular kinetics,
when external forcing is applied, which points out that the
external and internal frequencies are not the same. The aim
of the external forcing method is to stabilize unstable peri-
odical orbits contained in the chaotic attractors of the system.

Oxidation of CO by O on catalytic metal, of the type Pt
or Pd, is one of the most frequently studied catalytic reac-
tions. This reaction, as a good example of a system far from
thermodynamic equilibrium, exhibits kinetic phase transi-
tions, bistability, and therefore hysteresis associated with it,
and a rich variety of oscillatory behavior ranging from peri-
odical form to quasiperiodical and chaotic ones.

Most models proposed to describe oscillatory evolutions
in CO oxidation involve nonlinearities of a different nature.
So there are models in which the catalyst temperature can
stay at a value different from the room temperature, due to
the reaction heats generated on the catalytic surface on which
the reaction taking place can spread on this surface more
quickly than the heat dissipated to the room, which results in
an increase in the catalyst temperature. These oscillations are
called thermokinetic—so that they can be distinguished from
the isothermal ones, in which the temperature of the surface
is constant—and are produced by a strong nonlinear depen-

dence on the reaction rate on surface temperature. These
changes in temperature in a reaction can be taken into ac-
count just by means of the addition of an equation describing
the time surface temperature change.

The study of the oscillatory behavior of the CO reaction,
including temperature as a dynamical variable, was per-
formed in previous works by means of simulations carried
out in a cellular automaton �CA�,2,3 obtaining chaotic and
quasiperiodical states.

In this paper we want to show the influence that the
periodical variations in the oxygen adsorption rate have on
the oscillatory behavior of the CO reaction, analyzing the
results of simulations performed with the CA. In Sec. II, the
model of the reaction and a set of preliminary results are
described, in order to analyze, in Sec. III, the periodical
modulation imposed on the system. Finally, in Sec. IV, some
conclusions are summarized.

II. THE MODEL

The model assumes that the reaction takes place accord-
ing to three elemental mechanisms:

CO�gas� → CO�ads� , �1�

O2�gas� → 2O�ads� , �2�

CO�ads� + O�ads� → CO2�gas� , �3�

where �ads� denotes that the particle is adsorbed on the sur-
face. Two adjacent sites are needed for an oxygen molecule
to be adsorbed. When a molecule is adsorbed on the surface,
it remains fixed, and, therefore, surface diffusion is ignored
in this model.

The rate constants ki are chosen, for each of the mecha-
nism quoted above �i=1, 3�, in the Arrhenius form:a�Electronic mail: cordoba@us.es
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ki = Ai exp�−
Ei

kBT
� , �4�

where Ai are the preexponential factors, kB is the Boltzmann
constant, T denotes the surface temperature, and Ei are the
activation energies of the three elemental processes.

In order to study the oscillatory behavior of the reaction,
the model must be complemented by adding an equation
describing the change of the surface temperature due to the
adsorption and reaction processes:

dT

dt
= − ��T − TB� + �

i=l

3

hipi, �5�

where � is the relaxation rate of T towards the room tem-
perature TB , hi are the reaction heats of the processes
�1�–�3�, and pi are the number of processes of type i that take
place per area unit.

The model can generate time oscillatory evolution for
certain values of the set of parameters �Ai ,Ei ,hi ,� ,TB	.

We have set the values A1=5�10−2, A2=4�105, A3

=1, E1=0, E2 /kB=6�103 K, E3=0, h1=150, h2=300, h3

=0, and TB=300 K as room temperature, � being the control
parameter. The previous results obtained from simulations of
the CA are as follows.

• For 0���0.004 there is a state poisoned by oxygen at
TB.

• For 0.005���0.09 there is an aperiodical regime, in
which the surface temperature fluctuates around a value
greater than room temperature, T�TB.

• For 0.10���0.27 there is a quasiperiodic regime, in
which the surface temperature fluctuates around a value
greater than room temperature, T�TB.

• For ��0.28 there is a state poisoned by CO at TB.

Thus, the CA model can describe a variety of behaviors:
quasiperiodical and chaotic regimes, and two states
poisoned.

