
applied
sciences

Article

CyberSPL: A Framework for the Verification of
Cybersecurity Policy Compliance of System
Configurations Using Software Product Lines

Ángel Jesús Varela-Vaca * , Rafael M. Gasca , Rafael Ceballos , María Teresa Gómez-López
and Pedro Bernáldez Torres

Departamento de Lenguajes y Sistemas Informáticos, Universidad de Sevilla, 41004 Sevilla, Spain;
gasca@us.es (R.M.G.); ceball@us.es (R.C.); maytegomez@us.es (M.T.G.-L.); pedbertor@alum.us.es (P.B.T.)
* Correspondence: ajvarela@.us.es; Tel.:+34-954556238

Received: 25 September 2019; Accepted: 4 December 2019; Published: 8 December 2019
����������
�������

Abstract: Cybersecurity attacks affect the compliance of cybersecurity policies of the organisations.
Such disadvantages may be due to the absence of security configurations or the use of default
configuration values of software products and systems. The complexity in the configuration of
products and systems is a known challenge in the software industry since it includes a wide range
of parameters to be taken into account. In other contexts, the configuration problems are solved
using Software Product Lines. This is the reason why in this article the framework Cybersecurity
Software Product Line (CyberSPL) is proposed. CyberSPL is based on a methodology to design
product lines to verify cybersecurity policies according to the possible configurations. The patterns
to configure the systems related to the cybersecurity aspects are grouped by defining various
feature models. The automated analysis of these models allows us to diagnose possible problems in
the security configurations, reducing or avoiding them. As support for this proposal, a multi-user
and multi-platform solution has been implemented, enabling setting a catalogue of public or private
feature models. Moreover, analysis and reasoning mechanisms have been integrated to obtain all
the configurations of a model, to detect if a configuration is valid or not, including the root cause of
problems for a given configuration. For validating the proposal, a real scenario is proposed where
a catalogue of four different feature models is presented. In this scenario, the models have been
analysed, different configurations have been validated, and several configurations with problems
have been diagnosed.

Keywords: configuration; variability; software product line; security policies; compliance; feature models

1. Introduction

There has been a significant increase of cybersecurity attacks during the latest years. Frequently,
these attacks are caused by an absence of proper security configurations [1], or by inappropriate
default configuration values [2,3] of software products and systems that do not follow the
desirable cybersecurity policies. The default configuration or the improper configuration of systems
can unleash critical damages for the organisations as the leak of information [4]. For instance,
the use of default accounts or usernames and passwords is a very common in industry [1,5,6].
In general, the use of default parameters of systems is the first attack vector used for attackers [7].
OWASP project [8] establishes the A6:2017-Security Misconfiguration and A9-Using Components with
Known Vulnerabilities, as two of the top-10 vulnerabilities for Web systems.

Likewise, the complexity in the configuration of systems and products can lead to improper
configurations or misconfigurations [2]. For instance, in access control systems, the improper

Appl. Sci. 2019, 9, 5364; doi:10.3390/app9245364 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-9953-6005
https://orcid.org/0000-0003-2348-7424
https://orcid.org/0000-0001-7144-8011
https://orcid.org/0000-0002-3562-875X
http://dx.doi.org/10.3390/app9245364
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/9/24/5364?type=check_update&version=2

Appl. Sci. 2019, 9, 5364 2 of 28

configuration of rules can derive a granted use of unauthorised resources. The complexity in the
configuration of software products and systems is a known challenge in the software industry.
An example of a configuration tool is KConfig [9], where developers are able to select among more
than 12,000, Linux Kernel configuration options. An incorrect or inappropriate configuration can
trigger security problems, such as attacks due to the use of a non-secure channel configuration in
the communications when the cybersecurity policy establishes a strong security channel. In this
paper, Software Product Lines (SPL) [10], more specifically, the use of variability analysis and feature
analysis techniques (Feature-oriented Domain Analysis, FODA) [11] are the baseline to propose a
solution that facilitates the detection of non-compliance of the cybersecurity policies by the system
configuration. The Carnegie Mellon Software Engineering Institute [12] defines SPL as "a set of
software-intensive systems that share a common, managed set of features satisfying the specific needs
of a particular market segment or mission and that are developed from a common set of core assets
in a prescribed way". Feature models are a specific representation of the products which composes
a SPL. Previous works related to cybersecurity have faced up the problem also using SPL, such
as extracting and selecting the features from the log file [13], applying machine learning to detect
cybersecurity threats, to verify the security mobile application configurations by applying partial
model checking [14], or the feature-oriented approach to the modular construction of fault trees, which
enables reusing the structures of fault propagation roads [15]. However, the automatic verification of
cybersecurity policies according to the possible configuration is still an open problem.

The development of SPL has been frequently analysed by using feature model techniques.
In this article, the use of feature model techniques is proposed to fulfil cybersecurity policies
by checking the appropriate configurations of the software systems and products. Feature models
could be considered as a model-based cybersecurity design, where software products and systems are
designed according to the requirements of cybersecurity design policies.

Feature models [11] are the main concept of the functional decomposition of the product
line approximation. These models will be used for representing the configuration parameters according
to established policies. Moreover, these models allow setting constraints and attributes between
the characteristics of the configurations, as it was proposed in a previous work [16], allowing a
greater expressiveness of dependencies and relationships between the different characteristics related
to cybersecurity.

Once the proper configurations are modelled as a feature model, automatic formal verification
techniques [17] can be applied. These formal verification techniques allow us to know whether or not
they comply with design policies (Detection of configuration failures), and then also identify possible
mistakes in system and product configurations (Diagnosis of configuration failures). The nature of
cybersecurity models is highly context-dependent [18]. Therefore, feature models should be adapted
according to the objectives and the contexts of cybersecurity policies [19].

This article aims to offer a framework that covers the following objectives:

• OBJ1. Provide users with a set of tools for the definition and the maintenance of a catalogue
of cybersecurity policies based on feature models. These policies are associated with different
contexts of software products and systems related to cybersecurity.

• OBJ2. Provide users with a set of tools to obtain properties of feature models. For example,
a property could be the verification of the correctness of the model, that is, to know the
conformance between the products and the model. Another example could be the extraction of all
configurations of products or systems supported by the cybersecurity policy.

• OBJ3. Automate the detection of configuration failures to validate with cybersecurity policies
through the description of features of the different cybersecurity contexts.

• OBJ4. Provide the diagnosis of the established configurations to isolate and identify the
configuration mistakes that cause the non-conformance of the cybersecurity policies.

• OBJ5. Validate the proposal through complex use cases. Such as the configuration of cybersecurity
mechanisms of a web application server.

Appl. Sci. 2019, 9, 5364 3 of 28

In order to verify the proposal, the Design Science Research methodology [20] is used to evaluate it.
The methodology has been previously used in research papers that propose a software artifact to
solve a business problem [21]. In this case, the artifact (CyberSPL) provides mechanisms for verifying
cybersecurity policies according to possible configurations. Design Science Research is formed of six
phases used as a guideline of the structure of this paper: problem identification and motivation that
contextualise the perceived difficulty to manage configurations in cybersecurity, as is presented in
the Introduction; objectives of the proposed solution, analysed comparing previous work and lack
of functionalities found; design and development, as a prototype of the artifact presented in [22];
demonstration by means an evolution of the previous prototype with and improvement of the previous
implementation; evaluation, applied to a real example, and; communication, as mechanism to be
known by the community and possible users, objective of this paper.

The article is organised as follows: Section 2 presents an overview of related works.
Section 3 introduces features model concepts and analysis. Section 4 tackles the proposal, including the
architecture, the workflow, and the description of operations in a real scenario. Section 5 shows and
discuss the results obtained from the experimentation applied to a proposed use case. Finally, conclusions
are drawn and future work is proposed.

2. Related Work

Related works have been divided into the four areas of research addressed in the article: how
features models can be used to model configuration scenarios and the existing techniques for their
analysis and diagnosis; how software product lines have been used in the security field; the solutions
that exist related to cybersecurity configurations; and previous software product line tools that support
both modelling and repositories.

2.1. Analysis and Diagnosis of Feature Models

Software Product Line (SPL) and Feature-Oriented Domain Analysis (FODA) have become mature
fields in the Software arena in the last decades [17]. Several are the scenarios where SPL have been
applied [23,24]. Concretely, the use of feature models as a subarea of SPLs provides mechanisms for
both modelling and analysis. The automated analysis of feature models has been addressed over
the last decade in the area of Software Product Lines [17,24,25]. The goal of the automated analysis
is to extract or to infer certain properties of the models. In some works, the analysis is focused on
detecting, analysing, or diagnosing errors in feature models, in a design phase [26] or a reconfiguration
phase [27].

There are other approaches where the analysis of feature models are applied to other areas. In [28],
an extension of a goal-based method (KAOS) is proposed to generate adaptable requirement models
from variability models. In [29], feature models are used to analyse the variability requirements and to
transform these feature models for developing an architectural model. In [30], feature model analysis is
used to provide self-adapting systems by dynamical determination of the best variants for the specific
QoS requirements.

2.2. Cybersecurity and Software Product Lines

Security is an understudied field in SPL. Most of the approaches are focused on the application
of security requirements or properties into the SPL. Different approaches have been presented to
manage the variability and specify security requirements from the early stages of the product line
development [31–33]. Similarly, other approaches addressed the idea of including the security
variability into an SPL [34]. In [35], the authors established a software architecture as a reference to
develop SPL, dealing with information security aspects.

On the other hand, there are approaches focused on the security as a use case, such as
in [36] and the methodology SecPL [37] is proposed to specify the security requirements and
product-line variability. These are annotated in the design model of any system. This last proposal

Appl. Sci. 2019, 9, 5364 4 of 28

is evaluated concerning efficiency, scalability and usefulness and it allows the security analysis of a
realistic product line. However, none of the papers in the literature deal with the security analysis
using feature models as it is done in this paper.

2.3. Analysis and Verification of Cybersecurity Configurations

In general, the problems of the verification of configurations have been studied using different
approaches, such as Machine Learning [38,39]. The challenge in the context of cybersecurity is whether
the known techniques about feature models can be applied to cybesecurity or they must be adapted.
In [40], an approach is proposed for improving the development of secure software product lines (SPLs)
and their derivated products. In the context of verification of security configurations, the IoTChecker [41]
platform for security analysis in IoT products has been proposed. Since the configuration data of
Internet-of-Things (IoT) systems are unstructured, the traditional techniques cannot be automatically
applied to a specific IoT configuration such as security. Finally, for policy compliance Bring Your
Own Device (BYOD), in [14] a technique for automatic security verification in mobile applications is
proposed. In the context of security policy verification, it is necessary to extend the feature models to
annotate the requirements specified by the policies.

