
New approximate algorithms for the customer order
scheduling problem with total completion time objective∗

Jose M. Framinan1†, Paz Perez-Gonzalez1

1 Industrial Management, School of Engineering, University of Seville,

Ave. Descubrimientos s/n, E41092 Seville, Spain, {framinan,pazperez}@us.es

September 18, 2016

Abstract

In this paper, we study a customer order scheduling problem where a number of
orders, composed of several product types, have to be scheduled on a set of parallel ma-
chines, each one capable to process a single product type. The objective is to minimise
the sum of the completion times of the orders, which is related to the lead time perceived
by the customer, and also to the minimisation of the work-in-process. This problem has
been previously studied in the literature, and it is known to be NP-hard even for two
product types. As a consequence, the interest lies on devising approximate procedures
to obtain fast, good performing schedules. Among the different heuristics proposed for
the problem, the ECT (Earliest Completion Time) heuristic by Leung et al. (2005b)
has turned to be the most efficient constructive heuristic, yielding excellent results in
a wide variety of settings. These authors also propose a tabu search procedure that
constitutes the state-of-the-art metaheuristic for the problem. We propose a new con-
structive heuristic based on a look-ahead mechanism. The computational experience
conducted shows that it clearly outperforms ECT, while having both heuristics the
same computational complexity. Furthermore, we propose a greedy search algorithm
using a specific neighbourhood that outperforms the existing tabu search procedure for
different stopping criteria, both in terms of quality of solutions and of required CPU
effort.

Keywords: Order Scheduling, Completion Times, Heuristics
∗Preprint submitted to Computers & Operations Research. DOI:

http://dx.doi.org/10.1016/j.cor.2016.09.010
†Corresponding author. Tel.: +34-954487214.

1

1 Introduction

In classic scheduling literature, jobs to be processed are treated as individual entities possibly

belonging to different customers, and hence the objectives sought are related to the completion times

of the individual jobs, or to the differences between the completion times and their due dates or

deadlines. However, in many real-life situations, a customer order is composed of different products

that have to be processed in the shop, and therefore it may be sensible to pursue objectives related to

the completion of the order as a whole rather than to the individual jobs in the order. This is caused

by the fact that many customers require to receive the complete order and therefore, from their

viewpoint, only the completion time of the full order is relevant (Ahmadi et al., 2005). Additional

reasons for this assumption include the fact that shipping partial orders results in additional cost of

transport, aside than causing a proliferation of documentation and extra management time (Blocher

and Chhajed, 1996). Furthermore, if a final assembly of the jobs that compose the order has to be

carried out, there is no interest in having just a fraction of these components, which indeed represents

an extra-cost for the customer due to the corresponding inventory holding costs. In view of the

frequency of real-life settings where this situation arises, a branch of scheduling labelled customer

order scheduling has emerged as a new research area in order to respond to the ever increasing

importance of customer satisfaction and short delivery times (Ahmadi et al., 2005), and the pre

eminence of Make-To-Order production environments where it happens (Leung et al., 2005b).

In this paper, we consider a case of customer order scheduling in which we have a facility with

several machines in parallel. Each machine can produce one (and only one) particular product

type, i.e. they are considered to be dedicated machines. On this productive environment, customer

orders composed of some/all the product types that can be manufactured have to be scheduled.

This problem was first formulated by Ahmadi and Bagchi (1990), and several practical applications

of this model have been described, including finishing operations in the paper industry (Leung

et al., 2005b), manufacturing of semi finished lenses (Ahmadi et al., 2005), the pharmaceutical

industry (Leung et al., 2005a), or the assembly of operations (Leung et al., 2005b). Other specific

applications can be seen in Blocher and Chhajed (1996), Yang and Posner (2005), and Yang (2005).

Among the different objectives that can be set for the scheduling problem, perhaps the most

2

treated is the minimization of the sum of the completion times of the orders, which is related to the

delivery times perceived by the customer. Note that minimising the sum (or average) of completion

times of the order not only enables a time-based competition, but also aims at lowering the average

work in process according to Little’s law. The resulting problem is usually denoted in the literature

as PD||
∑
Cj (see Leung et al., 2005b), and its NP-hardness was first established by Wagneur

and Sriskandarajah (1993), although their proof contained a flaw (see Leung et al., 2005b), so its

complexity remained uncertain until the problem was shown to be NP-hard in the strong sense even

for two machines by Roemer and Ahmadi (1997). Other objectives also considered in the literature

are the total tardiness (Lee, 2013), or weighted sum of completion time (Leung et al., 2007b; Wang

and Cheng, 2007).

