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OPTIMAL BILINEAR CONTROL PROBLEM RELATED

TO A CHEMO-REPULSION SYSTEM IN 2D DOMAINS
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and Maŕıa Ángeles Rodŕıguez-Bellido1

Abstract. In this paper, we study a bilinear optimal control problem associated to a chemo-repulsion
model with linear production term in a bidimensional domain. The existence, uniqueness and regularity
of strong solutions of this model are deduced, proving the existence of a global optimal solution.
Afterwards, we derive first-order optimality conditions by using a Lagrange multipliers theorem.
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1. Introduction

In biology, the chemotaxis phenomenon is understood as the movement of living organisms induced by
the presence of certain chemical substances. In 1970 Keller and Segel [12] proposed a mathematical model
that describes chemotactic aggregation of cellular slime molds which move preferentially towards relatively
high concentrations of a chemical substance secreted by the amoebae themselves. Such phenomenon is called
chemoattraction with production. In contrast, if regions of high chemical concentration generate a repulsive
effect on the organisms, the phenomenon is called chemorepulsion.

We are interested in studying a chemorepulsion model given by the following system of partial differential
equations


∂tu−∆u = ∇ · (u∇v) in (0, T )× Ω ≡ Q,

∂tv −∆v + v = h(u) in (0, T )× Ω ≡ Q,
u(0, x) = u0(x), v(0, x) = v0(x) in Ω,

∂u

∂n
= 0,

∂v

∂n
= 0 on (0, T )× ∂Ω,

(1.1)

where Ω ⊂ R2, is a bounded domain with smooth boundary ∂Ω, n denotes the outward unit normal vector to ∂Ω
and (0, T ) is a time interval. The unknowns are cell density u(t, x) ≥ 0 and chemical concentration v(t, x) ≥ 0.
The function h(u) represents the production term, which must be nonnegative when u ≥ 0.
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System (1.1), when the production term is linear, that is h(u) = u, was studied by Ciéslak et al in [7]. The
authors, based on the abstract theory for quasilinear parabolic problems (see [2]), proved the global existence
and uniqueness of smooth classical solution in 2D domains, and global existence of weak solutions in spaces of
dimension 3 and 4. Tao [25], in a bounded convex domain Ω ⊂ Rn (n ≥ 3), studies system (1.1) with h(u) = u
and a modification in the density-dependent chemotactic sensitivity function, that is, the term ∇ · (u∇v) is
changed by ∇ · (g(u)∇v), where

g ∈ C2([0,+∞]), g(0) = 0, 0 < g(u) ≤ C(u+ 1)α for all u > 0

with some C > 0 and α > 0. The author proves that, under assumptions of initial data 0 6≡ u0 ∈ C0(Ω) and
v0 ∈ C1(Ω) are nonnegative and that α < 4

n+2 , there exists a unique global in time classical solution of (1.1)

and the corresponding solution (u, v) converges to (u0, u0) as time goes to +∞, where u0 := 1
|Ω|
∫

Ω
u0.

In this work we study a control problem subject to this chemorepulsion with linear production model in
which a bilinear control acts injecting or extracting chemical substance on a subdomain of control Ωc ⊂ Ω.
Specifically, we consider Ω ⊂ R2 be a bounded domain of class C2, then we study a control problem associated
to the following system in Q := (0, T )× Ω,{

∂tu−∆u = ∇ · (u∇v),
∂tv −∆v + v = u+ fv,

(1.2)

with initial conditions

u(0, x) = u0(x) ≥ 0, v(0, x) = v0(x) ≥ 0 in Ω, (1.3)

and boundary conditions

∂u

∂n
= 0,

∂v

∂n
= 0 on (0, T )× ∂Ω. (1.4)

Here, the function f denotes a bilinear control that acts on chemical concentration, which lies in a closed convex
set F . We observe that in the subdomains where f ≥ 0 we inject chemical substance, and conversely where f ≤ 0
we extract chemical substance. There is a wide collection of publications dealing with optimal control of PDEs.
See, for example, [1, 4, 11, 13, 15, 17, 20, 24, 28, 29] and the references therein. In all previous publications, the
control variable enters the state equation either on the right-hand side (distributed controls) or is part of the
boundary conditions (boundary controls). As far as we know, the literature related to optimal control problems
with bilinear control is scarce, see [3, 10, 14, 27]. The main difficulty is that the solution of the state equation
depends nonlinearly on the control and state variables (see the second equation in (1.2)).

In the context of optimal control problems associated to chemotaxis models, the literature is also scarce,
see [8, 10, 19, 21, 22]. In [8] the authors study a distributed optimal control for a two-dimensional model of
cancer invasion. Using the Leray-Schauder fixed point theorem, they prove the existence of weak solutions of
state system. Also, they prove the existence of optimal control and derive an optimality system. The works
[10, 21] delimit their study to a one-dimensional domain. In [10] two extreme problems on a chemoattractant
model are analyzed; one involves harvesting the actual cells and the other depicts removing a proportion of
the chemical substance. The control is bilinear (total) and acts on a portion of the cells or chemical substance.
They prove the existence of optimal solutions and derive an optimality system. Also, they design a numerical
scheme for the optimality system and present some examples. In the problem studied in [21], the control acts
on the boundary conditions for the chemical substance. The existence of optimal solutions is proved. In the
recent work [19], the authors analyze a distributive optimal control problem where the state equations are given
by a stationary chemotaxis model coupled with the Navier-Stokes equations (chemotaxis-fluid system). They
prove the existence of an optimal solution. In addition, they derive an optimality system through a penalty
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method, because the relation control-state is multivalued. Finally, in [22], on a 2D domain, the authors study a
problem in which the control variable is distributed, and acts on the equation for the chemical substance. They
prove the existence of optimal solutions. Furthermore, using the fact that the state is differentiable with respect
to the control, they derive an optimality system. Other studies related to controllability for the nonstationary
Keller-Segel system and nonstationary chemotaxis-fluid model can be consulted in [5, 6], respectively.

The outline of this paper is as follows: In Section 2, we fix the notation, introduce the functional spaces
to be used, give the definition of strong solution for system (1.2)–(1.4) and we state a parabolic regularity
result that will be used throughout this work. In Section 3, we prove the existence (and uniqueness) of strong
solution of (1.2)–(1.4) using the Leray-Schauder fixed point theorem. In Section 4, we establish the optimal
control problem, proving the existence of an optimal solution and we obtain the first-order optimality conditions
based on a Lagrange multipliers theorem in Banach spaces. Finally, we obtain a regularity result for Lagrange
multipliers.

2. Preliminaries

In order to establish the control problem, we will introduce some notations. We will use the Lebesgue space
Lp(Ω), 1 ≤ p ≤ +∞, with norm denoted by ‖ · ‖Lp . In particular, the L2(Ω) norm and its inner product
will denoted by ‖ · ‖ and (·, ·), respectively. We consider the usual Sobolev spaces Wm,p(Ω) = {u ∈ Lp(Ω) :
‖∂αu‖Lp < +∞, ∀|α| ≤ m}, with norm denoted by ‖ · ‖Wm,p . When p = 2, we write Hm(Ω) := Wm,2(Ω) and
we denote the respective norm by ‖ · ‖Hm . Also, we use the space Wm,p

n (Ω) = {u ∈Wm,p(Ω) : ∂u
∂n = 0 on ∂Ω}

(m > 1 + 1/p), with norm denoted by ‖ · ‖Wm,p
n

. If X is a Banach space, we denote by Lp(0, T ;X) the space
of valued functions in X defined on the interval [0, T ] that are integrable in the Bochner sense, and its norm
will be denoted by ‖ · ‖Lp(X). For simplicity we denote Lp(Q) := Lp(0, T ;Lp(Ω)) if p 6= +∞ and its norm by
‖ · ‖Lp(Q). In the case p = +∞, L∞(Q) means L∞((0, T )× Ω), and its norm is denoted by ‖ · ‖L∞(Q). Also, we
denote by C([0, T ];X) the space of continuous functions from [0, T ] into a Banach space X, and its norm by
‖ · ‖C(X). The topological dual space of a Banach space X will be denoted by X ′, and the duality for a pair X
and X ′ by 〈·, ·〉X′ or simply by 〈·, ·〉 unless this leads to ambiguity. Moreover, the letters C, K, C1, K1, . . . , are
positive constants, independent of state (u, v) and control f , but its value may change from line to line.