2.4. Software Product Line Tools

To support both the design of the feature models and the repository to store and query them, it is
necessary to provide a tool that supplies these functionalities. From the tool perspective, there exist
a vast number of tools such as FAMILIAR [42] , Gears [43], FeatureIDE [44], pure::variants [45], etc.
Nevertheless, most of these solutions are stand-alone and their application in online environments,
with multiple users, and repository of feature models will require a redefinition of those tools. There
are other approaches focused on web-based tools such as SPLOT [46], VariaMos [47] and Glencoe [48].
SPLOT attempts to open the use of software product line by offering a repository of models and
it also includes a set of tools for the automated analysis of feature models. SPLOT is a well-know
tool in the software product line community since it is a repository which gathers a large number
of models. However, the feature model specification is very limited, for instance, it does not support
the graphical edition of models. On the other hand, the repository and the analysis are also limited
concerning the type of operations available. Recently, other new web-based approaches have emerged
such as VariaMos and Glencoe. Both approaches provide an easy-to-use visual editor of feature
models and it integrates some analysis features. Although, the visual editing capabilities are enough to
define advanced feature models, but in some cases, textual editing could be desirable in huge feature
models with several cross-relations. Regarding the analysis, the feature model analysis capabilities
provided for both solutions are very limited. For instance, VariaMos analysis focuses on a mere
syntactic and some semantic issues. On the other hand, Glencoe emphasises on the visualisation and
representation of feature models, but provides analysis on determining all possible configurations,
depth feature, etc. However, none of the web-based tools integrates a public neither a private repository
of models, and analysis tools that enable the diagnosis of configurations, the exportation of all possible
configurations or enable the feature model versioning.

To the best of our knowledge, there are no references on the use of feature models applied in the
field of cybersecurity policy compliance, and therefore, the approach presented here is a novel.

3. Background in Feature Models and Validation Mechanisms

The use of feature models is a broadly used technique for analysing SPLs. Feature Models (FMs)
involve a model that defines the features and their relationships. There exist various notations to
design FMs [11], although the most widely used is that proposed by Czarnecki [17], exemplified
in Figure 1. FM diagrams enable six types of relations between a parent feature and its child features:

• Mandatory, child feature is required. (cf. in the figure, PS2 is mandatory sub-feature of A, PS2↔ A).

Appl. Sci. 2019, 9, 5364 5 of 28

• Optional, child feature is optional (cf. in the figure, PS2 optional sub-feature of B, PS2→ B).
• Alternative, one of the sub-features must be selected (i.e., in general a1, a2, · · · , an alternative

sub-feature of b, a1 ∨ a2 ∧ · · · ∧ an ↔
∨

i<j(ai ∨ · · · ∨ aj)).
• Or-relation, at least one of the sub-features must be selected (i.e., in general a1, a2, · · · , an or

sub-feature of b, a1 ∧ a2 ∧ · · · ∧ an ↔ b, in the figure C ↔ C1∧ C2).
• Require relation, a feature requires the existence of other features with non-direct family relation

(cf., in the figure A2→ C1).
• Exclude relation, a feature excludes the existence of other features with non-direct family relation

(cf. in the figure, ¬(D ∧ E))

Definition 1. Feature Model. Let FM be a feature model which consists of a tuple (F,R), where F is a set of n
features { f1, f2, · · · , fn}, and R is a set of relations {r1, r2, · · · , rm}.

There exist extensions to the classical FM representations for the inclusion of attributes and
extra-functionalities for features, such as Cost attribute attached to feature B in Figure 1.

The model in Figure 1 can represent all possible configurations of a software product or system
that meet a certain policies. In this example, features PS2 and A are mandatory for the product
or system, since PS2 is the root, and there is a mandatory relation with A. In spite of that, B and
C are optional, therefore, they may or may not appear in the configurations. Optionality can also
be expressed, for example, A1, or A2, or both, may appear whether A is part of the configurations.
Other dependencies express cross-constraints between features, for example, if the feature A2 appears
it implies that the feature C1 must also appear. The model also can contain extra properties that include
additional information for the model. For example, in Figure 1, the model has three attributes Cost,
Bene f it, and Risk associated with feature B. These attributes have an integer domain. If the feature
B appears in a configuration, these attributes must be associated with a tuple of value in the range
defined in the model.

PS2

A B C

A1 A2 B1 B4

B2 B3

C1 C2

require

require

Mandatory

Optional

Or-alternative

Alternative

Cross-Relations

Attributes/Extra-func.

exclude

D E

Figure 1. An example of feature model.

For the automated analysis of these models, formal methods are proposed [17], based
on propositional logic, description logic or constraint programming. In the literature, tools as
FAMA [16,49] enables making direct transformations from the feature models to Constraint Satisfaction
Problem (CSP) or Constraint Optimisation Problem (COP) [50]. When the domains of the variables are
only Boolean type (i.e., true and f alse values), SAT (propositional satisfiability problem) solvers can be

Appl. Sci. 2019, 9, 5364 6 of 28

applied to improve the efficiency of the resolution algorithm [51]. In this work, feature models can be
formalised by constraint satisfaction problems.

Definition 2. Formalised Feature Model. Let FMF be a formalised feature model consisting of the tuple
(F,R), where F is a set of Boolean variables { f1, f2, · · · , fn} that represent the features and R as a set of relations
ri that are a tuple (S,BR), where the scope S=(fi, f j) are the features involved in the relation and BR ⊆ d fi

× d f j

are the tuples satisfying the relation and d fk
is the domain of the values of the feature fk.

Given a formalised feature model, FMF, composed of a set of features F = { f1, f2, · · · , fn}, and a
set of relations, R = {r1, r2, · · · , rk}, an assignment ai is the association of Boolean values to all the
variables (features).

ai = ∏
fk∈F

d fk

ai = { f1 → v1, f2 → v2, · · · , fn → vn}

For instance, ai={PS2 true, A true, A1 true, A2 f alse, ... } represents an assignment for the model
in Figure 1, where missed features are assigned to false value. Therefore, let A be the set of all the
possible assignments of a model FMF.

AFMF =
⋃

i∈FMF
ai

An assignment is considered a valid assignment when satisfies all relations (R) of the model FMF.

ai = ∏
fk∈F

d fk
→ {true, f alse}

valid(ai) = true ⇐⇒ {∀ri ∈ R|BR(ai) ≡ true}

Otherwise, if there exist any relation that cannot be satisfied, the assignment will be considered
invalid, hence, valid predicate will return false value. For instance, the previous assignment, ai,
represents a valid assignment since satisfies the mandatory relation between PS2 and A feature and the
or-relation between A and A1. The {PS2 = true, A = true} assignment is invalid due to the relation
between A, A1, and A2 is unsatisfied.

For our purpose, a configuration represents an assignment of FMF. Thus, the previous examples
of assignments represent configurations for the feature model. The configurations can be valid
whether the selection of assigned features to true satisfies all the relations, invalid otherwise. The set
of valid and invalid assignments of FMF can be defined as the union of all valid and invalid
assignments, respectively.

Avalid
FMF =

⋃
ai∈AFMF

{ai| valid(ai)}

Ainvalid
FMF =

⋃
ai∈AFMF

{ai| ¬valid(ai)}

The union of the sets of valid and invalid assignments represent the domain of assignments for
FMF model. Let A be redefined as the union of the sets of valid and invalid assignments.

AFMF = Avalid
FMF ∪ Ainvalid

FMF , Avalid
FMF ∩ Ainvalid

FMF = ∅

The snippet code in Figure 2 presents an example of a CSP model for ChocoSolver tool [52]
obtained from the model of Figure 1. Each variable represents a feature that can or cannot participate
in the configuration, represented by the value 1 or 0 respectively. Constraints establish the relation
between features such as ifonlyif restriction which represents the mandatory relation.

Appl. Sci. 2019, 9, 5364 7 of 28

1 ==== VARIABLES ====
2 B1 [0, 1], A [0, 1], B2 [0, 1], A2 [0, 1], C1 [0, 1], PS2 [0, 1], B [0, 1], B.cost [0, 10],
3 B.risk [0, 8], B.benefit [0, 15], B3 [0, 1], A1 [0, 1], B4 [0, 1], C [0, 1], C2 [0, 1],
4 rel-4_card [1, 2], rel-9_card [1, 2], S-B1 [0, 1], S-B2 [0, 1], D-A [0, 1], S-A2 [0, 1],
5 S-C1 [0, 1], S-B3 [0, 1], S-B [0, 1], S-B.cost [0, 1], S-B.risk [0, 1], S-B.benefit [0, 1],
6 S-PS2 [0, 1], S-A1 [0, 1], S-B4 [0, 1], S-C [0, 1], S-C2 [0, 1]
7 ==== CONSTRAINTS ====
8 ifonlyif({PS2[0,1],cst[1],A[0,1],cst[1]})
9 implies({B[0,1],cst[0],B2[0,1],cst[0]})

10 ifonlyif({S-C1[0,1],cst[1],C1[0,1],cst[1]})
11 ifthenelse({C[0,1],cst[0],C1[0,1]C2[0,1],rel-9_card[1,2],C1[0,1]C2[0,1],cst[0]})
12 ifthenelse({B[0,1],cst[1],B.risk[0,8],cst[1090519040],
13 B.risk[0,8],cst[1077936128],B.risk[0,8],cst[0]})
14 ifonlyif({S-B.benefit[0,1],cst[1],B.benefit[0,15],cst[0]})
15 ifonlyif({S-B1[0,1],cst[1],B1[0,1],cst[1]})
16 ifonlyif({S-C2[0,1],cst[1],C2[0,1],cst[1]})
17 ...

Figure 2. An example of code to check signatures.

Thus, the formalisation enables inferring information by applying some operations over the model.
Modelling a feature model as a CSP enables verifying the satisfaction of the model, and to obtain the
number of valid software products.

Definition 3. Products. Let FM be a feature model, the potential products of FM is the valid configurations
of its equivalent FMF.

products(FM) = Avalid
FMF

Definition 4. Number of Products. Let FM be a feature model, the potential number of products of FM is
the solution of its equivalent number of solutions of the FMF.

NumberO f Products(FM) = |Avalid
FMF|

For example, all the valid configurations obtained from the model of Figure 1 are shown in
Figure 3. For each configuration, the selected features are shown. For example, features PS1, A, and A1
are selected for Con f iguration1. The final product is composed of these features.

1 Configuration1 = "PS2;A;A1;",
2 Configuration2 = "PS2;C;C2;A;A1;",
3 Configuration3 = "PS2;C;C1;A;A1;",
4 Configuration4 = "PS2;C;C1;C2;A;A1;",
5 Configuration5 = "PS2;C;C1;A;A2;",
6 Configuration6 = "PS2;C;C1;A;A1;A2;",
7 Configuration7 = "PS2;C;C1;C2;A;A2;",
8 Configuration8 = "PS2;C;C1;C2;A;A1;A2;"

Figure 3. List of configurations.

As aforementioned, the analysis of a product line enables inferring certain information, whether a
feature model or a certain configuration (c) is valid or not.

validModel(FM) ⇐⇒ |Avalid
FMF| 6= 0

validCon f ig(FM, c) ⇐⇒ c ∈ Avalid
FMF ∧ |Avalid

FMF| 6= 0

For instance, given a configuration c = {PS2 → true, A →, A1 → true, B → f alse, ...} is a valid
configuration whether c belongs to the set of valid assignments of the formalised feature model, FMF.