Given the NP-hard nature of the problem, it is understandable that the focus of the researchers

has been mainly on devising approximate procedures or heuristics to obtain good solutions for the

problem in a reasonable CPU time, even if there is no optimality guarantee for these procedures.

More specifically, several heuristics for the problem have been proposed by Sung and Yoon (1998);

Ahmadi et al. (2005); Leung et al. (2005b), and Wang and Cheng (2007). Among then, the so-

called ECT (Earliest Completion Time) heuristic by Leung et al. (2005b), also described in Ahmadi

et al. (2005), has been shown to clearly outperforms the rest. Indeed, the performance of the ECT

heuristic is exceptional according to the results obtained by Leung et al. (2005b). These authors

use the ECT procedure as a starting solution of a tabu search procedure specifically designed for

the problem, which is denoted in the following as TS(ECT). Therefore, both ECT and TS(ECT)

constitute the best constructive and improvement heuristics for the problem, respectively. Further-

more, the effectiveness of the ECT heuristic is such that its adaptation (WECT - Weighted ECT)

is also among the best heuristics for the related problem of minimising the weighted sum of the

completion times (see Leung et al., 2007a; 2008).

The ECT is a constructive heuristic that starts from an empty (partial) sequence and generates

a sequence of orders one at a time, each time selecting as the next order to be appended at the end

of the partial sequence the one that would be completed the earliest. Such exceptional performance

of a pure greedy constructive heuristic suggests a peculiar structure of the solution space, and opens

some opportunities for improvement by incorporating look-ahead elements that a greedy behaviour

3

may overlook. Along this idea, in this paper we propose a new constructive heuristic for the problem

that exploits some special features of the problem. More specifically, when selecting a new order

to be scheduled, our proposed heuristic balances the contribution of the order to the sum of the

completion times with the estimated contribution of the non-scheduled orders. By using such trade-

off and providing a fast and relatively accurate estimation of the contribution of the non-scheduled

orders, the proposed heuristic is shown to outperform ECT by a wide margin, being both heuristics

of the same complexity. In addition, we design two specific local search mechanisms for the problem,

and embed them into a Greedy Search Algorithm (GSA). The subsequent computational experience

carried out shows that GSA outperforms the tabu search algorithm by Leung et al. (2005b) for

different stopping criteria.

The rest of the paper is organised as follows: In Section 2 we formalise the problem under

consideration, and discuss its state-of-art. Section 3 is devoted to presenting the proposed heuristic

(Section 3.1) and the GSA (Section 3.2), while an exhaustive computational experience is carried

out in Section 4. Finally, Section 5 is devoted to discuss the main conclusions of the research.

2 Background

The scheduling problem described in Section 1 can be formally stated as follows: There is a facility

with m machines in parallel. Each machine can produce one particular product type. There are

n customer orders composed of some/all the product types that can be manufactured on the m

machines. The total amount of processing required by order i on machine j is pij , i.e. order i

contains a number of units of the product type manufactured in machine j, so it requires pij time

units of this machine. Note that this is equivalent to say that the number of units of a product type

requested is different for each customer, which reflects the usual real-life situation.

A schedule or solution Π := (π1, π2, . . . , πn) is given by a permutation of n components as it

indicates the sequence in which the orders are processed. Let Cπi,j(Π) be the completion time of

product type j in the order scheduled in the i position in sequence Π. In this setting, it is clear

that Cπi,j(Π) is given by the following recursive equation:

4

Cπi,j(Π) = Cπi−1,j(Π) + pπi,j i = 1, . . . , n, j = 1, . . . ,m (1)

where Cπ0,j(Π) := 0 ∀j. Cπi(Π) the completion time of order scheduled in position i-th is then:

Cπi(Π) = max
j=1,...,m

{Cπi,j(Π)} (2)

Similarly, C(Π) is the sum of the completion times of the orders scheduled according to Π.

Obviously, C(Π) =
∑n
i=1Cπi(Π).

From the above definitions, it can be seen that a sequence can be evaluated anew inO(nm), being

O(m) the computational cost of evaluating Cπi(Π) if all Cπi−1,j(Π) have been already computed.

As mentioned in Section 1, several constructive heuristics have been proposed for the problem:

• Shortest Total Processing Time (STPT) heuristic (Sung and Yoon, 1998). This heuristic

–originally proposed for the weighted total completion time case– constructs a sequence of

orders by starting with an empty schedule and selecting as the next order to be scheduled

the one with the smallest total amount of processing over all m machines among the non

scheduled jobs. Clearly, the complexity of this heuristic is O(mn+n logn), as pointed out in

Leung et al. (2005b).