We are interested in the study of a control problem associated to strong solutions of system (1.2)–(1.4). In
the following definition we give the concept of strong solution of (1.2)–(1.4).

Definition 2.1. Let f ∈ L4(Q), u0 ∈ H1(Ω), v0 ∈W 3/2,4
n (Ω) with u0 ≥ 0 and v0 ≥ 0 a.e. in Ω, a pair (u, v) is

called strong solution of problem (1.2)–(1.4) in (0, T ), if u ≥ 0 and v ≥ 0 in Q,

u ∈ Yu := {u ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2
n(Ω)), ∂tu ∈ L2(Q)}, (2.1)

v ∈ Yv := {v ∈ L∞(0, T ;W 3/2,4
n (Ω)) ∩ L4(0, T ;W 2,4

n (Ω)), ∂tv ∈ L4(Q)}, (2.2)

the system (1.2) hold pointwisely a.e. (t, x) ∈ Q,

∂tu−∆u = ∇ · (u∇v), (2.3)

∂tv −∆v + v = u+ fv, (2.4)

and the boundary and initial conditions (1.3) and (1.4) are satisfied, respectively.

Remark 2.2. The problem (1.2)–(1.4) is conservative in u. In fact, integrating (1.2)1 in Ω we have

d

dt

(∫
Ω

u

)
= 0, i.e.

∫
Ω

u(t) =

∫
Ω

u0 := m0, ∀t > 0. (2.5)
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Also, integrating (1.2)2 in Ω we deduce

d

dt

(∫
Ω

v

)
+

∫
Ω

v = m0 +

∫
Ω

fv. (2.6)

We define the space Ŵ 2−2/p,p(Ω) as follows

Ŵ 2−2/p,p(Ω) =

{
W 2−2/p,p(Ω) if p < 3,

W
2−2/p,p
n (Ω) if p > 3.

(2.7)

In order to study the existence of solution of system (1.2)–(1.4), we will use the following regularity result
for the heat equation (see [9], p. 344).

Lemma 2.3. For Ω ∈ C2, let 1 < p < +∞ (p 6= 3) and g ∈ Lp(Q), u0 ∈ Ŵ 2−2/p,p(Ω). Then the problem
∂tu−∆u = g in Q,
u(0, x) = u0(x) in Ω,

∂u

∂n
= 0 on (0, T )× ∂Ω,

admits a unique solution u in the class

u ∈ C([0, T ]; Ŵ 2−2/p,p(Ω)) ∩ Lp(0, T ;W 2,p(Ω)), ∂tu ∈ Lp(Q).

Moreover, there exists a positive constant C = C(p,Ω, T ) such that

‖u‖
C(Ŵ 2−2/p,p)

+ ‖∂tu‖Lp(Q) + ‖u‖Lp(W 2,p) ≤ C(‖g‖Lp(Q) + ‖u0‖Ŵ 2−2/p,p). (2.8)

In particular, the equation ∂tu−∆u = g is pointwisely satisfied a.e. in Q.

Remark 2.4. In the case of p = 3, one concludes that u ∈ C([0, T ];X3,3)∩L3(0, T ;W 2,3(Ω)), ∂tu ∈ L3(Q), for

a certain space X3,3 (see [9], Thm. 10.22) whose description is not evident in terms of Ŵ 2−2/p,p(Ω) or another
Sobolev space.

Thorough this paper, we will use the following equivalent norms in H1(Ω) and H2(Ω), respectively (see [18]
for details):

‖u‖2H1 ' ‖∇u‖2 +

(∫
Ω

u

)2

, ∀u ∈ H1(Ω), (2.9)

‖u‖2H2 ' ‖∆u‖2 +

(∫
Ω

u

)2

, ∀u ∈ H2
n(Ω), (2.10)

and the classical interpolation inequality in 2D domains

‖u‖L4 ≤ C‖u‖1/2‖u‖1/2H1 , ∀u ∈ H1(Ω). (2.11)

3. Existence and uniqueness of strong solution of system
(1.2)–(1.4)

In this section we will prove the existence (and uniqueness) of solution of (1.2)–(1.4) using the Leray-Schauder
fixed point theorem. Specifically we will prove the following result:
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Theorem 3.1. Let u0 ∈ H1(Ω), v0 ∈ W 3/2,4
n (Ω) with u0 ≥ 0 and v0 ≥ 0 in Ω, and f ∈ L4(Q). There exists a

unique strong solution (u, v) of system (1.2)–(1.4) in sense of Definition 2.1. Moreover, there exists a positive
constant

K1 := K1(m0, T, ‖u0‖H1 , ‖v0‖W 3/2,4
n

, ‖f‖L4(Q)),

such that

‖(∂tu, ∂tv)‖L2(Q)×L4(Q) + ‖(u, v)‖
C(H1×W 3/2,4

n )
+ ‖u‖L2(H2) + ‖v‖L4(W 2,4) ≤ K1. (3.1)

3.1. Existence

Let us introduce the “weak” spaces

Xu := C0([0, T ];L2(Ω)) ∩ L8/3(0, T ;W 1,8/3(Ω)) and Xv := C0([0, T ];C(Ω)). (3.2)

We define the operator R : Xu × Xv → Yu × Yv ↪→ Xu × Xv by R(ū, v̄) = (u, v) the solution of the decoupled
linear problem 

∂tu−∆u = ∇ · (ū+∇v),
∂tv −∆v + v = ū+ + fv̄+,

u(0) = u0, v(0) = v0,
∂u

∂n
= 0,

∂v

∂n
= 0,

(3.3)

where ū+ := max{ū, 0} ≥ 0, v̄+ := max{v̄, 0} ≥ 0. In fact, first we find v and after u.
In the following lemmas we will prove the hypotheses of Leray-Schauder fixed point theorem.

Lemma 3.2. The operator R : Xu ×Xv → Xu ×Xv is well defined and compact.

Proof. Let (ū, v̄) ∈ Xu × Xv. Since Xu ↪→ L4(Q), Xv ⊂ L∞(Q) and f ∈ L4(Q), then ū+ + fv̄+ ∈ L4(Q). By
applying Lemma 2.3 (for p = 4), there exists a unique solution v ∈ Yv of (3.3)2 such that

‖v‖L4(W 2,4) + ‖∂tv‖L4(Q) + ‖v‖
C(W

3/2,4
n )

≤ C(‖ū‖L4(Q) + ‖v̄‖L∞(Q)‖f‖L4(Q) + ‖v0‖W 3/2,4
n

)

≤ C(‖v0‖W 3/2,4
n

, ‖f‖L4(Q)). (3.4)

Now, using the fact that v ∈ Yv, in particular we have ∇v ∈ L∞(0, T ;L4(Ω)) ∩ L4(0, T ;W 1,4(Ω)) ↪→ L8(Q),
and taking into account that ∇ū+ ∈ L8/3(Q), ∆v ∈ L4(Q), ū+ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) ↪→ L4(Q)
we have ∇ · (ū+∇v) = ū+∆v +∇ū+ · ∇v ∈ L2(Q). Thus, again by Lemma 2.3 (for p = 2), we conclude that
there exist a unique u ∈ Yu solution of (3.3)1 such that

‖u‖L2(H2) + ‖∂tu‖L2(Q) + ‖u‖C(H1) ≤ C(‖ū‖L4(Q)‖∆v‖L4(Q) + ‖∇ū‖L8/3(Q)‖∇v‖L8(Q) + ‖u0‖H1)

≤ C(‖u0‖H1 , ‖v0‖W 3/2,4
n

, ‖f‖L4(Q)). (3.5)

In the last inequality of (3.5), estimate (3.4) has been used. Therefore, R is well defined from Xu × Xv to
Yu × Yv.