Appl. Sci. 2019, 9, 5364 8 of 28

In this case, the configuration is valid as previously indicated hence it belongs to the set of
valid assignments.

In the Table 1, relevant characteristics of the example of Figure 1 are shown, and the results of
applying two operations: (1) to verify whether the model is valid (symbol!) and (2) to obtain the
number of all possible configurations.

Table 1. Relevant characteristics for the example in Figure 1.

Model Characteristics

Number of features 12
Mandatory 2
Optional 5
OR 2
XOR 0
Attributes 1
Cross-Relations 2

Model Analysis Valid !

Number of configurations 8

When a configuration c is not valid, there are some failures (no correct assignment to features) in
that configuration. The minimal diagnosis represents the explanation which makes the configuration
invalid changing the value of minimal features. For simplification reasons, also a configuration could
be represented as a set of only features that have value true in the assignment. In the previous example,
the tuple c could be represented as the set C = {PS2, A, A1}.

Definition 5. Diagnosis of Configurations. Let4 be the minimal diagnosis of an invalid configuration C
with regard to FMF is the minimal subset of features of C that must be modified their values such that the
resultant configuration C′ is a valid configuration.

¬validCon f ig(FM, C)
4−→ validCon f ig(FMF, C‘)

Invalid configurations could have different ∆ which satisfies the previous assert. For instance,
the configuration C = {PS2, A} is invalid according to the Figure 1. The problem is that the features
A1 or A2 must be selected but they were not. Therefore, the minimal diagnosis could be41 = {A1} or
42 = {A2}. In the first minimal diagnosis, C′ is {PS2, A, A1} and in the second minimal diagnosis, is
{PS2, A, A2}.

4. CyberSPL: Cybersecurity Software Product Line

In this section, the workflow and operation of CyberSPL methodology is introduced as well as
the main characteristics and implementation details of the approach.

4.1. CyberSPL Workflow and Operation

As aforementioned, CyberSPL is focused on verifying the compliance of cybersecurity policies
according to a configuration problem. The CyberSPL workflow is based on the business process
shown in Figure 4. This process enables evaluating different cybersecurity contexts for an organisation.
The process, inputs, outputs, stakeholders, and the specification are detailed to describe each activity.
NIST 800-181 categories National Initiative for Cybersecurity Education (NICE) Cybersecurity
Workforce Framework: https://csrc.nist.gov/publications/detail/sp/800-181/) have been used to
represent the stakeholders’ areas of responsibility for each activity:

1. There is a selection of security contexts (cf., Define SPL context) according to this cybersecurity policy.
In this stage, the organisation has to do an effort on the analysis of the enterprise architecture,
thus, to identify the assets and the security control in all the stages of every enterprise layer.

https://csrc.nist.gov/publications/detail/sp/800-181/

Appl. Sci. 2019, 9, 5364 9 of 28

Afterwards, the organisation should delimit the scope, the context, by identifying the ecosystems
to take into account for the application of the cybersecurity policy.

• Input: Cybersecurity policy, Assets.
• Output: Cybersecurity Context.
• Specification: Analysis of the resources, processes, systems, security controls, and the

cybersecurity policy conditions.
• Stakeholders: Operate and Maintain (OM), Protect and Defend (PR), Investigate (IN),

and Analyse (AN).

2. Once the context is delimited, feature models are selected (cf., Select/Build feature models), if any
in the catalogue or constructed. Thus, CyberSPL provides a set of public or private repository of
models that can be useful for the analysis of the systems in the selected context. The organisation,
through product managers, just should select or define the feature models needed.

• Input: Cybersecurity Context, Feature Model Catalogue.
• Output: Feature models.
• Specification: Selection of feature models or definition of feature models that describe

the context.
• Stakeholders: Securely Provision (SP).

3. A customisation of the features, attributes and constrains are set (cf., update features, attributes and
constraints). The selected or defined feature models must be fully updated with the latest details
of the cybersecurity policy established by the organisation. In this case, product managers must
adjust certain parameters into the models regarding the subsequent analysis. The adjustments
generate new versions of the models that are stored.

• Input: Feature Models.
• Output: Refined feature models store in the catalogue.
• Specification: Include, delete, modify, and update into the models. Thus, update and readjust

feature models.
• Stakeholders: Securely Provision (SP).

4. Once the models are adjusted, the organisation is able to analyse the context and possible
configurations (cf., Analysis Feature Models). Thus, the organisation can apply different
operations: (1) validate the models, thus, validate the context of the organisation; (2) determine
the number of possible configurations in the context; (3) determine and export all the possible
configurations in the context; (4) validate certain configuration product or service according to
the established models that describe the context; (5) diagnose certain configuration with regard
a context.

• Input: Refined feature models.
• Output: Depending on the operation different output is obtained: a Boolean value which

represents the validation of the model, a Boolean value which represents the validation of a
configuration model, a number when the number of configurations is required, etc.

• Specification: Validation model, Valid a configuration, Diagnose configuration, Number of
configurations, determine all the configurations.

• Stakeholders: Securely Provision (SP).

The selection of security context and the selection of features and attributes depend on the established
cybersecurity policies, and it will require a previous analysis before defining the feature models,
as shown in [19]. For instance, a service deployment context can be selected based on an application

Appl. Sci. 2019, 9, 5364 10 of 28

server, like Apache Tomcat server. To reconcile the cybersecurity policy communications with the server
must be through a secure channel based on Secure Socket Layer (SSL) [53] and Transport Layer Security
(TLS) [54,55].

Define SPL
Context

Update features,
attributes, and

constratints

Select/Build
feature
models

ConfigurationCybersecurity
policies

Feature Model
Catalogue

Analysis
Feature
Model

Figure 4. Process for verifying compliance of cybersecurity policies.

CyberSPL provides mechanisms for graphically constructing new feature models and the formal
specification FAMA [49] format, and for selecting feature models from a catalogue as shown in Figure 5.
CyberSPL also enables the persistence and updating of feature models into a catalogue.

Definition 6. Catalogue of models. Let be CT, a catalogue formed of a set of {FMF1,FMF2, · · · , FMFn}
formalised feature models that represents certain cybersecurity contexts and policies.

CT =
n⋃

i=1

FMFi

The goal of using a catalogue is to reduce the time of development and analysis reusing previous
feature models for similar contexts. In a previous work [16], a set of feature models such as security
controls are defined to configure business process engines. Nevertheless, those models are out-of-date.
As mentioned, this catalogue can be shared for reusing the knowledge stored in the models.

Define SPL
Context

Update features,
attributes, and

constratints

Select/Build
feature
models

Configuration

Cybersecurity
policies

Feature Model Catalogue

version control

Feature Models Feature Models Valid Model
with Context

Diagnose
Configuration

Determine All
Configurations

Other ...

Analysis
Feature Model

new version

Figure 5. CyberSPL workflow with feature model catalogue.

By using the catalogue, a depth workflow of CyberSPL is shown in Figure 5. First, a model
is selected from the catalogue depending on the context and the policy, and then the model is

Appl. Sci. 2019, 9, 5364 11 of 28

readjusted (cf., tuning) with appropriate features and attributes of the context. The editions and
updates (cf., update) of the existing feature model creates automatically a new version of this model.
Thus, given a feature model and a list M = {m1,m2, · · · , mk } of modifications (i.e., updates and tuning)
the application of these modifications over the model FMF creates a new model.

update(FMF, M) = FMF′ | FMF′ 6= FMF

The update or tuning of feature models creates new versions for this model that are gathered into
a historical record.

Definition 7. Historical record. Let be H, a historical record with the set of records {h1,h2, · · · , hn} where hi
is a triple (f o

i , M, f d
i) where f o

i is the original feature model, M is the list of modifications applied, and f d
i is the

resulting feature model after applying M.

history(FMF) = {h1, h2, · · · , hn}
∀n−1

i=1 (hi, hi+1) | hi(f o
i , mi, f d

i), hi+1(f o
i+1, mi+1, f d

i+1) =⇒ f d
i = f o

i+1

update(FMF, M) = FMF′ =⇒ history(FMF′) = {history(FMF) ∪ (FMF, M, FMF′)}

CyberSPL is able to gather information related to all the changes applied over a model. Thus,
CyberSPL presents a track record (i.e., versioning history) to enable a version control of feature models
(cf., version control in Figure 5).

This tuned and update model is transformed into a formal constraint-based model, as it was
shown in Section 3. Depending on the model, the appropriate solver is selected and the compliance
analysis is applied. For example, to validate the model according to the context, to diagnose a particular
security configuration, to obtain all valid configurations, or other operations.

4.2. CyberSPL Implementation

The CyberSPL architecture is modular, and it includes as main modules a user management
module, a platform management module, and a feature model management module as shown
in Figure 6. CyberSPL is integrated with the FAMA framework via a REST API (cf., CyberSPL
API REST) to integrate reasoning characteristics. In this respect, the FAMA framework uses
ChocoSolver (ChocoSolver: http://www.choco-solver.org) reasoner which enables the analysis and
reasoning with feature models. CyberSPL and public models are free accessible for the community at
https://estigia.lsi.us.es/cyberspl.

http://www.choco-solver.org
https://estigia.lsi.us.es/cyberspl

Appl. Sci. 2019, 9, 5364 12 of 28

CyberSPL
Modules

Users
Database

Base

Feature
models

CyberSPL Service API

CyberSPL
API REST

Reasoners

FaMa
FrameworkChoco

Reasoner

Modeler

Figure 6. CyberSPL architecture.

CyberSPL is designed as a cross-platform and multi-user web solution. The user only needs
a web browser to register and to use it. The public models are available in CyberSPL for all users
of the community, and users are able to create their catalogue of models as shown in Figure A1
at the appendices. In the public repository, the feature models can be consulted and analysed but
not edited. Moreover, in Figure A1 it is shown how to edit a CyberSPL model in a formal way
(i.e., FAMA format) or graphically as is shown in Figure A2. The models of a user can be private
and exclusive for his/her, or public and available for every user. In contrast, in the user private
repository, each model can be edited, deleted, or analysed. Figure A1 shows a private repository of
a user, but some models have been established as public (cf., Toy Model).

As aforementioned, the edition of existing feature model automatically creates a new version of
this model. Thus, CyberSPL presents a track record (i.e., versioning history) to enable a version control
of feature models (cf., Version History button in Figure A1). At the appendices, Figure A3 shows
in background the versioning history with a track record of versions of model shown in Figure 1.
The focused window highlighted one of the tracked changes using the Show Diff button.

For each model, CyberSPL enables the editing, deleting, and performing an analysis. The analysis
section provides for main options as shown at the appendices in Figure A4: (1) to validate model;
(2) to diagnose compliance of a configuration and a cybersecurity policy; (3) to obtain all valid
configurations for cybersecurity policy, and; (4) diagnosis with regard to the history.