• Shortest Maximum Processing Time (SMPT) heuristic (Sung and Yoon, 1998). This heuristic

selects the order with the smallest maximum amount of processing time on any of the m

machines. Its complexity is also O(mn+n logn), and it was initially proposed for the weighted

completion time case.

• Smallest Maximum Completion Time (SMCT) heuristic (Wang and Cheng, 2007). This

heuristic, also applicable for the weighted completion time case, first sequences the orders in

non decreasing order of the processing times on each machine j. Consequently, m solutions

are obtained, each one denoted as Πj := (πj1, . . . , πjn), j = 1, . . . ,m. For each order k, an

indicator Ik := max1≤j≤m{Cπj
r ,j

(Πj) : πjr = k} is computed. Then, a final solution S is

obtained by sorting the orders in non decreasing order of Ik. The complexity of this heuristic

is determined by the iteration loop, as the initial sorting order is O(mn logn) whereas that

5

of the loop is O(n2m).

• Earliest Completion Time (ECT) heuristic (Ahmadi et al., 2005; Leung et al., 2005b). This

heuristic generates a sequence of orders one at a time; each time it selects as the next order

the one that would be completed the earliest. Note that this heuristic can be implemented

in a natural way in O(n2m) (Leung et al., 2005b), since it has n iterations and, for each

iteration, O(n) candidates have to be evaluated according to equation (2), which can be

computed in O(m) since the completion times of the already scheduled jobs can be stored

and the candidates do not need to be computed from scratch.

In order to evaluate the effectiveness of the aforementioned heuristic, an extensive computational

evaluation is carried out by Leung et al. (2005b), where all four heuristics above are compared. In

their experimentation, it turns out that ECT is the most efficient heuristic in terms of the quality

of the solutions, clearly outperforming the rest of heuristics. Such good performance is remarkable

taking into account that it is basically a greedy heuristic. This fact may be indicating a special

structure of the solution space, and opens some opportunities for improvement by carefully designing

heuristics taking into account such structure. In the next section, we will discuss our proposal,

which is based on properly assessing not only the contribution to the completion time done by the

candidate order but also the estimated contribution of the unscheduled orders.

3 New approximate algorithms for the problem

In this section, we present new algorithms for the problem under consideration. The first algorithm,

discussed in Section 3.1, is a constructive heuristic for the problem based in the ideas presented at

the end of the previous section. The aim is to obtain a fast heuristic that can yield better results

than the ECT heuristic with the same complexity, thus being able to provide solutions in negligible

CPU time.

The second algorithm, discussed in Section 3.2, adopts a greedy search strategy and it is aimed

at improving the solutions provided by constructive heuristics using the computation time in an

efficient manner, thus being able to outperform the Tabu Search algorithm devised for the problem

6

by Leung et al. (2005b). To do so, the algorithm uses specific local search mechanisms based on the

ECT heuristic. Furthermore, these mechanisms can be eventually used as standalone heuristics.

3.1 A new constructive heuristic

As mentioned earlier, our proposal is based on incorporating a look-ahead mechanism in order to be

able to assess, not only the potential contribution of the candidate orders to the objective function,

but also an estimation of the contribution to the objective function of the non scheduled orders. More

specifically, the proposed heuristic constructs a solution Π := (π1, . . . , πn) from a set U , representing

the set of unscheduled orders. Initially, no order has been scheduled and consequently, U contains

all orders. Then the heuristic starts an iterative process of n steps: in step k (k = 1, . . . , n), each

order in U is selected as candidate to be appended at the end of Π. To select the chosen order

among the candidates, for each order ωl ∈ U , a (partial) sequence Sl is formed by appending ωl at

the end of Π, i.e. Sl = (π1, . . . , πk−1, ωl). Also, Rl a set of remaining orders is obtained by removing

ωl from U , i.e. Rl := U − {ωl}. Then, the following indicator ψl is computed as follows:

ψl = C(Sl) + 1
n− k + 1C

∗(Sl,Rl) (3)

where C∗(Sl,Rl) is an estimate of the contribution to the completion times of the remaining un-

scheduled orders if ωl is to be appended at the end of Π to form Sl. Leaving aside for the moment

how an estimation of the unscheduled orders can be computed, note that ψl can be seen as a proxy

for the objective function if order ωl is selected to be appended at the end of Π. More specifically,

ψl is composed of two terms: the first one is the real contribution to the objective function caused

by the completion times of orders in the partial sequence Π plus that of ωl when scheduled in

position k, and the second term is the estimated contribution to the objective function caused by

the orders not yet scheduled. The second term is weighted depending on the current iteration of

the algorithm, i.e. for the first iterations there are many remaining orders which can be sorted in

different ways, therefore the estimation of their contribution to the total completion time is more

diffuse and should be smaller than in the last iterations, where there are less remaining orders and

the estimation of their contribution would be rather similar to that of the final completion time.