Moreover, the compactness of R is consequence of estimates (3.4) and (3.5), and the compact embedding
Yu×Yv ↪→ Xu×Xv. Indeed, let (ū, v̄) be in a bounded set of Xu×Xv and consider (u, v) = R(ū, v̄). From (3.5), u
is bounded in L∞(0, T ;H1(Ω)) and ∂tu is bounded in L2(Q). Because of H1(Ω) ↪→ L2(Ω) in a compact way, from
Théorème 5.1 of [23] one can deduce that Yu is compactly embedded in C0([0, T ];L2(Ω)). Moreover, interpolating
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between L∞(0, T ;H1(Ω)) and L2(0, T ;H2(Ω)), u is bounded in L8/3(0, T ;H7/4(Ω)) (see [9] or [26]). Using that
H7/4(Ω) ↪→W 1,p(Ω), p < 8, in a compact way, and that ∂tu is bounded in L2(Q), again from Théorème 5.1 of
[23] one has in particular that Yu is compactly embedded in L8/3(0, T ;W 1,8/3(Ω)). Similarly, starting from (3.4),

v is bounded in L∞(0, T ;W
3/2,4
n (Ω)) and ∂tv is bounded in L4(Q). Taking into account that W

3/2,4
n (Ω) ↪→ C0(Ω)

in a compact way, one can deduce that Yv is compactly embedded in C0([0, T ];C0(Ω)) = C0([0, T ]× Ω).

Lemma 3.3. The set

Tα = {(u, v) ∈ Yu × Yv : (u, v) = αR(u, v) for some α ∈ [0, 1]} (3.6)

is bounded in Xu ×Xv (independently of α ∈ [0, 1]). In fact, Tα is also bounded in Yu × Yv, i.e. there exists

M = M(m0, T, ‖u0‖H1 , ‖v0‖W 3/2,4
n

, ‖f‖L4(Q)) > 0, (3.7)

with M independent of α, such that all pairs of functions (u, v) ∈ Tα for α ∈ [0, 1] satisfy

‖(u, v)‖L2(H2)×L4(W 2,4) + ‖(∂tu, ∂tv)‖L2(Q)×L4(Q) + ‖(u, v)‖
C(H1)×C(W

3/2,4
n )

≤M.

Proof. Let (u, v) ∈ Tα for α ∈ (0, 1] (the case α = 0 is trivial). Then, owing to Lemma 3.2, (u, v) ∈ Yu ×Yv and
satisfies pointwisely a.e. in Q the following problem:{

∂tu−∆u = ∇ · (u+∇v),
∂tv −∆v + v = αu+ + αfv+

(3.8)

endowed with the corresponding initial and boundary conditions. Therefore, it suffices to look a bound of (u, v)
in Yu × Yv independent of α. This bound is carried out into five steps:

Step 1: u, v ≥ 0 and

∫
Ω

u(t) = m0.

By testing (3.8)1 by u− := min{u, 0} ≤ 0, and considering that u− = 0 if u ≥ 0, ∇u− = ∇u if u ≤ 0, and
∇u− = 0 if u > 0, we have

1

2

d

dt
‖u−‖2 + ‖∇u−‖2 = −(u+∇v,∇u−) = 0,

thus u− ≡ 0 and, consequently, u ≥ 0. Similarly, testing (3.8)2 by v− := min{v, 0} ≤ 0 we obtain

1

2

d

dt
‖v−‖2 + ‖∇v−‖2 + ‖v−‖2 = α(u+, v−) + α(fv+, v−) ≤ 0,

which implies v− ≡ 0, then v ≥ 0. Therefore (u+, v+) = (u, v). Finally, integrating (3.8)1 in Ω and using (2.5)

we obtain

∫
Ω

u(t) = m0.

Step 2: v is bounded in L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)).

We observe that, thanks to the positivity of u, we have 0 ≤ ln(u+ 1) ≤ u. Then∫
Ω

| ln(u+ 1)|2 ≤
∫

Ω

|u|2. (3.9)
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We also note that ∫
Ω

|∇ ln(u+ 1)|2 =

∫
Ω

∣∣∣∣ ∇uu+ 1

∣∣∣∣2 ≤ ∫
Ω

|∇u|2. (3.10)

Taking into account that u ∈ L2(0, T ;H1(Ω)), from (3.9) and (3.10) we deduce that ln(u+ 1) ∈ L2(0, T ;H1(Ω)).
Then, since u ∈ Yu, testing (3.8)1 by α ln(u+ 1) ∈ L2(0, T ;H1(Ω)) and (3.8)2 by −∆v ∈ L4(Q), and integrating
by parts, we have

d

dt

[
α

∫
Ω

(u+ 1) ln(u+ 1) +
1

2
‖∇v‖2

]
+ 4α‖∇

√
u+ 1‖2 + ‖∆v‖2 + ‖∇v‖2

= −α
∫

Ω

u

u+ 1
∇v · ∇u+ α

∫
Ω

∇u · ∇v − α
∫

Ω

fv∆v

= α

∫
Ω

1

u+ 1
∇u · ∇v − α

∫
Ω

fv∆v. (3.11)

Applying the Hölder and Young inequalities we obtain

α

∫
Ω

1

u+ 1
∇u · ∇v ≤ α

2

∫
Ω

|∇u|2

u+ 1
+
α

2

∫
Ω

|∇v|2

u+ 1
≤ 2α‖∇

√
u+ 1‖2 +

α

2
‖∇v‖2, (3.12)

− α
∫

Ω

fv∆v ≤ α‖f‖L4‖v‖L4‖∆v‖ ≤ δ‖v‖2H2 + α2Cδ‖f‖2L4‖v‖2H1 . (3.13)

Moreover, integrating (3.8)2 in Ω and using (2.5) and (2.6), we have

d

dt

(∫
Ω

v

)
+

∫
Ω

v = αm0 + α

∫
Ω

fv.

Multiplying this equation by

(∫
Ω

v

)
and using the Hölder and Young inequalities we obtain

1

2

d

dt

(∫
Ω

v

)2

+

(∫
Ω

v

)2

= αm0

(∫
Ω

v

)
+ α

(∫
Ω

fv

)(∫
Ω

v

)
≤ 1

2

(∫
Ω

v

)2

+ Cα2m2
0 + Cα2‖f‖2‖v‖2. (3.14)

Replacing (3.12)–(3.14) in (3.11), and taking into account that α ≤ 1, we obtain

d

dt

(
α

∫
Ω

(u+ 1) ln(u+ 1) +
1

2
‖v‖2H1

)
+ 2α‖∇

√
u+ 1‖2 + C1‖v‖2H2 ≤ C(m2

0 + ‖f‖2L4‖v‖2H1), (3.15)

where the constants C,C1 are independent of α. From (3.15) and Gronwall lemma we have

‖v‖2L∞(H1) ≤ exp(‖f‖2L2(L4))
(
‖u0‖2 + ‖v0‖2H1 + Cm2

0T
)

:= K0(m0, T, ‖u0‖, ‖v0‖H1 , ‖f‖L2(L4)). (3.16)
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Now, integrating (3.15) in (0, T ) and using (3.16) we obtain

‖v‖2L2(H2) ≤ C
(
‖u0‖2 + ‖v0‖2H1 +m2

0T + ‖v‖2L∞(H1)‖f‖
2
L2(L4)

)
:= K1(m0, T, ‖u0‖, ‖v0‖H1 , ‖f‖L2(L4)). (3.17)

Therefore, from (3.16) and (3.17) we conclude that v is bounded in L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)).

Step 3: u is bounded in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).

Testing (3.8)1 by u, applying the Hölder and Young inequalities, and using (2.11), we obtain

1

2

d

dt
‖u‖2 + ‖∇u‖2 = −(u∇v,∇u) ≤ ‖u‖L4‖∇v‖L4‖∇u‖ ≤ C‖u‖1/2‖∇v‖L4‖u‖3/2H1

≤ C‖u‖2‖∇v‖4L4 +
1

2
‖u‖2H1 .

Thus, taking into account that m2
0 =

(∫
Ω

u(t)

)2

and the equivalent norm of H1(Ω) given in (2.9), we have

d

dt
‖u‖2 + ‖u‖2H1 ≤ C ‖∇v‖4L4‖u‖2 + 2m2

0. (3.18)

On the other hand, using (2.11), jointly (3.16) and (3.17),

‖∇v‖4L4(Q) ≤ CK0K1.