In Figure A4 (cf., Appendix A), the option of diagnosis a configuration is selected, and a specific
configuration has been introduced and compared by CyberSPL with the model previously shown in
Figure 1. The results of the operations performed on the model are available for the user in a panel
(cf., Analysis Console). CyberSPL has an option to save externally in a JSON format, the obtained
configurations. This option is named Export configurations and it is below the option to obtain
all configurations.

Although CyberSPL has been created with the aim of analysing security using SPL techniques,
it also provides characteristics that differentiate it from the rest. In general, most of the tools provide a
modeller (i.e., in formal or graphical way) and automated analysis similar to CyberSPL. A comparison
of CyberSPL with regard to non-commercial tools has been done in Table 2, but the comparison has
been focused on the next aspects: (1) Web, if a distributed and multi-user tool is provided; (2) Diagnosis,
if the tool supports diagnosis mechanisms; (3) Private catalogue, if the tool supports the development
of a catalogue of models per user; (4) Public catalogue, if the tool allows users to share their models
publicly; (5) Historical, if the tool allows the versioning of models and maintain a history of these
versions per model.

Appl. Sci. 2019, 9, 5364 13 of 28

Table 2. Comparison of SPL tools.

Tool Web Diagnosis Public Catalogue Private Catalogue Historical Record

CyberSPL ! ! ! ! !

Variamos ! ∼
SPLOT ! ∼ !

FAMILIAR ∼
FeatureIDE ∼

Glencoe ! ∼ !

First, there are two main conclusions after the comparison: (1) none of the tools support all the
characteristics at the same time; (2) none of the tools consulted to support the feature model versioning
and the historical record of models. Regarding diagnosis, all the studied tools provide automated
tools to validate and verify certain aspects of the model and configurations, for this reason, they have
been stated as partial in diagnosis. Regarding the catalogue aspects, only SPLOT provides a public
catalogue of models but not a private catalogue and Glencoe presents similar private catalogue per
users, but not a public catalogue of models. The rest of the tools enable creating projects wherein some
cases, only one feature model can be stored. This can be seen as a private repository, but in a similar
way as shown in CyberSPL.

5. Evaluation Approach

To illustrate and evaluate the advantages for applying CyberSPL, the use case is presented as
shown in Figure 7.

Apache
Proxy
Server

Corporative
Network

Users/Employees

Internet

Configuration

Linux
ServerAndroid

devices Linux
PC

Configuration

Configuration

Configuration

Figure 7. Use case scenario.

5.1. Context Description and Feature Models

The use case represents an enterprise architecture which encompassed several security patterns
of the Open Security Architecture (OSA) [56]. The security patterns used in this use case are: ’SP-001:
Client Module’, ’SP-002: Server Module’, ’SP-003: Privacy Mobile Device Pattern’, and ’SP-008: Public
Web Server Pattern’. This architecture simulates a real cybersecurity context, where an organisation
has a set of users and employees connected to corporate network through an Apache Server as proxy.

Appl. Sci. 2019, 9, 5364 14 of 28

The users and employees can use personal devices such as personal computers and smart phones
to connect the corporate network. The cybersecurity policy specify restrictions for users to connect
the corporate network by using linux-based operating systems and Android devices in the case of
personal computers and smart devices respectively. On the other hand, the cybersecurity policy states
that the connections to the corporate network must be secure, for instance, by securing the channel
through the use of SSL/TLS protocol. In Figure 7, a part of the configuration of an Apache Tomcat server
is shown, where protocol versions or key sizes are established.

To analyse the use case cybersecurity contexts, four feature models are given as a catalogue: (1)
Security Apache model; (2) SSL/TLS model; (3) Security Linux kernel model; (4) Security Android model.
The two first models are an updated evolution of those presented in a previous work [16], where unsafe
features have been removed and other parameters such as key sizes have been added in the case of
the SSL/TLS model. The Linux and Android models are the consequence of the analysis of security
configuration parameters provided by the Linux kernel and the security settings that provide Android
developer guide to secure applications.

The Apache proposed model is shown in Figure 8; it is based on security features of an Apache
Tomcat server. The Apache Tomcat server can provide different HTTP connectors (Apache Tomcat
Configuration: https://tomcat.apache.org/tomcat-7.0-doc/config/http.html) that enable listening
for connections on a specific TCP port number on the server. In this particular case, the Apache
model represents the attributes needed to configure a HTTP connector with SSL support. Among the
parameters to be set up in the Apache server, can be found: (1) Protocol to establish the version of the
protocol to be used in the connections; (2) Algorithm to establish the certificate encoding algorithm to be
used; (3) Ciphers to establish a list of encryption ciphers to be supported by the connections; if specified,
only the ciphers that are listed and supported by the SSL implementation will be used; (4) ClientAuth
to establish the protocol of checking the client certificate in the connection (true value to require a valid
certificate chain from the client before accepting a connection, want value to request a client Certificate,
but not fail if one is not presented, or a false value for not to require a certificate chain; (5) keystore
to establish the type and attributes to the store server keys and certificates; (6) Truststore to establish
the type and attributes to the store for the keys and certificates from other parties that you expect
to communicate with. In order to configure SSL connections in Apache, SSL/TLS capabilities and
restrictions must be considered since those restrictions can determine the implementation of secure
connections to the server. For instance, the use of an specific version of the Procotol and Algorithm
restricts the number of Ciphers to be used for the compatibility. From the perspective of security
the selection of certain protocols can determine the weakness of the connections, for instance, in the
use of old version of TLS. For a better understanding of the ciphers’ restriction, SSL/TLS protocol is
carried out.

T_TypeT_PassT_FileK_Type K_Pass K_File

KeystoreAlgorithm Ciphers ClientAuth Port Trust Protocol

Apache	(SSL/TLS)

true

require

Mandatory

Optional

Or-alternative

Alternative

Cross-Relations

Attributes/Extra-
func. want false

exclude

JKS PKCS12 PKCS11 JKS PKCS12 PKCS11

TLSv1 TLSv1.1 TLSv1.2 TLSv1.3

Figure 8. Feature Model of Apache Server.

As aforementioned, there are certain parameters, such as the versions of the protocol, that can
be configured in the model. For instance, SSLv3 is discouraged due to vulnerabilities in the protocol
that enable the application of exploits such as POODLE attacks. Although SSLv3 is enabled and
supported by the different providers, most of the applications discouraged the use. Therefore, SSLv3

https://tomcat.apache.org/tomcat-7.0-doc/config/http.html

Appl. Sci. 2019, 9, 5364 15 of 28

is discouraged and it was removed in the model. TLSv1 or TLSv1.1 are weak versions, but they are
still being used because some suppliers and customers support these protocols, although the end of
the support is announced for the year 2020. Client authentication (cf., ClientAuth) requires certain
infrastructure, such as stores (cf., Keystore and Trust) and digital certificates. As well, certain protocols
allow the possibility of setting specific Cipher Suites (cf., Ciphers). An example of configuration is
shown in Figure 9.

1 <!-- Define an SSL Coyote HTTP/1.1 Connector on port 8443 -->
2 <Connector
3 protocol="org.apache.coyote.http11.Http11NioProtocol"
4 port="8888" maxThreads="250"
5 scheme="https" secure="true" SSLEnabled="true"
6 keystoreFile="${user.home}/.keystore" keystorePass="PASSWORD"
7 clientAuth="false" sslProtocol="TLSv1+TLSv1.1+TLSv1.2"/>

Figure 9. Example of HTTP connector in Apache Coyote Server.

The handshake of protocol SSL/TLS is based on this sequence of steps: (1) Negotiation of the Cipher
Suite to be used during the transfer, and generation and exchange of a random number (master key);
(2) Set and exchange a session identifier between client and server; (3) Authentication of the server
to the client; (4) Authentication of the client to the server. The handshake has been simplified in
TLS version 1.3. SSL/TLS enables the authentication of the client and the server, and anonymous
communication. Authentication is done through digital signatures, such as digital certificates or keys.
The digital certificates must be vouched for as validated by a Certificate Authority (CA). SSLv3 and
TLSv1.0 protocols also enable anonymous authentication based on Diffie-Hellman key exchange.

The SSL/TLS model is shown in Figure 10 and it is a complete model where all the features for
configuring the cipher suites are available for versions TLS1.2 (TLS version 1.2 RFC 5246: https://tools.
ietf.org/html/rfc5246) and TLS1.3 (TLS version 1.3 RFC 8446: https://tools.ietf.org/html/rfc8446).
All previous versions are considered unsafe and they have been removed of the model. This model
can be linked to Apache Model (Figure 8) by the feature Ciphers.

The SSL/TLS model represents the attributes to configure certificates, key-stores, ciphers, key sizes
on the use of any SSL/TLS protocol version. The main features to setup into SSL/TLS communications
are: (1) CipherSuite which indicates the suites of key change method, cipher and message authentication
code are supported; (2) Key change method which indicates that cryptographic algorithms have been
employed to generate cryptographic keys; (3) Cipher which indicates that conventional cryptographic
algorithms are employed to encrypt the message in the transmission; (4) Message Authentication
Code (MAC) which indicates the algorithm employed to encrypt the message to provide integrity;
(5) Protocol which indicates the version of protocol to be used; (6) Session Resumption which indicates
the identification session established in the negation of connection client–server; (7) Authentication
method which indicates the authentication method to be used (certificates or shared keys); (8) Digital
signature which indicates other types of signature support instead of certificates (SRP and PSK);
(9) Certificate which indicates the type of certificates supported (x509 and OpenPGP); (10) Keysize which
establishes the size to be used for the cryptographic algorithms; (11) Curves are the function to be used
to produce keys.

It is important to notice that the SSL/TLS model is a simplification since constraints are not
represented to have a clear and non-complex visual model. However, the constraints have been
written down in the Cross Relations text box (cf., Figure 10). Some examples are: AES_128_CBC is not
recommended for TSLv1.3 protocol and the use of RSA implies that the key size (KeySize) must be 2048.

https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc8446

Appl. Sci. 2019, 9, 5364 16 of 28

MAC
KeyExChange

Cipher	Suite Session	Resumption Protocol Methods

SSL/TLS

TLSv1.2 TLSv1.3 DigitalSignature Certificate

SRP PSK

X.509 OpenPGP

SHA256 SHA512
SHA384

Cipher

Camellia_256_CBC

Camellia_128_CBCAES_128_CCM_8

AES_128_CCM

Camellia_256_GCM

AES_256_GCM

AES_128_GCM

AES_256_CBC
Camellia_128_GCM

CHACHA20_POLY1305
AES_128_CBC

RSA ECDSADHE ECDHE

Authentication

RSA_Auth

KeySize Curve

2048

8192

3072

4096

6149

secp256

secp384r1

secp521r1

x22519

x448
Cross-Relations
AES_128_CBC	exclude	TLSv1.3
AES_256_CBC	exclude	TLSV1.3
Camelia_128_CBC	exclude	TLSv1.3
Camelia_256_CBC	exclude	TLSv1.3
Camelia_128_GCM	exclude	TLSv1.3
Camelia_256_GCM	exclude	TLSv1.3
PSK	exclude	TLSv1.3
RSA	exclude	ECDSA
DHE	implies	RSA_Auth
RSA	impies	2048
RSA	implies	Certificate
ECDHE	implies	Curve

Mandatory
Optional

Or-alternative
Alternative

Cross-Relations

Figure 10. SSL/TLS Feature Model.