7

It is clear then that the order with the lowest value of ψ would have the smallest contribution

to the total completion times, therefore, in our proposal, the order with the lowest value of ψ is

removed from U and appended at the end of Π. The procedure is repeated until U = ∅.

Regarding the computation of C∗(Sl,Rl), note that the contribution of the orders in Rl to

the completion times will depend on the specific manner in which these orders are scheduled, as

different ways to schedule these orders would yield different completion times. One option would be

to schedule the jobs inRl after Sl in the best possible manner, i.e. with the minimum contribution to

the total completion times. However, it is clear that this would imply solving the original problem.

Since the objective is to obtain an estimate of a sort of average contribution, we will evaluate

such contribution assuming that the orders in Rl are scheduled following an specific sequence. Note

that, in principle, since the orders in set U depend on the current iteration of the algorithm, such

sequence would have to be obtained for each iteration. Since this would increase the computation

times, our proposal is to establish such sequence before the algorithm performs the iterations, so it

does not have to be calculated for each Rl. More specifically, we will provide Ω a given sequence of

all orders before starting the iterative procedure, and, at each iteration, we will compute C∗(Sl,Rl)

as if the orders in Rl are scheduled in the relative ordering given by Ω. After selecting one of

the orders in Ω to be scheduled, the order is appended at the end of the partial sequence and

removed from Ω, so in the next iteration the sequence of the remaining orders does not have to be

re-computed.

Naturally, one may think that using as Ω a sequence yielding a very low completion time would

provide a close estimation of the contribution of these orders and therefore may be tempted to

obtain Ω by using e.g. the ECT heuristic. However, it has to be noted that, at each iteration

of the proposed heuristic, the selected order would be extracted from Ω, and then there is no

guarantee that the remaining unscheduled orders would make a good estimation. Therefore, rather

than focusing on providing a sequence yielding a low completion time, we must focus on a robust

ordering that ensures a good estimation even if an order is extracted in each iteration. To do so,

we turn our attention to the SPT (Shortest Processing Time) rule, which is known to be optimal

for job scheduling in a single machine with total completion time objective. This ordering has the

advantage that, when certain job is extracted of an SPT sequence, the remaining jobs still comply

8

Procedure SPT-B
for j = 1 to m do

Compute the workload of each order in machine j, i.e. W j := (p1j, p2j, . . . , pnj);
Obtain Πj the sequence of orders sorted in ascending (non descending) order of W j;

end
r := argminj C(Πj);
Selects Πr as the incumbent sequence;

end

Figure 1: Pseudo-code of the SPT-B procedure

the SPT rule, therefore providing a consistent estimation no matter which jobs remain in the partial

sequence.

Since SPT cannot be applied to our problem in an straightforward manner as there are orders

(not jobs) processed on m machines in parallel, we propose a relatively simple procedure, named

SPT-B in the following, inspired in the SPT: we consider each machine j and sort the processing

times of each order on this machine according to the SPT rule. By doing so, we obtain m different

sequences, each one representing the application of the SPT in each of the machines of the facility.

Among these m sequences, we select the one yielding the lowest completion time. The pseudo code

of the SPT-B procedure is presented in Figure 1.

Using the above elements, the design and rationale of the heuristic have been discussed: an

initial sequence Ω is obtained by sorting the orders according to SPT-B. Then, a solution Π is

constructed by iteratively selecting one order in Ω that is removed from Ω and appended as the

current last order of Π. At each step, the unscheduled order yielding the lowest value of ψ computed

as described in equation (3) is selected to be appended. The detailed pseudo-code of the heuristic

is presented in Figure 2. Assuming, as usual, that n > m, the complexity of the heuristic is

determined by the main iteration loop and not by the SPT-B procedure, as the complexity of the

latter is O(m(n logn+nm)) whereas that of the loop is O(n2m). As it can be seen, the complexity

of the heuristic proposed is the same than that of ECT.