Therefore, we can apply the Gronwall lemma in (3.18), obtaining

‖u‖2L∞(L2) ≤ exp(CK0K1)(‖u0‖2 + 2m2
0) := K2(m0, T, ‖u0‖, ‖v0‖H1 , ‖f‖L2(L4)). (3.19)

Also, integrating (3.18) in (0, T ) we have

‖u‖2L2(H1) ≤ ‖u0‖2 + 2m2
0T + CK0K1‖u‖2L∞(L2) ≤ ‖u0‖2 + 2m2

0T + CK0K1K2

:= K3(m0, T, ‖u0‖, ‖v0‖H1 , ‖f‖L2(L4)). (3.20)

Therefore, from (3.19) and (3.20) we deduce that u is bounded in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).

Step 4: v is bounded in Yv.

Taking into account that f ∈ L4(Q) and v ∈ L∞(0, T ;H1(Ω)), in particular αfv ∈ L7/2(Q). Then using
Lemma 2.3 (for p = 7/2) in (3.8)2 we conclude that v satisfies the following inequality

‖v‖L7/2(W 2,7/2) + ‖∂tv‖L7/2(Q) + ‖v‖
C(W

10/7,7/2
n )

≤ C(α‖u+ fv‖L7/2(Q) + ‖v0‖W 10/7,7/2
n

)

≤ C(‖u‖L4(Q) + ‖f‖L4(Q)‖v‖L28(Q) + ‖v0‖W 10/7,7/2
n

). (3.21)

From (3.16), ‖v‖L28(Q) ≤ K0. Using (2.11) and taking into account (3.19) and (3.20) we have

‖u‖4L4(Q) ≤ C‖u‖
2
L∞(L2)‖u‖

2
L2(H1) ≤ CK2K3. (3.22)

Therefore, from (3.21) one has ‖v‖
C(W

10/7,7/2
n )

is bounded (independently of α). In particular, by Sobolev

embeddings, we obtain ‖v‖L∞(Q) is also bounded.
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Then, from (3.22) and using again Lemma 2.3 (for p = 4), we obtain that v satisfies the estimate

‖v‖L4(W 2,4) + ‖∂tv‖L4(Q) + ‖v‖
C(W

3/2,4
n )

≤ C(α‖u+ fv‖L4(Q) + ‖v0‖W 3/2,4
n

)

≤ C(‖u‖L4(Q) + ‖v‖L∞(Q)‖f‖L4(Q) + ‖v0‖W 3/2,4
n

)

≤ K4(m0, T, ‖u0‖, ‖v0‖W 3/2,4
n

, ‖f‖L4(Q)). (3.23)

Therefore v is bounded in Yv.

Step 5: u is bounded in Yu.

Testing (3.8)1 by −∆u ∈ L2(Q) we have

1

2

d

dt
‖∇u‖2 + ‖∆u‖2 = −(∇ · (u∇v),∆u) = −(u∆v +∇u · ∇v,∆u). (3.24)

By the Hölder and Young inequalities, and using interpolation inequality (2.11), we obtain

−(u∆v +∇u · ∇v,∆u) ≤ (‖u‖L4‖∆v‖L4 + ‖∇u‖L4‖∇v‖L4)‖∆u‖
≤ δ‖∆u‖2 + Cδ‖u‖2L4‖∆v‖2L4 + C‖∇u‖1/2‖∇v‖L4‖u‖3/2H2

≤ δ‖∆u‖2 + Cδ‖u‖2L4‖∆v‖2L4 + Cδ‖∇u‖2‖∇v‖4L4 + δ‖u‖2H2 . (3.25)

Replacing (3.25) in (3.24), choosing δ small enough to absorb the ‖∆u‖2 and ‖u‖2H2 terms, and taking into

account that

(∫
Ω

u(t)

)2

= m2
0 and (2.9) and (2.10), we have

d

dt
‖u‖2H1 + C‖u‖2H2 ≤ C‖u‖2L4‖∆v‖2L4 + C‖∇u‖2‖∇v‖4L4 + Cm2

0. (3.26)

Then, from (3.22) and (3.23), and applying Gronwall lemma to (3.26), we deduce

‖u‖2L∞(H1) ≤ K5(m0, T, ‖u0‖H1 , ‖v0‖W 3/2,4
n

, ‖f‖L4(Q)). (3.27)

Finally, integrating (3.26) in (0, T ) we obtain

‖u‖2L2(H2) ≤ K6(m0, T, ‖u0‖H1 , ‖v0‖W 3/2,4
n

, ‖f‖L4(Q)). (3.28)

Then, from (3.8)1, (3.23), (3.27) and (3.28) we have

‖∂tu‖L2(Q) = ‖∆u+ u∆v +∇u · ∇v‖L2(Q)

≤ ‖∆u‖L2(Q) + ‖u‖L4(Q)‖∆v‖L4(Q) + ‖∇u‖L4(Q)‖∇v‖L4(Q)

≤ K7(m0, T, ‖u0‖H1 , ‖v0‖W 3/2,4
n

, ‖f‖L4(Q)), (3.29)

which implies that u is bounded in Yu.
Finally, from (3.23) and (3.27)-(3.29) we conclude that the elements of Tα are bounded in Yu × Yv for

α ∈ (0, 1]. The radius M in (3.7) follows from (3.23) and (3.27)-(3.29).

Lemma 3.4. The operator R : Xu ×Xv → Xu ×Xv, defined in (3.3), is continuous.
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Proof. Let {(ūm, v̄m)}m∈N ⊂ Xu ×Xv be a sequence such that

(ūm, v̄m)→ (ū, v̄) in Xu ×Xv. (3.30)

In particular, {(ūm, v̄m)}m∈N is bounded in Xu × Xv, thus, from (3.4) and (3.5) we deduce that the sequence
{(um, vm) := R(ūm, v̄m)}m∈N is bounded in Yu × Yv. Then, from the compactness of Yu × Yv in Xu × Xv (see
the proof of Lem. 3.2), there exists a subsequence of {R(ūm, v̄m)}m∈N, still denoted by {R(ūm, v̄m)}m∈N, and
an element (ũ, ṽ) ∈ Yu × Yv such that

R(ūm, v̄m)→ (ũ, ṽ) weak in Yu × Yv and strong in Xu ×Xv. (3.31)

From (3.30) and (3.31) we can take the limit in (3.3), when m goes to +∞, with (u, v) = R(ūm, v̄m) and
(ū, v̄) = (ūm, v̄m), which implies that R(ū, v̄) = (ũ, ṽ). Then, by the uniqueness of limit the whole sequence
{R(ūm, v̄m)}m∈N converges to R(ū, v̄) strongly in Xu × Xv. Thus, operator R is continuous from Xu × Xv into
itself.

Consequently, from Lemmas 3.2, 3.3 and 3.4, it follows that the operator R and the set Tα satisfy the
conditions of the Leray-Schauder fixed point theorem. Thus, we conclude that the map R(ū, v̄) has a fixed
point, R(u, v) = (u, v), which is a solution to system (1.2)-(1.4).

Finally, we observe that estimate (3.1) follows from (3.23) and (3.27)–(3.29).

3.2. Uniqueness

Let (u1, v1), (u2, v2) ∈ Yu × Yv two solutions of system (1.2)–(1.4). Subtracting equations (1.2)–(1.4) for
(u1, v1) and (u2, v2), and denoting u := u1 − u2 and v := v1 − v2, we obtain the following system


∂tu−∆u = ∇ · (u1∇v + u∇v2) in Q,

∂tv −∆v + v = u+ fv in Q,
u(0, x) = 0, v(0, x) = 0 in Ω,

∂u

∂n
= 0,

∂v

∂n
= 0 on (0, T )× ∂Ω.