III. RESULTS OF SIMULATIONS OF THE CA FOR THE
CONTROL OF CHAOS

The CA uses a square lattice with 256�256 sites. Both
the procedure and the transition rules of the automaton are
described in Refs. 2 and 3. The transition probabilities of the
CA depend on the molar fractions of the gaseous reactives,
yCO=k1 / (k1+k2) and yO=k2 / (k1+k2), being yCO+yO=1. Re-
action probabilities between pairs CO–O, process �3�, is as-
sumed to be 1.

In order to control chaos, a perturbation in the frequency
factor A2 of the rate of oxygen adsorption on the catalyst
surface �Eq. �2�� is introduced. We use the sinusoidal func-
tion with only one frequency,

A2p = A2�1 + A cos��t�� , �6�

where A is the normalized amplitude and � is the angular
frequency of the perturbation. Obviously enough, the modu-
lation of variable A2 produces changes in all the surface pro-
cesses.

A systematic variation of A and � will allow us to draw
the kinetic phase diagram of the model, which will show the
dynamical system states and their possible bifurcation points.

In this paper we want to analyze the influence of the
harmonic variations of the oxygen adsorption rate on the
chaotic behavior of the reaction. As a result, the previous
knowledge of the chaotic regions that the CA model presents
are important. Thus, first, we choose the values of the param-
eters �Ai ,Ei ,hi ,TB	 given in Sec. II. Secondly, and taking
into account that our working parameters are A and �, we
must select a range for these parameters.

Figure 1 shows two time series typical of nonperturbed
oscillations of the surface temperature T in the chaotic region
��=0.01� and in the quasiperiodic one ��=0.20�. The
Poincaré maps are built out of the average mutual informa-
tion included in the mathematical program visual recurrence
analysis �VRA�:4,5 the mutual information between the mea-
surement T(t+�) and the measurement T(t) is the quantity

FIG. 1. Time series typical of autonomous oscillations
�without forcing� of the surface temperature T for two
values of the parameter �. These series, obtained by
simulations of the CA, represent a chaotic regime and a
quasiperiodic one, as it can be observed in the Poincaré
maps and the Fourier spectra attached. For �=0.01, the
regime is chaotic: the frequency spectrum is continuous
and we can see the disperse filling of the Poincaré map.
For �=0.20, the Poincaré map represents a quasiperi-
odic behavior with two fundamental frequencies: f0

=0.202 64 Hz and f1=0.392 58 Hz, the third peak cor-
responding to a harmonic of the first fundamental fre-
quency, 2f0=0.405 27 Hz.
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known by T(t+�) about T(t) for some t. The program VRA

has implemented the study of time series out of the construc-
tion of recurrence graphics and the quantification of magni-
tudes typical of nonlinear dynamics, such as the Shannon
entropy, the maximum Lyapunov exponent, or the spatiotem-
poral entropy. For �=0.01, the regime is chaotic: we find a
disperse filling of the Poincaré map. However, for �=0.20,
the points place themselves over the same perfectly defined
closed curve, indicating thereby a quasiperiodic regime. The
Fourier spectra are obtained in the regular way. We show a
continuous frequency spectrum, such as that corresponding
to the chaotic case, and a discrete spectrum, with three
clearly defined peaks, corresponding to the quasiperiodic
case. This case presents two fundamental frequencies, f0

=0.202 64 Hz and f1=0.392 58 Hz, since the third peak cor-
responds to a harmonic of f0, 0.405 27 Hz �2f0�.

To begin with our study we equal the frequency of the
perturbation �Eq. �6�� with the natural frequency correspond-
ing to the highest peak in the Fourier spectrum of the quasi-
periodic case. That is, as �=2	f , the reference frequency is
�0=2	f0=1.273 22 rad s−1. �Another possibility is advanced
by Kraus et al.,6 who chose as frequency that one corre-
sponding to the highest peak of the Fourier spectrum for the
chaotic case�. Since we want to know if we are able to get a
system out of its chaotic regime, we choose �=0.01, without
changing the values of the following parameters: A1=5
�10−2, A2=4�105, A3=1, E1=0, E2 /kB=6�103 K, E3=0,
h1=150, h2=300, h3=0, and TB=300 K. On the other hand,
since A can range from 0 to 1 and the frequency from high
values to low ones of the nonperturbed frequency �0, we
choose regions of low frequency from the phase diagram in
the model, with �0=1.273 22 rad s−1, A and � being the two
control parameters, in order to analyze the behavior of the
system in the chosen area.