Figure 11 is related to the security configuration of the Linux kernel (Linux Kernel Security:
https://elixir.bootlin.com/linux/latest/source). This feature model represents the Linux kernel
security configuration in version 5.3. This model can help to understand which configurations
are needed to develop aspects such as enabling the access control to the file system, restrict the
access to syslog, even establishing different security modules. Regarding the features at the model
represent: (1) SECURITY allows you to choose different security modules to be configured into your
kernel; (2) SECURITYFS enables the securityfs file system; (3) SECURITY_DMESG_RESTRICT enforces
restrictions on the access to privileged or sensitive information of dmesg; (4) PAGE_TABLE_ISOLATION
feature is a countermeasure against security attacks which enables limiting the number of shared
information between the users and kernel space; (5) INTEL_TXT is used as a security control to
provided trusted initialisation of the kernel; (6) HAVE_HARDENED_USERCOPY_ALLOCATOR option
checks memory transfers from to the kernel wrong memory regions when rejecting memory ranges;
(7) FORTIFY_SOURCE enables detecting overflows of buffers in common string and memory functions;
(8) STATIC_USERMODEHELPER is a countermeasure which enables redirecting the calls to kernel
functions through a usermode helper as unique entry point to the kernel interface; (9) LSM enables the
Linux kernel to support a variety of computer security models. This feature enables specifying a list of
LSMs in initialisation order.

For instance, in version 5.3 of the Linux kernel, the socket and networking security hooks for
a security module can be enabled to implement socket and networking access controls with the
SECURITY_NETWORK configuration. This configuration depends on the security modules enabled
into the kernel, which can be configured via SECURITY configuration. The enabled security modules
can be also modified in this version of the kernel. The LSM configuration is used to manage them,
which defines an ordered list of the enabled security modules. This configuration replaces the
DEFAULT_SECURITY configuration, used in previous versions of the Linux kernel to specify the
security module to be used by default.

In order to simplify the model and make it easier to read, the restrictions have not been used in the
model to represent the dependency relationships between configurations. Instead, optional relationships
have been used so that choosing a configuration gives access to the configurations that depend on
it (if any). For instance, the configuration of the feature HARDENED_USERCOPY_FALLBACK and
HARDENED_USERCOPY_PAGESPAN depends on the configuration of HARDENED_USERCOPY feature
which also depends on the configuration of the HAVE_HARDENED_USERCOPY_ALLOCATOR feature.

https://elixir.bootlin.com/linux/latest/source

Appl. Sci. 2019, 9, 5364 17 of 28

Linux Mandatory

Optional

Or-alternative

Alternative

Cross-Relations

Attributes/Extra-func.

SECURITY

SECURITY_WRITABLE_HOOKS

SECURITYFS

SECURITY_NETWORK

PAGE_TABLE_ISOLATION

SECURITY_INFINIBAND

SECURITY_DMESG_RESTRICT

SECURITY_NETWORK_XFRM

LSM_MMAP_MIN_ADDR

HAVE_HARDENED_USERCOPY_ALLOCATOR
INTEL_TXT

SECURITY_PATH

HARDENED_USERCOPY

HARDENED_USERCOPY_FALLBACK HARDENED_USERCOPY_PAGESPAN

STATIC_USERMODEHELPER

FORTIFY_SOURCE

STATIC_USERMODEHELPER_PATH

LSM

Figure 11. Security Linux Kernel Feature Model.

Figure 12 is related to the security settings provided by the API level of the Android SDK
(Android Developer Guide: https://developer.android.com/reference/android/provider/Settings.
Secure). This feature model represents the security-related system preferences specified in Android
SDK API level 29. These preferences must be modified by the user explicitly through the system’s user
interface or specialised APIs. It should be borne in mind that this model excludes all preferences that,
although related to system security, are obsolete at the API 29 (or earlier) level of the Android SDK.

Through this model, the security parametres that can be configured by users can be consulted
through the apps in version 29 of the Android SDK API. For instance, the list of input methods
that are currently enabled by the user is defined in the ENABLED_INPUT_METHODS configuration
while the default input method is recorded into the DEFAULT_INPUT_METHOD configuration.
Regarding location, most of the available configurations in previous versions of the API level of the
Android SDK have been removed from the security settings but in the current version only two of
them have remained: (1) LOCATION_MODE_OFF which specifies that the location mode is off, and;
(2) ALLOWED_GEOLOCATION_ORIGINS which defines the origins for which browsers should allow
geolocation by default.

Regarding the feature model structure, the preferences have been grouped in four groups to facilitate
the readability of the model and the definition of configurations: (1) ACCESSIBILITY encompasses
preferences related to system accessibility; (2) INPUT_METHOD encompasses preferences related to
system input methods; (3) LOCATION encompasses preferences related to device location; (4) TTS groups
preferences related to the Text-To-Speech system, and; (5) MISCELLANEOUS encompasses preferences
not related to any of the groups described above.

INPUT_METHOD

INPUT_METHOD_SELECTOR_VISIBILITY

TTS_DEFAULT_PITCH

Android
Mandatory

Optional

Or-alternative

Alternative

Cross-Relations

Attributes/Extra-func.

LOCATION_MODE_OFF

TTS_DEFAULT_RATE

TTS_ENABLED_PLUGINS

MISCELLANEOUSTTSLOCATION
ACCESSIBILITY_ENABLED

ENABLED_ACCESSIBILITY_SERVICES ALLOWED_GEOLOCATION_ORIGINS

DEFAULT_INPUT_METHOD

SELECTED_INPUT_METHOD_SUBTYPE

ANDROID_ID
RTT_CALLING_MODE

SETTINGS_CLASSNAME

SKIP_FIRST_USE_HINTS

TOUCH_EXPLORATION_ENABLED

ACCESSIBILITY

TTS_DEFAULT_SYNTH

ACCESSIBILITY_DISPLAY_INVERSION_ENABLED

ENABLED_INPUT_METHODS

Figure 12. Security Android Feature Model.

5.2. Analysis of Feature Models and Diagnosis of Configurations

The analysis of the previous models is focused on validating them and computing the available
configurations. The results are shown in Table 3. The models are valid, therefore, at least one valid
configuration would be obtained from each model.

All the models have been validated and it would be reached without the automatic analysis
provided by CyberSPL. Regarding the configurations, the number of possible configurations for the
Apache model is 96, for the SSL/TLS model is 1482, for the Android is 262,144, and for Linux is 56,448.
Even limiting the configurations to a few parameters, the complexity of the configuration continues
to be very high. The high number of configurations of Android and Linux models with regard to the
Apache and SSL/TLS models is derived from the type of relations and cross-relations. Thus, a high
number of cross-relations will limit the number of solutions that satisfy the relations of the model.
Despite this, the configurability problem is intractable whether it would be done manually by a
human. The complexity increases by combining the systems, since the number of configurations would
increase significantly because of the combinatorial explosion in the number of possible configurations.

https://developer.android.com/reference/android/provider/Settings.Secure
https://developer.android.com/reference/android/provider/Settings.Secure

Appl. Sci. 2019, 9, 5364 18 of 28

Thus, there is a total number of 320,650 configurations among the four models. The automatic
resolution of problems by means of CSP solver helps to deal with this complexity. The resolution of
constraint-based problems is a well-known problem in the literature [50]. However, this complexity
can be dealt with CSP solvers as shown in previous works, [16,57]. In both works, the complexity is
studied in terms of performance and scalability of constraint-based problems, and we demonstrated
remarkable results from the usability perspective response time in the resolutions.

Table 3. Analysis of the feature models.

Feature Model Apache SSL/TLS Android Linux

Number of features 27 48 24 20
Mandatory 10 8 0 0
Optional 3 0 5 18
OR 1 1 5 0
XOR 3 9 0 0
Cross-Relations 2 12 0 0

Valid ! ! ! !

Number of configurations 576 1482 262,144 56,448

One of the advantages of CyberSPL is the possibility of diagnosing configurations as shown
in Figure 13. The idea is to check if a configuration conforms to the cybersecurity policy represented
in the feature models. In case of invalid configurations, CyberSPL is able to establish the diagnosis,
that is, to determine what are the possible failures in them. In Figure 13, a diagnosis is depicted in the
console that recommends to the user to select TLSv1.2 or TLSv1.3 and deselect SSLv3.

Figure 13. Diagnosis results in CyberSPL.

For each model six configurations have been tested, two valid and four invalid. The invalid
configurations have been diagnosed and the explanation of the diagnosis is given. The cases of Apache
and SSL are shown in Tables 4 and 5, respectively. Obtaining the diagnosis is more than determining
whether a configuration is valid or not, it is an explanation about why a configuration is invalid
according to the established cybersecurity policies. In particular, the diagnosis indicates the features
that must be selected and deselected. Following the definition of diagnosis, Select an feature means
that it had a false value in C (invalid configuration) and in C’ (valid configuration) it would have the

Appl. Sci. 2019, 9, 5364 19 of 28

true value. On the other hand, Deselect means that in C (invalid configuration) the concrete feature
have a true value and in C’ (valid configuration) it would have a false value.

Table 4. Diagnosis of Apache model configurations.

Configuration Result Diagnosis

1 Apache, Protocol, TLSv1.1, KeyStore, K_File, K_Pass, K_Type,
PKCS11, ClientAuth, false, Port Valid -

2 Apache, Protocol, TLSv1.2, KeyStore, K_File, K_Pass, K_Type,
Ciphers, Algorithm, ClientAuth, want, Port, PCKS12 Valid -

3 Apache, Protocol, KeyStore, K_File, K_Pass, K_Type, ClientAuth,
false, Port, Algorithm, Ciphers No valid

Select:
TLSv1,

TLSv1.2,
TLSv1.1,
TLSv1.3

4 Apache, Protocol, TLSv1.2, KeyStore,K_File, K_Pass, K_Type,
ClientAuth, Port, Algorithm, Ciphers No valid Select:

want, false

5 Apache, ClientAuth, false, Port, Keystore, K_File, K_Pass,
K_Type, PKCS7, Protocol, TLSv1.3 No valid

Select:
JKS,

PKCS11,
PKCS12
Deselect:
PKCS7

6 Apache, Ciphers, ClientAuth, want, Keystore, K_File, K_Pass,
K_Type, PKCS12, Protocol, TLSv1.3 No valid Select:

Port

Table 5. Diagnosis of SSL/TLS model configurations.