(3.32)

Testing (3.32)1 by u and (3.32)2 by −∆v we have

d

dt

(
‖u‖2 +

1

2
‖∇v‖2

)
+ ‖∇u‖2 + ‖∆v‖2 + ‖∇v‖2 = −(u1∇v,∇u)− (u∇v2,∇u) + (u,−∆v) + (fv,−∆v).(3.33)

Applying the Hölder and Young inequalities, and taking into account (2.11), we obtain

−(u1∇v,∇u) ≤ ‖u1‖L4‖∇v‖L4‖∇u‖ ≤ C‖u1‖L4‖∇v‖1/2‖∇v‖1/2H1 ‖∇u‖
≤ δ(‖∇v‖2H1 + ‖∇u‖2) + Cδ‖u1‖4L4‖∇v‖2, (3.34)

−(u∇v2,∇u) ≤ ‖u‖L4‖∇v2‖L4‖∇u‖ ≤ C‖u‖1/2‖u‖1/2H1 ‖∇v2‖L4‖∇u‖
≤ δ‖u‖2H1 + Cδ‖∇v2‖4L4‖u‖2, (3.35)

(u,−∆v) ≤ δ‖∆v‖2 + Cδ‖u‖2, (3.36)

(fv,−∆v) ≤ ‖f‖L4‖v‖L4‖∆v‖ ≤ δ‖v‖2H2 + Cδ‖f‖2L4‖v‖2H1 . (3.37)
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Replacing (3.34)–(3.37) in (3.33), and using the fact that

∫
Ω

u(t) = 0, ∀t > 0; and

d

dt

(∫
Ω

v

)
+

∫
Ω

v =

∫
Ω

fv,

hence

d

dt

(∫
Ω

v

)2

+

(∫
Ω

v

)2

≤ C‖f‖2‖v‖2,

and by choosing δ small enough, we have

d

dt

(
‖u‖2 +

1

2
‖v‖2H1

)
+ C(‖u‖2H1 + ‖v‖2H2) ≤ C(‖u1‖4L4‖∇v‖2 + (‖∇v2‖4L4 + 1)‖u‖2 + ‖f‖2L4‖v‖2H1). (3.38)

Therefore, from (3.38) and Gronwall lemma, since u0 = v0 = 0 and (u1,∇v2) ∈ L4(Q) × L4(Q), we obtain
u = v = 0, and the uniqueness follows.

Thus, the proof of Theorem 3.1 is finished.

Remark 3.5. Since v ∈ Yv, in particular v ∈ L∞(Q). Thus, v does not blow-up. Moreover, if initial data
u0 ∈ W 5/4,8/3(Ω), we can obtain more regularity for u and conclude that u does not blow-up at finite time.
Indeed, from (3.27) and (3.28) we deduce that u ∈ L∞(0, T ;H1(Ω))∩L2(0, T ;H2(Ω)) ↪→ Lq(Q), for 1 ≤ q <∞.
Then, taking into account that ∇u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) ↪→ L4(Q), ∇v ∈ L∞(0, T ;L4(Ω)) ∩
L4(0, T ;W 1,4(Ω)) ↪→ L8(Q), and ∆v ∈ L4(Q) we have ∇ · (u∇v) = u∆v +∇u · ∇v ∈ L8/3(Q). Thus, Lemma
2.3 (for p = 8/3) for (3.8)1 allows us to conclude that u ∈ L∞(0, T ;W 5/4,8/3(Ω)) ∩ L8/3(0, T ;W 2,8/3(Ω)), with
∂tu ∈ L8/3(Q). In particular, we obtain that u ∈ L∞(Q).

Remark 3.6. Cieślak et al. [7] studied system (1.2)-(1.4) with f ≡ 0. They proved the existence of classical
solutions using the abstract theory for quasilinear parabolic systems developed by Amann [2]. This theory for
classical solutions can be applied here introducing a regularized problem related to (1.2)–(1.4) by choosing a
sequence of bilinear controls {fε}ε>0, with fε regular enough, such that fε → f in L4(Q), as ε → 0, and the
corresponding regularization of the initial data. We would obtain a local unique classical solution (uε, vε) of the
regularized problem, but to obtain estimates for uε and vε, independent of ε and enough to pass to the limit,
we must reproduce the same estimates that we have made using the Leray-Schauder fixed point theorem (see
Lem. 3.3, for the estimates, and Lems. 3.2 and 3.4, for pass to the limit).

4. The optimal control problem

In this section we establish the statement of the bilinear control problem under study. We suppose that
F ⊂ L4(Qc) := L4(0, T ;L4(Ωc)) is a nonempty, closed and convex set, where Ωc ⊂ Ω is the control domain, and

Ωd ⊂ Ω is the observability domain. We consider data u0 ∈ H1(Ω), v0 ∈ W 3/2,4
n (Ω) with u0 ≥ 0 and v0 ≥ 0 in

Ω, and the function f ∈ F that describes the bilinear control acting on the v-equation.
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Now, we define the following constrained minimization problem related to system (1.2)–(1.4):



Find (u, v, f) ∈M such that the functional

J(u, v, f) :=
αu
2

∫ T

0

∫
Ωd

|u(x, t)− ud(x, t)|2dxdt+
αv
2

∫ T

0

∫
Ωd

|v(x, t)− vd(x, t)|2dxdt

+
N

4

∫ T

0

∫
Ωc

|f(x, t)|4dxdt

is minimized, subject to (u, v, f) satisfies the PDE system (1.2)–(1.4) ,

(4.1)

where

M := Yu × Yv ×F . (4.2)

Here (ud, vd) ∈ L2(Qd)×L2(Qd) represents the desired states and the nonnegative real numbers αu, αv, and
N measure the cost of the states and control, respectively. The set of admissible solutions of optimal control
problem (4.1) is defined by

Sad = {s = (u, v, f) ∈M : s is a strong solution of (1.2)-(1.4)}. (4.3)

The functional J defined in (4.1) describes the deviation of the cell density u from a desired cell density ud and
the deviation of the chemical concentration v from a desired chemical vd, plus the cost of the control measured
in the L4(Ω)-norm.

4.1. Existence of global optimal solution

In this subsection we will prove the existence of a global optimal solution of problem (4.1). First we introduce
the concept of optimal solution for problem (4.1).

Definition 4.1. An element (ũ, ṽ, f̃) ∈ Sad will be called a global optimal solution of problem (4.1) if

J(ũ, ṽ, f̃) = min
(u,v,f)∈Sad

J(u, v, f). (4.4)

Thus, we have the following result.

Theorem 4.2. Let u0 ∈ H1(Ω) and v0 ∈ W 3/2,4
n (Ω) with u0 ≥ 0 and v0 ≥ 0 in Ω. We assume that either

N > 0 or F is bounded in L4(Qc), then the optimal control problem (4.1) has at least one global optimal
solution (ũ, ṽ, f̃) ∈ Sad.

Proof. From Theorem 3.1 we deduce that Sad 6= ∅. Let {sm}m∈N = {(um, vm, fm)}m∈N ⊂ Sad a minimizing
sequence of J , that is, lim

m→+∞
J(sm) = inf

s∈Sad

J(s). Then, by definition of Sad, for each m ∈ N, sm satisfies the

system (1.2)–(1.4), that is

∂tum −∆um = ∇ · (um∇vm) a.e. (t, x) ∈ Q, (4.5)

∂tvm −∆vm + vm = um + fmvm a.e. (t, x) ∈ Q, (4.6)

um(0) = u0, vm(0) = v0 in Ω, (4.7)

∂um
∂n

= 0,
∂vm
∂n

= 0 on (0, T )× ∂Ω. (4.8)
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From the definition of J and the assumption N > 0 or F is bounded in L4(Qc), it follows that

{fm}m∈N is bounded in L4(Qc). (4.9)

Also, from (3.1) there exists C > 0, independent of m, such that

‖(∂tum, ∂tvm)‖L2(Q)×L4(Q) + ‖(um, vm)‖
C(H1×W 3/2,4

n )
+ ‖um‖L2(0,T ;H2(Ω)) + ‖vm‖L4(0,T ;W 2,4(Ω)) ≤ C. (4.10)

Therefore, from (4.9), (4.10), and taking into account that F is a closed convex subset of L4(Qc) (hence is
weakly closed in L4(Qc)), we deduce that there exists s̃ = (ũ, ṽ, f̃) ∈ M such that, for some subsequence of
{sm}m∈N, still denoted by {sm}m∈N, the following convergences hold, as m→ +∞:

um → ũ weak in L2(0, T ;H2(Ω)) and weak * in L∞(0, T ;H1(Ω)), (4.11)

vm → ṽ weak in L4(0, T ;W 2,4(Ω)) and weak * in L∞(0, T ;W 3/2,4
n (Ω)), (4.12)

∂tum → ∂tũ weak in L2(Q), (4.13)

∂tvm → ∂tṽ weak in L4(Q), (4.14)

fm → f̃ weak in L4(Qc), and f̃ ∈ F . (4.15)

From (4.11)–(4.14), the Aubin-Lions lemma (see [16], Thm. 5.1, p.58) and using the Corollary 4 of [23] we
have

um → ũ strongly in C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)), (4.16)

vm → ṽ strongly in C([0, T ];L4(Ω)) ∩ L4(0, T ;W 3/2,4
n (Ω)). (4.17)

In particular, since ∇ · (um∇vm) = ∇um · ∇vm + um ∆vm is bounded in L4(0, T ;L2(Ω)) and fm vm is bounded
in L4(Qc), then one has the weak convergences

∇ · (um∇vm) → χ1 weak in L4(0, T ;L2(Ω)),
fmvm → χ2 weak in L4(Qc).