The simulation is carried out in the regular way: we
begin with an empty lattice of 256�256 cells with periodic
boundary conditions, four different series of random num-
bers are used in each simulation to make sure that the results
are valid, and we obtain the output data for each iteration

�time step� carried out for the whole lattice. The output data
represent the temperature of the catalytic surface, T; the frac-
tions of coverage of CO and O, nCO and nO; and the produc-
tion of CO2, R, that is, the number of CO–O pairs that are
formed per area unit and that leave the surface immediately
after their formation. For each pair of values A and �, we
took 5000 time steps to better visualize the oscillations that
occurred at low frequencies.

In order to achieve our goal, we choose a unique output
variable, surface temperature T, as it is the biggest one and,
therefore, the one easiest to control. We discard the 500 first
points in order to eliminate the transitory regime with com-
plete certainty in all cases, and with the rest we calculate the
time average of the temperature and its fluctuation, so that
T= 
T�+
. The analysis of the results is performed over the
fluctuation of temperature 
. Here we have also used the
program VRA. This program, through the construction of re-
currence graphics, qualitatively detects changes in the state
of the evolution of a system.

The kinetic phase diagram of the model is shown in Fig.
2. Here period 1 oscillatory states can be seen along other

FIG. 3. Time evolution of the surface temperature,
Poincaré map, and amplitude spectrum, obtained by
means of the conventional technique of the Fourier
transform, corresponding to the state of �=0.01, �0

=1.273 22 rad s−1, A=0.80, and � /�0=0.005. At this
point, the system shows periodic oscillations of period
1 induced by an external harmonic perturbation.

FIG. 2. Kinetic phase diagram obtained by means of periodic forcing of CA
for the oxidation of CO. �=0.01 and �0=1.273 22 rad s−1.
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behaviors. The smaller the perturbation normalized ampli-
tude, the bigger the range of the external resonant frequen-
cies with the dynamic system. Thus, between the bands
A=0.25 and A=0.30 we find P1 states for all the analyzed
range of frequencies. If the normalized amplitude de-
creases the system goes into chaotic behavior at very low
frequencies.

In order to analyze in detail how the reaction oscillatory
behavior is altered when external modulation changes, we
choose one of the bands typical in the phase diagram �Fig.
2�, A=0.80, so that now � remains as the sole control
parameter.

In Fig. 3 we show the temporal series of T for �
=0.005�0: we only have to impose a low frequency to get
the system to show P1 behavior. Oscillations of temperature
with big amplitudes �around 80 K� can be observed, as well
as, of course, big oscillation periods. The iterative map of the
temperature of the surface T in function of a certain temporal
delay is shown as well, along with the amplitude spectrum
obtained through the conventional technique of the Fourier

transform. For � /�0=0.005, the biggest amplitude peak
takes place at 0.000 98 Hz, although its harmonic at 0.001 95
Hz can be observed too.

Figure 4 shows some time series typical of the tempera-
ture of the surface, T, and the corresponding Poincaré maps
�for the same time delay� and the Fourier spectra for different
external frequency values. �a� �=0, autonomous oscillations
�without forcing� that represent chaotic behavior: erratic tra-
jectories and a continuous frequency spectrum. �b� �
=0.05�0, stable orbit at a low frequency of period 1: trajec-
tories are projected on the same closed curve. �c� �
=0.07�0, stable limit cycle �P1�. Characteristic peaks are ob-
served both in �b� and in �c� when the external perturbation
frequency is resonant with the dynamic system. Resonant
peaks occur in �b�, the maximum amplitude peak being
0.010 25 Hz, and 0.020 26, 0.030 27, and 0.040 53 Hz its
harmonics. For � /�0=0.07 �case �c��, the most intense peak
occurs at a frequency of 0.014 16 Hz. Its harmonics
0.028 32, 0.042 48, and 0.056 64 Hz can also be observed.
Both amplitude spectra correspond to P1 oscillations, as they

FIG. 4. Time series typical of the surface temperature T
and its corresponding iterative maps and Fourier spectra
for different values of the external frequency. �a� �=0,
autonomous oscillations �without forcing� that represent
a chaotic behavior: continuous frequency spectrum. �b�
�=0.05�0, harmonic waves train: stable orbit at a low
frequency. The system presents a discrete frequency
spectrum, with only a fundamental frequency. �c� �
=0.07�0, P1 oscillations: stable limit cycle. �d� �
=0.09�0, irregular and chaotic response. �=0.01, �0

=1.273 22 rad s−1, and A=0.80. The evolutions of the
Poincaré maps and the Fourier spectra show how the
aperiodic behavior of the system in �a� gets stabilized in
the orbits of period 1 in �b� and �c�, showing, finally, an
irregular behavior when the external frequency is in-
creased �case �d��.