Configuration Result Diagnosis

1
SSL/TLS, Protocol, TLSv1.2, KeyExchange, DHE, CipherSuite,
Cipher, AES_128_GCM, MAC, SHA256, Authentication, ECDSA,
Methods, KeySize, 3072, SessionResumption

Valid -

2
SSL/TLS, Protocol, TLSv1.2, CipherSuite, Cipher, AES_128_CCM,
Authentication, ECDSA, KeyExchange, DHE, MAC, SHA512,
Methods, KeySize, 3072, SessionResumption

Valid -

3
SSL/TLSS, Protocol, TLSv1.2, CipherSuite, Cipher,
AES_128_CCM, Authentication, KeyExchange, ECDHE, MAC,
SHA512, Methods, KeySize, 3072, SessionResumption

No valid

Select:
RSA_Auth,

DHE
Deselect:
ECDHE

4
SSL/TLS, Protocol, CipherSuite, MAC, SHA384, Authentication,
ECDSA, Cipher, AES_256_GCM, KeyExchange, DHE, Methods,
KeySize , 4096, SessionResumption

No valid
Select:

TLSv1.2,
TLSv1.3

5
SSL/TLS, CipherSuite, KeyExchange, SRP, Authentication,
RSA_Auth, Cipher, AES_128_CCM, MAC, SHA512,
SessionResumption, Protocol, TLSv1.2, Methods, KeySize, 8192

No valid

Select:
DHE

Deselect:
SRP

6
SSL/TLS, CipherSuite, KeyExchange, DHE, Authentication,
RSA_Auth, Cipher, AES_128_CCM, MAC, SHA512,
SessionResumption, Protocol, TLSv1.2, Methods, KeySize, 1024

No valid

Select:
3072, 4096,
8192, 6149,

2048
Deselect:

1024

In the case of Apache configurations (cf., Table 4), the protocol version has not been specified in
the first wrong configuration, and the suggested diagnosis is to select a specific version of the protocol.

Appl. Sci. 2019, 9, 5364 20 of 28

In the second wrong configuration, the type of ClientAuth has not been indicated. In this case,
you cannot select true because it would imply the selection of the Trust feature, so the suggested
diagnosis is to select between the options want or false. In the case of the third invalid configuration,
PKCS7 has been chosen as the format of the certificate keystore. This configuration is invalid because,
as indicated in the Apache Tomcat documentation, the current version of Apache Tomcat only
works with the JKS, PKCS11 and PKCS12 keystorage formats. In fact, the configuration diagnosis
indicates that in order to correct the configuration, the chosen format must be deselected and one
of the three previously mentioned must be selected. In the case of the fourth invalid configuration,
the Port feature has not been chosen, which corresponds to the TCP port number used by the HTTP
Connector component of an Apache Tomcat server to create a server socket for incoming connections.
This configuration is invalid since, as indicated in the Apache Tomcat documentation, if the Tomcat
port is not configured, it will select a free random port, a situation that should only occur in embedded
and test applications. In this way, in the configuration diagnosis it is indicated that in order to correct
it, this characteristic must be selected.

In the case of SSL/TLS configurations (cf., Table 5), there are also four erroneous settings. For the
feature of Authentication, no mechanism has been selected in the first wrong configuration, and the
suggested diagnosis is to select ECDSA or RSA_Auth. In the second wrong configuration, ECDHE
has been selected as a feature of KeyExchange, but that an elliptical curve (Curve) is required, and the
configuration also sets the size of the key (KeySize) to 3072. The suggested diagnosis includes two
possibles solutions: (1) deselect ECDHE or (2) to select features RSA_Auth and DHE since by selecting
these features the configuration is compatible with a key size of 3072. In the case of the third invalid
configuration, SRP has been chosen as the key exchange protocol. This configuration is invalid because,
as indicated in the TLS definition (RFC 5246), RSA and DH must be used for key exchange. In this way,
the configuration diagnosis indicates that in order to correct it, SRP must be deselected and DHE
must be chosen. In the case of the fourth invalid configuration, 1024 has been chosen as the key size.
This configuration is invalid because, although as indicated in the TLS definition (RFC 5246) the use
of any key size is allowed, this size is not considered secure. In this way, the configuration diagnosis
indicates that in order to correct it, the chosen size must be deselected and one of the recommended ones
must be chosen.

The cases of Linux and Android are shown in Tables 6 and 7 respectively. In the case of the first
invalid configuration of Linux, the feature SECURITY_NETWORK_XFRM is selected. This feature
enables the XFRM (IPSec) networking security hooks. Nevertheless, this is not possible to be
configured without previously selecting the SECURITY_NETWORK flag. The security network flag
enables the socket and networking security hooks. Therefore, the diagnosis recommends to deselect
SECURITY_NETWORK_XFRM and select SECURITY_NETWORK. Similarly occurs with the second
invalid configuration, this configuration consists of several hardened user copy strategies (i.e., harden
memory copies between the kernel and the userspace) such as HARDENED_USERCOPY_FALLBACK
without previously selecting the feature HARDENED_USERCOPY. For the third invalid configuration,
STATIC_USERMODEHELPER_PATH has been chosen without choosing STATIC_USERMODEHELPER.
This configuration is invalid because this parameter defines the path to the static user mode auxiliary
binary, but you must also include the STATIC_USERMODEHELPER parameter, which forces all user
mode help calls to pass through a single binary. In fact, the configuration diagnosis indicates that,
in order to correct the configuration this parameter must be deselected or USERMODEHELPER must
be chosen. In the case of the fourth invalid configuration, the parameter SECURITY_PATH has been
selected without selecting SECURITY. This configuration is invalid because this parameter, which
enables security hooks for path-based access control, also requires you must choose the SECURITY
parameter, which enables different security models. In fact, in the configuration diagnosis, it is indicated
that in order to correct it, this parameter must be deselected or SECURITY must be chosen.

Appl. Sci. 2019, 9, 5364 21 of 28

Table 6. Diagnosis of Linux model configurations.

Configuration Result Diagnosis

1

Linux, SECURITY, SECURITY_NETWORK,
SECURITY_NETWORK_XFRM, INTEL_TXT,
FORTIFY_SOURCE,
STATIC_USERMODEHELPER,
STATIC_USERMODEHELPER_PATH

Valid -

2

Linux, SECURITY, SECURITY_NETWORK,
SECURITY_NETWORK_XFRM,
FORTIFY_SOURCE,
HAVE_HARDENED_USERCOPY_ALLOCATOR,
HARDENED_USERCOPY,
HARDENED_USERCOPY_PAGESPAN,
HARDENED_USERCOPY_FALLBACK

Valid -

3

Linux, SECURITY,
SECURITY_NETWORK_XFRM, INTEL_TXT,
FORTIFY_SOURCE,
STATIC_USERMODEHELPER,
STATIC_USERMODEHELPER_PATH

No valid Select: SECURITY_NETWORK Deselect:
SECURITY_NETWORK_XFRM

4

Linux, SECURITY, SECURITY_NETWORK,
SECURITY_NETWORK_XFRM,
FORTIFY_SOURCE,
HAVE_HARDENED_USERCOPY_ALLOCATOR,
HARDENED_USERCOPY_FALLBACK,
HARDENED_USERCOPY_PAGESPAN

No valid
Select: HARDENED_USERCOPY Deselect:

HAVE_HARDENED_USERCOPY_ALLOCATOR,
HARDENED_USERCOPY_FALLBACK,
HARDENED_USERCOPY_PAGESPAN

5
Linux, SECURITY_DMESG_RESTRICT,
INTEL_TXT, LSM,
STATIC_USERMODEHELPER_PATH

No valid Select: STATIC_USERMODEHELPER Deselect:
STATIC_USERMODEHELPER_PATH

6 Linux, SECURITY_PATH, SECURITYFS,
INTEL_TXT, FORTIFY_SOURCE No valid Select: SECURITY Deselect: SECURITY_PATH

Regarding the invalid configurations of the Android model, the first configuration has the feature
LOCATION_MODE_OFF selected, when it requires the selection of the LOCATION feature. Therefore,
the diagnosis consists of the selection of LOCATION feature and deselection of LOCATION_MODE_OFF.
Regarding the second invalid configuration, the INPUT_METHOD feature is selected but this feature
requires that any input method will be chosen. Therefore, the diagnosis proposes the selection
of any input method (i.e., DEFAULT_INPUT_METHOD, INPUT_METHOD_SELECTOR_VISIBILITY,
SELECTED_INPUT_METHOD_SUBTYPE, ENABLED_INPUT_METHODS). For the third invalid
configuration, parameter ACCESSIBILITY_SPEAK_PASSWORD has been chosen. This configuration
is invalid because, as indicated in the documentation of the Android security options (API 29),
the dictation of passwords has become controlled by individual accessibility services and the apps
ignore this parameter. Thus, in the configuration diagnosis there are two options to correct it: deselect
ACCESSIBILITY_SPEAK_PASSWORD and choose some of the available accessibility options or deselect
ACCESIBILITY to not select accessibility parameters. In the case of the fourth invalid configuration,
parameter TTS_DEFAULT_COUNTRY has been chosen. This configuration is invalid because, as indicated
in the documentation of the Android security options (API 29), the apps no longer use this parameter to
know the country used by default by the text-voice converter, but consult the classes provided by the
TTS framework. This way, in the configuration diagnosis there are two options to correct it: deselect
TTS_DEFAULT_COUNTRY and choose some of the available TTS options or deselect TTS so as not to
select parameters related to the text-voice converter.

Appl. Sci. 2019, 9, 5364 22 of 28

Table 7. Diagnosis of Android model configurations.

Configuration Result Diagnosis

1

Android, ACCESSIBILITY,
ACCESSIBILITY_ENABLED,
ENABLED_ACCESSIBILITY_SERVICES,
LOCATION, LOCATION_MODE_OFF, TTS,
TTS_DEFAULT_PITCH, TTS_DEFAULT_RATE,
TTS_ENABLED_PLUGINS,
TTS_DEFAULT_SYNTH

Valid -

2

Android, INPUT_METHOD,
ENABLED_INPUT_METHODS,
SELECTED_INPUT_METHOD_SUBTYPE,
INPUT_METHOD_SELECTOR_VISIBILITY,
MISCELLANEOUS, RTT_CALLING_MODE,
ANDROID_ID, SKIP_FIRST_USE_HINTS,
TOUCH_EXPLORATION_ENABLED

Valid -

3

Android, ACCESSIBILITY,
ACCESSIBILITY_ENABLED,
ENABLED_ACCESSIBILITY_SERVICES,
LOCATION_MODE_OFF, TTS,
TTS_DEFAULT_PITCH, TTS_DEFAULT_RATE

No valid Select: LOCATION Deselect:
LOCATION_MODE_OFF

4

Android, INPUT_METHOD,
MISCELLANEOUS, RTT_CALLING_MODE,
ANDROID_ID, SKIP_FIRST_USE_HINTS,
TOUCH_EXPLORATION_ENABLED

No valid

Select: DEFAULT_INPUT_METHOD,
INPUT_METHOD_SELECTOR_VISIBILITY,
SELECTED_INPUT_METHOD_SUBTYPE,
ENABLED_INPUT_METHODS Deselect:

INPUT_METHOD

5

Android, ACCESSIBILITY,
ACCESSIBILITY_SPEAK_PASSWORD,
LOCATION, LOCATION_MODE_OFF,
INPUT_METHOD,
INPUT_METHOD_SELECTOR_VISIBILITY

No valid

Select: ENABLED_ACCESSIBILITY_SERVICES,
ACCESSIBILITY_DISPLAY_VERSION_ENABLED,

ACCESSIBILITY_ENABLED Deselect:
ACCESSIBILITY_SPEAK_PASSWORD,

ACCESSIBILITY

6

Android, INPUT_METHOD,
DEFAULT_INPUT_METHOD,
ENABLED_INPUT_METHODS, TTS,
TTS_DEFAULT_COUNTRY

No valid
Select: TTS_ENABLED_PLUGINS,

TTS_DEFAULT_RATE, TTS_DEFAULT_SYNTH,
TTS_DEFAULT_PITCH Deselect:
TTS_DEFAULT_COUNTRY, TTS

5.3. Discussion of Results

In the previous section, a realistic scenario has been presented where several feature models
represent a security context in which three product configurations have been analysed. The analysis
has been carried out in twofold: (1) a first analysis in which the number of features, relations, validation
of the model and the number of products were determined; (2) a second analysis in which particular
configurations were validated and diagnosed. The aim of the analysis is to provide a perspective in the
domain of the configuration of products in the security context and to help the involved practitioners
in the task of the verification of policies and configurations according to the context.