On the other hand, from (4.11)–(4.17) one has:

um∇vm → ũ∇ṽ weak in L2(0, T ;L4(Ω)),

fmvm → f̃ ṽ weak in L4(0, T ;L2(Ωc)).

Therefore, we can identify χ1 = ∇ · (ũ∇ṽ) and χ2 = f̃ ṽ a.e. in Q, and thus:

∇ · (um∇vm)→ ∇ · (ũ∇ṽ) weak in L4(0, T ;L2(Ω)), (4.18)

fmvm → f̃ ṽ weak in L4(Qc). (4.19)

Moreover, from (4.16) and (4.17) we have that (um(0), vm(0)) converges to (ũ(0), ṽ(0)) in L2(Ω) × L4(Ω),
and since um(0) = u0, vm(0) = v0, we deduce that ũ(0) = u0 and ṽ(0) = v0, thus s̃ satisfies the initial conditions
given in (1.3). Therefore, considering the convergences (4.11)–(4.19), we can pass to the limit in (4.5)–(4.8) as
m goes to +∞, and we conclude that s̃ = (ũ, ṽ, f̃) is solution of the system pointwisely (1.2)–(1.4), that is,
s̃ ∈ Sad. Therefore,

lim
m→+∞

J(sm) = inf
s∈Sad

J(s) ≤ J(s̃). (4.20)
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On the other hand, since J is lower semicontinuous on Sad, we have J(s̃) ≤ lim inf
m→+∞

J(sm), which jointly to

(4.20), implies (4.4).

4.2. Optimality system related to local optimal solutions

In this subsection we will derive the first-order necessary optimality conditions for a local optimal solution
(ũ, ṽ, f̃) of problem (4.1), applying a Lagrange multipliers theorem. We will base on a generic result given by
Zowe et al. [30] on existence of Lagrange multipliers in Banach spaces. In order to introduce the concepts and
results given in [30] we consider the following optimization problem

min J(s) subject to s ∈ S = {s ∈M : G(s) ∈ N}, (4.21)

where J : X → R is a functional, G : X → Y is an operator, X and Y are Banach spaces, M is a nonempty
closed convex subset of X and N is a nonempty closed convex cone in Y with vertex at the origin.

For a subset A of X (or Y ), A+ denotes its polar cone, that is

A+ = {ρ ∈ X ′ : 〈ρ, a〉X′ ≥ 0, ∀a ∈ A}.

Definition 4.3. We say that s̃ ∈ S is a local optimal solution of problem (4.21), if there exits ε > 0 such that
for all s ∈ S satisfying ‖s− s̃‖X ≤ ε one has that J(s̃) ≤ J(s).

Definition 4.4. Let s̃ ∈ S be a local optimal solution for problem (4.21) with respect to the X-norm. Suppose
that J and G are Fréchet differentiable in s̃, with derivatives J ′(s̃) and G′(s̃), respectively. Then, any λ ∈ Y ′ is
called a Lagrange multiplier for (4.21) at the point s̃ if λ ∈ N+,

〈λ,G(s̃)〉Y ′ = 0,
J ′(s̃)− λ ◦G′(s̃) ∈ C(s̃)+,

(4.22)

where C(s̃) = {θ(s− s̃) : s ∈M, θ ≥ 0} is the conical hull of s̃ in M.

Definition 4.5. Let s̃ ∈ S be a local optimal solution for problem (4.21). We say that s̃ is a regular point if

G′(s̃)[C(s̃)]−N (G(s̃)) = Y, (4.23)

where N (G(s̃)) = {(θ(n−G(s̃)) : n ∈ N , θ ≥ 0} is the conical hull of G(s̃) in N .

Theorem 4.6. ([30], Thm. 3.1) Let s̃ ∈ S be a local optimal solution for problem (4.21). Suppose that J is a
Fréchet differentiable function and G is continuous Fréchet-differentiable. If s̃ is a regular point, then the set of
Lagrange multipliers for (4.21) at s̃ is nonempty.

Now, we will reformulate the optimal control problem (4.1) in the abstract setting (4.21). We consider the
following Banach spaces

X :=Wu ×Wv × L4(Qc), Y := L2(Q)× L4(Q)×H1(Ω)×W 3/2,4
n (Ω), (4.24)

where

Wu :=

{
u ∈ Yu :

∂u

∂n
= 0 on (0, T )× ∂Ω

}
, (4.25)

Wv :=

{
v ∈ Yv :

∂v

∂n
= 0 on (0, T )× ∂Ω

}
, (4.26)
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and the operator G = (G1, G2, G3, G4) : X → Y , where

G1 : X → L2(Q), G2 : X → L4(Q), G3 : X → H1(Ω), G4 : X →W 3/2,4
n (Ω)

are defined at each point s = (u, v, f) ∈ X by
G1(s) = ∂tu−∆u−∇ · (u∇v),

G2(s) = ∂tv −∆v + v − u− fv,
G3(s) = u(0)− u0,

G4(s) = v(0)− v0.

(4.27)

By takingM :=Wu ×Wv ×F a closed convex subset of X and N = {0}, the optimal control problem (4.1) is
reformulated as follows

min J(s) subject to s ∈ Sad = {s = (u, v, f) ∈M : G(s) = 0}. (4.28)

Concerning to differentiability of the constraint operator G and the functional J we have the following results.

Lemma 4.7. The functional J : X → R is Fréchet differentiable and the Fréchet derivative of J in s̃ =
(ũ, ṽ, f̃) ∈ X in the direction r = (U, V, F ) ∈ X is given by

J ′(s̃)[r] = αu

∫ T

0

∫
Ωd

(ũ− ud)U dxdt+ αv

∫ T

0

∫
Ωd

(ṽ − vd)V dxdt+N

∫ T

0

∫
Ωc

(f̃)3F dxdt. (4.29)

Lemma 4.8. The operator G : X → Y is continuous-Fréchet differentiable and the Fréchet derivative of G in
s̃ = (ũ, ṽ, f̃) ∈ X, in the direction r = (U, V, F ) ∈ X, is the linear operator

G′(s̃)[r] = (G′1(s̃)[r], G′2(s̃)[r], G′3(s̃)[r], G′4(s̃)[r])

defined by 
G′1(s̃)[r] = ∂tU −∆U −∇ · (U∇ṽ)−∇ · (ũ∇V ),

G′2(s̃)[r] = ∂tV −∆V + V − U − f̃V − F ṽ,
G′3(s̃)[r] = U(0),

G′4(s̃)[r] = V (0).

(4.30)

We wish to prove the existence of Lagrange multipliers, which is guaranteed if a local optimal solution of
problem (4.28) is a regular point of operator G (see Thm. 4.6).

Remark 4.9. Since in the problem (4.28)N = {0}, thenN (G(s̃)) = {0}. Thus, from Definition 4.5 we conclude
that s̃ = (ũ, ṽ, f̃) ∈ Sad is a regular point if for all (gu, gv, U0, V0) ∈ Y there exists r = (U, V, F ) ∈ Wu ×Wv ×
C(f̃) such that

G′(s̃)[r] = (gu, gv, U0, V0), (4.31)

where C(f̃) := {θ(f − f̃) : θ ≥ 0, f ∈ F} is the conical hull of f̃ in F .