FIG. 5. Time evolution of the surface temperature, den-
sities of CO and O, and production of CO2 for � /�0

=0.085 and A=0.80, being �=0.01 and �0

=1.273 22 rad s−1. After regular and irregular behav-
iors, the surface gets poisoned with oxygen atoms and
the temperature of the surface relaxes until it reaches
the room temperature, which ends the reactive process.
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have only one fundamental frequency �submultiple of f0

=0.202 64 Hz� and its corresponding harmonics. For �
=0.09�0 �case �d��, the response is irregular and chaotic. The
evolutions of the Poincaré sections and the amplitude spectra
show how the aperiodic behavior of the system in �a� gets
stabilized in the orbits of P1 in �b� and �c�, showing, finally
in �d�, an irregular behavior when the external frequency is
increased. These results are in qualitative accord with the
experiments and theoretical studies on nonlinear forced os-
cillations in the catalytic oxidation of CO.

Along the chosen band, A=0.80, and after the P1 range,
we find alternation in the behavior of the system. As we
increase �, the system either shows an irregular response or
the catalytic surface gets poisoned with oxygen atoms and
the surface temperature relaxes to room temperature TB, the
reactive process thereby stopping. The transition to the poi-
soned state is shown in Fig. 5, corresponding to � /�0

=0.085. However, as � increases, the system enters again a
chaotic dynamic. Figure 6 shows the system chaotic behavior
for � /�0=0.20 and its corresponding iterative maps obtained
for variables T, nCO, nO, and R from a certain time delay. The
maximum Lyapunov exponent obtained is 0.149 798, posi-
tive exponent as it should be in a chaotic behavior. It can also
be observed that, although the Fourier spectrum corresponds
to a chaotic case, frequency peaks corresponding to f0 are
still maintained. As Kraus et al.6 indicated, this last chaotic
spectrum can be found next to a region of period 1 because it
maintains a big amplitude peak �0.040 53 Hz� and its har-
monics �0.081 05, 0.121 58, and 0.162 11 Hz� in the continu-
ous frequency spectrum. In fact, if the Fourier spectrum in a
chaotic state had two or more fundamental peaks �two or
more independent frequencies�, the period forcing method
would likely coincide with the chaotic state of a periodic

state of periodicity bigger than 1. We have found in the phase
diagram chaotic states of this kind that will have to be per-
turbed with two frequencies.

IV. CONCLUSIONS

In this paper we have shown, starting with the results
obtained from the simulations carried out with the CA, that
the forcing periodic method is able to control chaos by
means of its conversion to periodic and predictable move-
ments. We also show that a perturbing harmonic function of
only one frequency is enough to transform the chaotic state
of the system in periodic states of periodicity 1.

The simplicity of the external forcing method, in con-
trast to other chaos control methods such as that of Pyragas,
which requires the redefinition of the feedback constant of
the system, makes us go deeper into the oscillatory behavior
of the reaction. The construction of the phase diagram can be
extended for other regions of the amplitude and the fre-
quency of the external perturbing function, using the tech-
nique of periodic forcing. Furthermore, a similar analysis can
be performed when the temperature of the room where the
reaction takes place �TB� is perturbed, although the results
taken from the literature show that they are similar to the
ones obtained when the rate or the pressure of the oxygen
adsorption process is perturbed. These two aspects are being
currently analyzed by means of simulations carried out in the
CA model for the study of the reaction of CO, using the
forcing technique.

FIG. 6. Kinetic irregular oscillations
of the surface temperature, densities of
CO and O, and production of CO2, ob-
served by the imposition of the exter-
nal frequency �=0.20�0, with A
=0.80, being �=0.01 and �0

=1.273 22 rad s−1. Also shown are the
chaotic attractor and the frequency
spectrum corresponding to the state
indicated.
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