The usefulness of the results obtained with CyberSPL can be observed from different points of views:

• For Business and security managers, CyberSPL enables improving the task of verification
and analysis of cybersecurity policies due to the automatic analysis. Moreover, the use of
catalogues and historical records of models enables doing a more flexible, effective, adaptable,
and easy-to-maintain security contexts for organisations. The models can be shared and reused
in multiple scenarios according to the necessity of the organisations. For instance, the models
can be customised and enriched with attributes to indicate which risk level certain features have
according to the organisation expectancy.

• For Business and security provisioners, CyberSPL enables automatically verifying and diagnosing
whether the configurations comply with established policies and contexts. Moreover, CyberSPL

Appl. Sci. 2019, 9, 5364 23 of 28

can be useful to obtain valid blueprints to secure and configure products or systems according to
the organisation policies.

The advantage of CyberSPL is to provide a framework where users all over the world can develop,
update, and share their models. Moreover, CyberSPL provides automatic analysis tools to verify and
diagnose configurations and mechanisms to export and track the versions of the models. The main
drawback of CyberSPL is that it requires a high initial effort in defining feature models as complete
as possible according to the context. Nevertheless, CyberSPL provides a catalogue of public models
that can be reused for that task; furthermore, once feature models are defined, it only requires an
update cycle.

On the other hand, the problem of security configuration and misconfiguration is not transferred
to a feature-domain problem, thus, feature models and the reasoning techniques help to solve the
problem of the product and system configurations since the feature models gather all the information
(features and constraints) to correctly (or not) configure specific products or systems according to a
policy. Therefore, the feature model will not substitute the configuration problem, CyberSPL can be
seen as a tool or complement which aids businesses, security, and operational practitioners to ensure
the compliance of the configurations according to policies and contexts.

6. Conclusions and Future Work

In this article, the problem of cybersecurity configuration of products and systems has been tackled.
In particular, the paper is focused on the compliance of those configurations with regard to
cybersecurity policies. In order to confront this problem, the CyberSPL framework and its implementation
is presented aligned with the five objectives presented. CyberSPL provides users with a set of tools for
the definition and the maintenance of a catalogue of cybersecurity policies based on feature models.
These policies are associated with different contexts of software products and systems related to
cybersecurity to maintain a catalogue (OBJ1). CyberSPL enables the obtaining of the properties of
the feature models (OBJ2). On the other hand, CyberSPL enables the automatic detection of configuration
failures to validate with cybersecurity policies through the description of features of the different
cybersecurity contexts (OBJ3). Moreover, it provides the diagnosis of configurations to isolate and
identify the mistakes that cause the non-conformance of the cybersecurity policies (OBJ4). CyberSPL has
been evaluated by presenting a catalogue of four real feature models related to a complex scenario
encompassed of four different cybersecurity contexts, that is, the configuration of security options in the
Linux kernel; the security settings of applications provided by Android SDK API level, the configuration of
security channels in the Apache application server, and; the configuration of a Cipher Suite for the SSL/TLS
protocol (OBJ5). Those models have been validated and automatic diagnosis capabilities have been also
demonstrated fulfilling the defined objectives as described in the methodology Design Science.

In summary, the CyberSPL framework enables the verification of compliance with cybersecurity
policies, and the analysis of product configurations, applications and services that participate.
The use of CyberSPL facilitates an important advance in the automated management of cybersecurity
policy compliance by cybersecurity managers taken into consideration the results obtained with
the evaluation. Moreover, for operational development (DevOps) perspective, where ensuring and
checking that a configuration is following the policy, the use of CyberSPL increases the alignment
significantly between the development layer and the operational layer.

Furthermore, our work can be extended in two main directions: (1) to automatically update the
feature models in accordance with technological advances or vulnerabilities that occur over time; (2)
to maintain a register of the evolution of the feature models for each context, in order to allow more
precise diagnosis when changes in cybersecurity policies occur.

Appl. Sci. 2019, 9, 5364 24 of 28

Author Contributions: All the authors are responsible for the concept of the paper, the results presented and the
writing and contributed equally to this work.

Funding: This work has been partially funded by the Ministry of Science and Technology of Spain by
ECLIPSE project (RTI2018-094283-B-C33) and the European Regional Development Fund (ERDF/FEDER) via
METAMORFOSIS project.

Acknowledgments: The authors would like to thank the Cátedra of Telefónica “Intelligia en la Red“ of the
University of Sevilla for their support in the development of this work, and José A. Galindo and David Benavides
for the support of the FAMA tool.

Conflicts of Interest: All the authors have approved the final content of the manuscript. No potential conflict of
interest was reported by the authors.

Appendix A

Figure A1. Catalogue of user models.

Figure A2. Graphical edition of feature models.

Appl. Sci. 2019, 9, 5364 25 of 28

Figure A3. History version and diff between models.

Figure A4. Model analysis.

References

1. Knapp, E. Chapter 11—Common Pitfalls and Mistakes. In Industrial Network Security; Syngress: Amsterdam,
The Netherlands, 2011; pp. 303–312, ISBN 9781597496452.

2. Martínez, S.; Cosentino, V.; Cabot, J. Model-based analysis of Java EE web security misconfigurations.
Comput. Lang. Syst. Struct. 2017, 49, 36–61. [CrossRef]

3. Fernández-Cerero, D.; Varela-Vaca, Á.J.; Fernández-Montes, A.; Gómez-López, M.T.; Alvárez-Bermejo, J.A.
Measuring data-centre workflows complexity through process mining: The Google cluster case.
J. Supercomput. 2019. [CrossRef]

4. Bai, X.; Xing, L.; Zhang, N.; Wang, X.; Liao, X.; Li, T.; Hu, S. Apple ZeroConf Holes: How Hackers Can Steal
iPhone Photos. IEEE Secur. Priv. 2017, 15, 42–49. [CrossRef]

5. Alfaro, J.G.; Boulahia-Cuppens, N.; Cuppens, F. Complete analysis of configuration rules to guarantee
reliable network security policies. Int. J. Inf. Secur. 2008, 7, 103–122. [CrossRef]

6. Lallie, H.S.; Debattista, K.; Bal, J. Evaluating practitioner cyber-security attack graph configuration preferences.
Comput. Secur. 2018, 79, 117–131. [CrossRef]

7. Li, X.; Xue, Y. A survey on server-side approaches to securing web applications. ACM Comput. Surv. 2014, 46, 29.
[CrossRef]

http://dx.doi.org/10.1016/j.cl.2017.02.001
http://dx.doi.org/10.1007/s11227-019-02996-2
http://dx.doi.org/10.1109/MSP.2017.23
http://dx.doi.org/10.1007/s10207-007-0045-7
http://dx.doi.org/10.1016/j.cose.2018.08.005
http://dx.doi.org/10.1145/2541315

Appl. Sci. 2019, 9, 5364 26 of 28

8. OWASP Top Ten Project. OWASP. Available online: https://www.owasp.org/index.php/Category:OWASP_
Top_Ten_Project#Users_and_Adopters (accessed on 25 September 2019).

9. Lotufo, R.; She, S.; Berger, T.; Czarnecki, K.; Wąsowski, A. Evolution of the Linux Kernel Variability Model.
In Software Product Lines: Going Beyond; Springer: Berlin/Heidelberg, Germany, 2010, pp. 136–150.

10. Kyo, K.; Sholom, C.; James, H.; William, N.; Peterson. A. Feature-Oriented Domain Analysis (FODA)
Feasibility Study; Technical Report CMU/SEI-90-TR-021; Carnegie Mellon University: Pittsburgh, PA, USA, 1990.

11. Batory, D. Feature Models, Grammars, and Propositional Formulas. In Software Product Lines; Springer:
Berlin/Heidelberg, Germany, 2005; pp. 7–20.

12. Software Product Line; Carnegie Mellon Software Engineering Institute: Pittsburgh, PA, USA.
Available online: https://resources.sei.cmu.edu/library/index.cfm?fp=sei_topic:Software+Product+Lines&
global=true (accessed on 6 December 2019).

13. Sisiaridis, D.; Markowitch, O. Automating Feature Extraction and Feature Selection in Big Data
Security Analytics. In Artificial Intelligence and Soft Computing; Springer International Publishing:
Berlin/Heidelberg, Germany, 2018; pp. 423–432.

14. Costa, G.; Merlo, A.; Verderame, L.; Armando, A. Automatic security verification of mobile app configurations.
Future Gener. Comput. Syst. 2018, 80, 519–536. [CrossRef]

15. Behringer, B.; Lehser, M.; Rothkugel, S. Towards Feature-Oriented Fault Tree Analysis. In Proceedings of the 38th
International Computer Software and Applications Conference Workshops, Vasteras, Sweden, 21–25 July 2014.

16. Varela-Vaca, A.J.; Gasca, R.M. Towards the automatic and optimal selection of risk treatments for business
processes using a constraint programming approach. Inf. Softw. Technol. 2013, 55, 1948–1973. [CrossRef]

17. Benavides, D.; Segura, S.; Ruiz-Cortés, A. Automated analysis of feature models 20 years later:
A literature review. Inf. Syst. 2010, 35, 615–636. [CrossRef]

18. Schumacher, M. Security Engineering with Patterns; Springer: Berlin/Heidelberg, Germany, 2003.
19. Varela-Vaca, A.J.; Gasca, R.M. Formalization of security patterns as a means to infer security controls in

business processes. Log. J. IGPL 2014, 23, 57–72. [CrossRef]
20. Peffers, K.; Rothenberger, M.A.; Kuechler, W.L. Design Science Research in Information Systems.