Lemma 4.10. Let s̃ = (ũ, ṽ, f̃) ∈ Sad, then s̃ is a regular point.
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Proof. Fixed (ũ, ṽ, f̃) ∈ Sad, let (gu, gv, U0, V0) ∈ Y . Since 0 ∈ C(f̃), it suffices to show the existence of (U, V ) ∈
Yu × Yv such that

∂tU −∆U −∇ · (U∇ṽ)−∇ · (ũ∇V ) = gu in Q,

∂tV −∆V + V − U − f̃V = gv in Q,

U(0) = U0, V (0) = V0 in Ω,

∂U

∂n
= 0,

∂V

∂n
= 0 on (0, T )× ∂Ω.

(4.32)

In order to prove the existence of solution of (4.32), we can use the Leray-Schauder’s fixed point argument over
the operator S : (Ū , V̄ ) ∈ Xu ×Xv 7→ (U, V ) ∈ Yu × Yv with (U, V ) the solution of the decoupled problem:{

∂tU −∆U = ∇ · (ũ∇V ) +∇ · (Ū∇ṽ) + gu in Q,

∂tV −∆V + V = Ū + f̃ V̄ + gv in Q,

endowed with the corresponding initial and boundary conditions. In fact, first we find V and after U . Adapting
Section 3.1, we can prove that operator S is well-defined from Xu ×Xv to Yu × Yv and compact from Xu ×Xv
to itself, due to the regularity (gu, gv) ∈ L2(Q) × L4(Q), (U0, V0) ∈ H1(Ω) ×W 3/2,4

n (Ω), (ũ, ṽ) ∈ Yu × Yv and
f̃ ∈ L4(Q).

It suffices to prove Lemma 3.3 but now defining Tα = {(U, V ) ∈ Yu×Yv : (U, V ) = αS(U, V ) for some α ∈ [0, 1]},
which is very similar to the proof of Lemma 3.3. In fact, now Steps 2 and 3 are easier and can be proved jointly.

With this objective, if (U, V ) ∈ Tα, then (U, V ) solves the coupled problem{
∂tU −∆U −∇ · (ũ∇V ) = α∇ · (U∇ṽ) + αgu in Q,

∂tV −∆V + V = αU + αf̃V + αgv in Q,
(4.33)

endowed with the corresponding initial and boundary conditions. By testing by (U,−∆V ), one has

1

2

d

dt

(
‖U‖2 + ‖∇V ‖2

)
+ ‖∇U‖2 + ‖∇V ‖2 + ‖∆V ‖2 ≤ |(ũ∇V,∇U)|+ α |(U∇ṽ,∇U)|+ α |(U,∆V )|

+α |(f̃V,∆V )|+ α |(gu, U)|+ α |(gv,∆V )|. (4.34)

Applying the Hölder and Young inequalities to the terms on the right side of (4.34) and taking into account
(2.11), we have

|(ũ∇V,∇U)| ≤ ‖ũ‖L4‖∇V ‖L4‖∇U‖ ≤ Cδ‖ũ‖2L4‖∇V ‖‖∇V ‖H1 + δ‖∇U‖2

≤ δ(‖∇V ‖2H1 + ‖∇U‖2) + Cδ‖ũ‖4L4‖∇V ‖2, (4.35)

α |(U∇ṽ,∇U)| ≤ α ‖U‖L4‖∇ṽ‖L4‖∇U‖ ≤ C α ‖U‖1/2‖∇ṽ‖L4‖U‖3/2H1

≤ δ‖U‖2H1 + Cδ α
2 ‖∇ṽ‖4L4‖U‖2, (4.36)

α |(gu, U)| ≤ α
(
‖gu‖2 + ‖U‖2

)
, (4.37)

α |(U,∆V )| ≤ δ‖∆V ‖2 + Cδ α
2 ‖U‖2, (4.38)

α |(f̃V,∆V )| ≤ α ‖f̃‖L4‖V ‖L4‖∆V ‖ ≤ δ‖∆V ‖2 + Cδ α
2 ‖f̃‖2L4‖V ‖2H1 , (4.39)

α |(gv,∆V )| ≤ δ‖∆V ‖2 + Cδα
2 ‖gv‖2. (4.40)
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On the other hand, testing (4.33)2 by V one has

1

2

d

dt
‖V ‖2 + ‖V ‖2H1 ≤ α |(U, V )|+ α |(f̃V, V )|+ α |(gv, V )|

≤ δ
(
‖V ‖2 + ‖V ‖2H1

)
+ Cδ α

2 ‖U‖2

+ Cδα
2‖f̃‖2L4‖V ‖2 + Cδ α

2 ‖gv‖2. (4.41)

Summing the inequalities (4.34) and (4.41), and then adding ‖U‖2 to both sides of the obtained inequality and
considering (4.36)–(4.40), taking δ small enough and any α ∈ [0, 1], we have

d

dt
(‖U‖2 + ‖V ‖2H1) + C(‖U‖2H1 + ‖V ‖2H2) ≤ C(1 + ‖∇ṽ‖4L4)‖U‖2 + C(‖gu‖2 + ‖gv‖2)

+C(‖ũ‖4L4 + ‖f̃‖2L4)‖V ‖2H1 . (4.42)

By applying the Gronwall Lemma in (4.42) we conclude that there exists a positive constant C0 that depends
on T, ‖U0‖, ‖V0‖H1 , ‖ũ‖L4(Q), ‖∇ṽ‖L4(Q), ‖f̃‖L2(L4), ‖gu‖L2(Q) and ‖gv‖L2(Q), such that

‖(U, V )‖L∞(L2×H1)∩L2(H1×H2) ≤ C0. (4.43)

Now, following Step 4 in the proof of Lemma 3.3, we obtain that V is bounded in Yv, because the following
estimate holds

‖V ‖L4(W 2,4(Ω)) + ‖∂tV ‖L4(Q) + ‖V ‖
C(W

3/2,4
n )

≤ C1(C0, ‖V0‖W 3/2,4
n

, ‖gv‖L4(Q), ‖f̃‖L4(Q)). (4.44)

Now, we follow Step 5 in the proof of Lemma 3.3 with small modifications. By testing (4.33)1 by −∆U , using
the Hölder and Young inequalities, and considering the interpolation inequality (2.11), we obtain

1

2

d

dt
‖∇U‖2 + ‖∆U‖2 ≤ C α2 (‖gu‖2 + ‖U‖2L4‖∆ṽ‖2L4 + ‖∇U‖2‖∇ṽ‖4L4)

+C(‖ũ‖2L4‖∆V ‖2L4 + ‖∇ũ‖2L4‖∇V ‖2L4) + δ(‖∆U‖2 + ‖U‖2H2). (4.45)

On the other hand, from (4.32)1 we deduce
d

dt

(∫
Ω

U

)
= α

∫
Ω

gu, which implies

1

2

d

dt

(∫
Ω

U

)2

= α

(∫
Ω

gu

)(∫
Ω

U

)
≤ Cδ α2

(∫
Ω

gu

)2

+ δ

(∫
Ω

U

)2

, (4.46)

and ∣∣∣∣∫
Ω

U(t)

∣∣∣∣2 =

∣∣∣∣∫
Ω

U0 + α

∫ t

0

∫
Ω

gu

∣∣∣∣2 ≤ C. (4.47)

Summing inequalities (4.45)–(4.47), taking δ small enough and α ∈ [0, 1], accounting (2.9), (2.10) and (4.44),
we can obtain the estimate ‖U‖L∞(H1)∩L2(H2) ≤ C. Finally, the estimate ‖∂tU‖L2(L2) ≤ C is deduced as in the
proof of Lemma 3.3.

Therefore, we can deduce the existence of solution for (4.32) from Leray-Schauder fixed-point theorem.
The uniqueness of (U, V ) follows directly from the regularity of (U, V ) and the linearity of system (4.32).
Thus, we conclude the proof.
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Now we show the existence of Lagrange multipliers.