In Proceedings of the 7th International Conference, (DESRIST), Las Vegas, NV, USA, 14–15 May 2012.
21. vom Brocke, J.; Braccini, A.M.; Sonnenberg, C.; Spagnoletti, P. Living IT infrastructures—An ontology-based

approach to aligning IT infrastructure capacity and business needs. Int. J. Account. Inf. Syst. 2013, 15, 246–274.
[CrossRef]

22. Varela-Vaca, A.J.; Gasca, R.M.; Ceballos, R.; Bernáldez-Torres, P. CyberSPL: Plataforma para la verificación
del cumplimiento de políticas de ciberseguridad en configuraciones de sistemas usando modelos
de características. In Proceedings of the Actas de las V Jornadas Nacionales de Investigación en
Ciberseguridad (JNIC 2019), Extremadura, Spain, 5–7 June 2019.

23. Varela-Vaca, A.J.; Galindo, J.A.; Ramos-Gutiérrez, B.; Gómez-López, M.T.; Benavides, D. Process Mining to
Unleash Variability Management: Discovering Configuration Workflows Using Logs. In Proceedings of the
23rd International Systems and Software Product Line Conference—Volume A (SPLC ’19), Paris, France,
9–13 September 2019.

24. Galindo, J.A.; Benavides, D.; Trinidad, P.; Gutiérrez-Fernández, A.-M.; Ruiz-Cortés, A. Automated analysis
of feature models: Quo vadis? Computing 2018, 101, 387–433. [CrossRef]

25. Benavides, D.; Galindo, J.A. Automated analysis of feature models. In Proceedings of the 22nd International
Conference on Systems and Software Product Line-SPLC ’18, Gothenburg, Sweden, 10–14 September 2018.

26. Trinidad, P.; Benavides, D.; Durán, A.; Ruiz-Cortés, A.; Toro, M. Automated error analysis for the agilization
of feature modeling. J. Syst. Softw. 2008, 81, 883–896. [CrossRef]

27. Felfernig, A.; David, R.W.A.G.; Seda, B.; Erdeniz, P.; Atas, M.; Reiterer, S. Anytime diagnosis for reconfiguration.
J. Intell. Inf. Syst. 2018, 51, 161–182. [CrossRef]

28. Semmak, F.; Gnaho, C.; Laleau, R. Extended KAOS Method to Model Variability in Requirements.
In Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2010; pp. 193–205.

29. Pérez, J.; Laguna, M.A.; González-Carvajal, Y.C.; González-Baixauli, B. Requirements Variability Support
Through MDATM and Graph Transformation. Electron. Notes Theor. Comput. Sci. 2006, 152, 161–173.
[CrossRef]

30. Sawyer, P.; Mazo, R.; Diaz, D.; Salinesi, C.; Hughes, D. Using Constraint Programming to Manage
Configurations in Self-Adaptive Systems. Computer 2012, 45, 56–63. [CrossRef]

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#Users_and_Adopters
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#Users_and_Adopters
https://resources.sei.cmu.edu/library/index.cfm?fp=sei_topic:Software+Product+Lines&global=true
https://resources.sei.cmu.edu/library/index.cfm?fp=sei_topic:Software+Product+Lines&global=true
http://dx.doi.org/10.1016/j.future.2016.06.014
http://dx.doi.org/10.1016/j.infsof.2013.05.007
http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1093/jigpal/jzu042
http://dx.doi.org/10.1016/j.accinf.2013.10.004
http://dx.doi.org/10.1007/s00607-018-0646-1
http://dx.doi.org/10.1016/j.jss.2007.10.030
http://dx.doi.org/10.1007/s10844-017-0492-1
http://dx.doi.org/10.1016/j.entcs.2005.10.023
http://dx.doi.org/10.1109/MC.2012.286

Appl. Sci. 2019, 9, 5364 27 of 28

31. Mellado, D.; Fernández-Medina, E.; Piattini, M. Towards Security Requirements Management for Software
Product Lines: A Security Domain Requirements Engineering Process. Comput. Stand. Interfaces 2008, 30,
361–371. [CrossRef]

32. Mellado, D.; Fernández-Medina, E.; Piattini, M. Security Requirements Management in Software Product
Line Engineering. In Proceedings of the International Conference, ICETE 2008, Porto, Portugal, 26–29 July 2008.

33. Mellado, D.; Mouratidis, H.; Fernández-Medina, E. Secure Tropos Framework for Software Product Lines
Requirements Engineering. Comput. Stand. Interfaces 2014, 36, 711–722. [CrossRef]

34. Sion, L.; Landuyt, D.; Yskout, K.; Joosen, W. Towards systematically addressing security variability in
software product lines. In Proceedings of the 20th International Systems and Software Product Line
Conference, Beijing, China, 16–23 September 2016; pp. 342–343.

35. Fagri, T.; Hallsteinsen, S. A Software Product Line Reference Architecture for Security. In Software Product Lines:
Research Issues in Engineering and Management; Springer: Berlin/Heidelberg, Germany, 2006; pp. 275–326.

36. Arciniegas, J.; Dueñas, J.; Ruiz, J.; Cerón, R.; Bermejo, J.; Oltra, M. Architecture Reasoning for Supporting
Product Line Evolution: An Example on Security. In Software Product Lines: Research Issues in Engineering
and Management; Springer: Berlin/Heidelberg, Germany, 2006; pp. 327–372.

37. Peldszus, S.; Strüber, D.; Jürjens, J. Model-Based Security Analysis of Feature-Oriented Software
Product Lines. In Proceedings of the 17th International Conference on Generative Programming: Concepts
and Experiences (GPCE ’18) ACM SIGPLAN, Boston, MA, USA, 5–6 November 2018.

38. Mauro, M.D.; Sarno, C.D. Improving SIEM capabilities through an enhanced probe for encrypted Skype
traffic detection. J. Inf. Secur. Appl. 2018, 38, 85–95. [CrossRef]

39. Zolanvari, M.; Teixeira, M.A.; Gupta, L.; Khan, K.M.; Jain, R. Machine Learning-Based Network Vulnerability
Analysis of Industrial Internet of Things. IEEE Internet Things J. 2019, 6, 6822–6834. [CrossRef]

40. Mellado, D.; Fernández-Medina, E.; Piattini, M. Security requirements engineering framework for software
product lines. Inf. Softw. Technol. 2010, 52, 1094–1117. [CrossRef]

41. Mohsin, M.; Anwar, Z.; Zaman, F.; Al-Shaer, E. IoTChecker: A data-driven framework for security analytics
of Internet of Things configurations. Comput. Secur. 2017, 70, 199–223. [CrossRef]

42. Acher, M.; Collet, P.; Lahire, P.; France, R.B. FAMILIAR: A domain-specific language for large scale
management of feature models. Sci. Comput. Program. 2013, 6, 657–681. [CrossRef]

43. Gears. Available online: https://biglever.com/solution/gears/ (accessed on 6 December 2019).
44. Apel, S.; Leich, T.; Rosenmüller, M.; Saake, G. FeatureC++: On the Symbiosis of Feature-Oriented

and Aspect-Oriented Programming. In Generative Programming and Component Engineering; Glück, R.,
Lowry, M., Eds.; Springer: Berlin.Heidelberg, Germany, 2005; pp. 125–140.

45. pure::variants. Available online: https://www.pure-systems.com/ (accessed on 6 December 2019).
46. Mendonca, M.; Branco, M.; Cowan, D. S.P.L.O.T.: SoftwareProduct Lines Online Tools. In Proceedings of

the 24th ACM SIGPLAN ConferenceCompanion on Object Oriented Programming Systems Languages and
Applications(OOPSLA ’09), Orlando, FL, USA, 25–29 October 2009; pp. 761–762.

47. Mazo, R.; Muñoz-Fernández, J.C.; Rincón, L.; Salinesi, C.; Tamura, G. VariaMos: An extensible tool for
engineering (dynamic) product lines. In Proceedings of the 19th International Conference on Software
Product Line, SPLC 2015, Nashville, TN, USA, 20–24 July 2015; pp. 374–379.

48. Anna, S.; Christian, B.; Georg, R. Glencoe: A Toolfor Specification, Visualization and Formal Analysis
of Product Lines. In Transdisciplinary Engineering Methods for Social Innovation of Industry 4.0; IOS Press:
Amsterdam, The Netherlands, 2018; pp. 665–673.

49. Benavides, D.; Trinidad, P.; Cortés, A.R.; Segura, S. FaMa; Springer: Berlin/Heidelberg, Germany, 2013.
50. Constraint Processing. 2003. Available online: https://doi.org/10.1016/b978-1-55860-890-0.x5000-2

(accessed on) 6 Decembre 2019.
51. Cook, S.A. The complexity of theorem-proving procedures. In Proceedings of the Third Annual ACM

Symposium on Theory of Computing-STOC ’71, Shaker Heights, OH, USA, 3–5 May 1971.
52. Prud’homme, C.; Fages, J.-G.; Lorca, X. Choco Documentation. 2017. Available online: http://www.choco-

solver.org (accessed on 6 December 2019).
53. Hickman, K. The SSL Protocol; Netscape Communications Corp.: Dulles, VA, USA, 1995.
54. Dierks, T.; Rescorla, E. The TLS Protocol Version 1.2—RFC 5246. 2008.
55. Rescorla, E. The TLS Protocol Version 1.3—RFC 8446. 2018.

http://dx.doi.org/10.1016/j.csi.2008.03.004
http://dx.doi.org/10.1016/j.csi.2013.12.006
http://dx.doi.org/10.1016/j.jisa.2017.12.001
http://dx.doi.org/10.1109/JIOT.2019.2912022
http://dx.doi.org/10.1016/j.infsof.2010.05.007
http://dx.doi.org/10.1016/j.cose.2017.05.012
http://dx.doi.org/10.1016/j.scico.2012.12.004
https://biglever.com/solution/gears/
https://www.pure-systems.com/
https://doi.org/10.1016/b978-1-55860-890-0.x5000-2
http://www.choco-solver.org
http://www.choco-solver.org

Appl. Sci. 2019, 9, 5364 28 of 28

56. Open Security Architecture. Available online: http://www.opensecurityarchitecture.org/cms/ (accessed on
6 December 2019).

57. Varela-Vaca, A.J.; Parody, L.; Gasca, R.M.; Gómez-López, M.T. Automatic Verification and Diagnosis of
Security Risk Assessments in Business Process Models. IEEE Access 2019, 7, 26448–26465. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.opensecurityarchitecture.org/cms/
http://dx.doi.org/10.1109/ACCESS.2019.2901408
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Analysis and Diagnosis of Feature Models
	Cybersecurity and Software Product Lines
	Analysis and Verification of Cybersecurity Configurations
	Software Product Line Tools

	Background in Feature Models and Validation Mechanisms
	CyberSPL: Cybersecurity Software Product Line
	CyberSPL Workflow and Operation
	CyberSPL Implementation

	Evaluation Approach
	Context Description and Feature Models
	Analysis of Feature Models and Diagnosis of Configurations
	Discussion of Results

	Conclusions and Future Work
	
	References