Theorem 4.11. Let s̃ = (ũ, ṽ, f̃) ∈ Sad be a local optimal solution for the control problem (4.28). Then, there

exist Lagrange multipliers (λ, η, ξ, ϕ) ∈ L2(Q)×L4/3(Q)× (H1(Ω))′× (W
3/2,4
n (Ω))′ such that for all (U, V, F ) ∈

Wu ×Wv × C(f̃) one has

αu

∫ T

0

∫
Ωd

(ũ− ud)U dxdt+ αv

∫ T

0

∫
Ωd

(ṽ − vd)V dxdt+N

∫ T

0

∫
Ωc

(f̃)3F dxdt

−
∫ T

0

∫
Ω

(
∂tU −∆U −∇ · (U∇ṽ)−∇ · (ũ∇V )

)
λ dxdt

−
∫ T

0

∫
Ω

(
∂tV −∆V + V − U − f̃V

)
η dxdt

−
∫

Ω

U(0)ξ dx−
∫

Ω

V (0)ϕdx+

∫ T

0

∫
Ωc

F ṽη dxdt ≥ 0. (4.48)

Proof. From Lemma 4.10, s̃ ∈ Sad is a regular point, then from Theorem 4.6 there exist Lagrange multipliers

(λ, η, ξ, ϕ) ∈ L2(Q)× L4/3(Q)× (H1(Ω))′ × (W
3/2,4
n (Ω))′ such that

J ′(s̃)[r]− 〈G′1(s̃)[r], λ〉 − 〈G′2(s̃)[r], η〉 − 〈G′3(s̃)[r], ξ〉 − 〈G′4(s̃)[r], ϕ〉 ≥ 0, (4.49)

for all r = (U, V, F ) ∈ Wu ×Wv × C(f̃). Thus, the proof follows from (4.29)–(4.30).

From Theorem, 4.11 we derive an optimality system for which we consider the following spaces

Wu0 := {u ∈ Wu : u(0) = 0}, Wv0 := {v ∈ Wv : v(0) = 0}. (4.50)

Corollary 4.12. Let s̃ = (ũ, ṽ, f̃) be a local optimal solution for the optimal control problem (4.28). Then the
Lagrange multiplier (λ, η) ∈ L2(Q)× L4/3(Q), provided by Theorem 4.11, satisfies the system

∫ T

0

∫
Ω

(
∂tU −∆U −∇ · (U∇ṽ)

)
λ dxdt−

∫ T

0

∫
Ω

Uη dxdt

= αu

∫ T

0

∫
Ωd

(ũ− ud)U dxdt ∀U ∈ Wu0
, (4.51)∫ T

0

∫
Ω

(
∂tV −∆V + V

)
η dxdt−

∫ T

0

∫
Ωc

f̃V η dxdt−
∫ T

0

∫
Ω

∇ · (ũ∇V )λ dxdt

= αv

∫ T

0

∫
Ωd

(ṽ − vd)V dxdt ∀V ∈ Wv0 , (4.52)

which corresponds to the concept of very weak solution of the linear system


∂tλ+ ∆λ−∇λ · ∇ṽ + η = −αu(ũ− ud)χΩd

in Q,

∂tη + ∆η +∇ · (ũ∇λ)− η + f̃ηχ
Ωc

= −αv(ṽ − vd)χΩd
in Q,

λ(T ) = 0, η(T ) = 0 in Ω,
∂λ

∂n
= 0,

∂η

∂n
= 0 on (0, T )× ∂Ω,

(4.53)



OPTIMAL BILINEAR CONTROL PROBLEM 19

and the optimality condition ∫ T

0

∫
Ωc

(N(f̃)3 + ṽη)(f − f̃) dxdt ≥ 0, ∀f ∈ F . (4.54)

Proof. From (4.48), taking (V, F ) = (0, 0), and taking into account thatWu0
is a vectorial space, we have (4.51).

Similarly, taking (U,F ) = (0, 0) in (4.48), and considering thatWv0
is a vectorial space we obtain (4.52). Finally,

taking (U, V ) = (0, 0) in (4.48) we have

N

∫ T

0

∫
Ωc

(f̃)3F dxdt+

∫ T

0

∫
Ωc

ṽηF dxdt ≥ 0, ∀F ∈ C(f̃).

Therefore, choosing F = f − f̃ ∈ C(f̃) for all f ∈ F in the last inequality, we obtain (4.54).

In the following result we show that the Lagrange multiplier (λ, η), provided by Theorem 4.11, has some
extra regularity.

Theorem 4.13. Under of conditions of Theorem 4.11, system (4.53) has a unique strong solution (λ, η) such
that

λ ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)), ∂tλ ∈ L2(Q), (4.55)

η ∈ L∞(0, T ;W 2−2/p,p(Ω)) ∩ Lp(0, T ;W 2,p(Ω)), ∂tη ∈ Lp(Q), for any p < 2. (4.56)

Proof. Let s = T − t, with t ∈ (0, T ) and λ̃(s) = λ(t), η̃(s) = η(t). Then system (4.53) is equivalent to
∂sλ̃−∆λ̃+∇λ̃ · ∇ṽ − η̃ = αu(ũ− ud)χΩd

in Q,

∂sη̃ −∆η̃ −∇ · (ũ∇λ̃) + η̃ − f̃ η̃χΩc
= αv(ṽ − vd)χΩd

in Q,

λ̃(0) = 0, η̃(0) = 0 in Ω,

∂λ̃

∂n
= 0,

∂η̃

∂n
= 0 on (0, T )× Ω.

(4.57)

Following an analogous reasoning as in the proof of Lemma 4.10, we can obtain the energy inequality

d

ds
(‖λ̃‖2H1 + ‖η̃‖2) + C(‖λ̃‖2H2 + ‖η̃‖2H1) ≤ C(‖η̃‖2 + ‖λ̃‖2) + C(‖ũ− ud‖2 + ‖ṽ − vd‖2)

+C‖λ̃‖2H1‖∇ṽ‖4L4 + C‖ũ‖4L4‖∇λ̃‖2 + C‖f̃‖4L4‖η̃‖2

≤ C(1 + ‖f̃‖4L4)‖η̃‖2 + C(‖ũ− ud‖2 + ‖ṽ − vd‖2)

+C(1 + ‖ũ‖4L4 + ‖∇ṽ‖4L4)‖λ̃‖2H1 . (4.58)

Thus, we deduce that {
λ̃ ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)),
η̃ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

hence in particular (4.55) holds.
Now, since f̃ ∈ L4(Qc) and η̃ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) ↪→ L4(Q) we have

f̃ η̃ ∈ L2(Q). (4.59)
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Also, taking into account that ũ ∈ Wu, where Wu is defined in (4.25), and λ̃ ∈ L∞(0, T ;H1(Ω)) ∩
L2(0, T ;H2(Ω)), we obtain

∇ · (ũ∇λ̃) = ũ∆λ̃+∇ũ · ∇λ̃ ∈ Lp(Q) ∀p < 2. (4.60)

Therefore, from (4.57)2, (4.59), (4.60) and Lemma 2.3 we conclude (4.56).

Corollary 4.14. (Optimality System) Let s̃ = (ũ, ṽ, f̃) ∈ Sad be a local optimal solution for the control problem
(4.28). Then, the Lagrange multiplier (λ, η) satisfies the regularity (4.55) and (4.56) and the following optimality
system 

∂tλ+ ∆λ−∇λ · ∇ṽ + η = −αu(ũ− ud)χΩd
a.e. (t, x) ∈ Q,

∂tη + ∆η +∇ · (ũ∇λ)− η + f̃ηχ
Ωc

= −αv(ṽ − vd)χΩd
a.e. (t, x) ∈ Q,

λ(T ) = 0, η(T ) = 0 in Ω,
∂λ

∂n
= 0,

∂η

∂n
= 0 on (0, T )× ∂Ω,∫ T

0

∫
Ωc

(N(f̃)3 + ṽη)(f − f̃) dxdt ≥ 0, ∀f ∈ F .

(4.61)

Remark 4.15. If F ≡ L4(Qc), that is, there is no convexity constraint on the control, then, (4.61)5 becomes

N(f̃)3χ
Ωc

+ ṽηχ
Ωc

= 0.

Thus, the control f̃ is given by

f̃ =

(
− 1

N
ṽη

)1/3

χ
Ωc
. (4.62)

Remark 4.16. All the results obtained in this work hold when the control f belong to Lq(Q), for q > 2. Indeed,
we obtain the existence of pointwise strong solutions (u, v) of (1.2)-(1.4), where the regularity for u remains
fixed, that is, u ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)) with ∂tu ∈ L2(Q), and v ∈ L∞(0, T ;W 2−2/q,q(Ω)) ∩
Lq(0, T ;W 2,q(Ω)) with ∂tv ∈ Lq(Q). We fix q = 4 only for simplicity in the notation.
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