3.2 Greedy Search Algorithm

In view of the good results obtained by the ECT heuristic, specific local search mechanisms based on

this heuristic can be defined for the problem. The first of these mechanisms is labelled SHIFT-k. Its

9

Procedure Proposed Heuristic
Π := ∅;
Obtain a sequence Ω := (ω1, . . . , ωn) by sorting orders according to procedure SPT-B;
for i = 1 to n do

for each ωl ∈ Ω do
Form sequence S by appending ωl after Π and then append the remaining orders
in Ω, i.e.: S := (π1, . . . , πi−1, ωl, ω1, . . . , ωl−1, ωl+1, . . . , ωn−i+1);
Compute ψl:

ψl =
i−1∑
k=1

Cπk
(S) + Cωl

(S) + 1
n− i+ 1

n−i+1∑
k=1;k 6=l

Cωk
(S)

end
r := argmink=1,...,n−i+1 ψk;
Append ωr at the end of Π, i.e. Π := (π1, . . . , πi−1, ωr);
Extract ωr from Ω, i.e. Ω := (ω1, . . . , ωr−1, ωr+1, . . . , ωn−i+1);

end
end

Figure 2: Pseudo-code of the proposed heuristic

rationale is the following: At iteration k, the ECT heuristic selects the order from the unscheduled

orders such as the partial completion time is the lowest one. However, it might be possible to

further improve the completion time of the partial sequence by finding the most suitable neighbour

for the newly appended order, potentially leading to a better sequence. Using this idea, we design

a procedure that starts from an empty sequence Π and a set of unscheduled orders U and performs

i = 1, . . . , n iterations to append at the end of Π the order ur ∈ U so the partial total completion

time of the resulting sequence is the lowest. Then, with the so-obtained Π := (π1, . . . , πi−1, ur),

order πk (k = 1, 2, . . . , i − 2) is removed from its position and inserted it in position i − 1. This

phase of the algorithm is denoted as reinsertion phase. If the so-obtained partial sequence yields

a lower total completion time, then it replaces Π as the incumbent partial sequence for the next

iteration. The algorithm finishes when all orders have been scheduled and U = ∅. The pseudocode

of SHIFT-k is presented in Figure 3.

A variant of SHIFT-k –denoted SHIFT-k-OPT in the following– can be designed if, during the

reinsertion phase in iteration i, a better sequence is found, then the reinsertion phase is restarted,

i.e. all orders in positions k = 1, 2, . . . , i − 2 are extracted and inserted in position i − 1 to see

whether further improvements in the objective function are possible. The process is repeated until

10

Procedure SHIFT-k heuristic
Π := ∅;
U := {1, 2, . . . , n};
for i = 1 to n do

for each order ul ∈ U do
Form partial sequence Sl by appending ul after Π, i.e.: Sl := (π1, . . . , πi−1, ul);
Compute C(Sl) the total completion time of Sl;

end
r := argmink=1,...,n−i+1 C(Sk);
Append ur at the end of Π, i.e. Π := (π1, . . . , πi−1, ur);
Extract ur from U , i.e. U := U − {ur};
// Reinsertion phase
for k = i− 2 to 1 do

Obtain (partial) sequence Ωk by extracting order πk from Π and inserting it in
position i− 1, i.e.: Ωk := (π1, . . . , πk−1, πk+1, . . . , πi−1, πk, ur);
Compute C(Ωk);

end
s := argmink=1,...,i−2 C(Ωk);
if C(Ωs) < C(Π) then

Replace Π as the incumbent solution for the next iteration, i.e.: Π = Ωs

end
end

end

Figure 3: Pseudo-code of SHIFT-k heuristic

11

Procedure SHIFT-k-OPT heuristic
Π := ∅;
U := {1, 2, . . . , n};
for i = 1 to n do

for each order ul ∈ U do
Form partial sequence Sl by appending ul after Π, i.e.: Sl := (π1, . . . , πi−1, ul);
Compute C(Sl) the total completion time of Sl;

end
r := argmink=1,...,n−i+1 C(Sk);
Append ur at the end of Π, i.e. Π := (π1, . . . , πi−1, ur);
Extract ur from U , i.e. U := U − {ur};
// Reinsertion phase
restart: for k = i− 2 to 1 do

Obtain (partial) sequence Ωk by extracting order πk from Π and inserting it in
position i− 1, i.e.: Ωk := (π1, . . . , πk−1, πk+1, . . . , πi−1, πk, ur);
Compute C(Ωk);
if C(Ωk) < C(Π) then

Replace Π as the incumbent solution, i.e.: Π := Ωs

go to restart;
end

end
end

end

Figure 4: Pseudo-code of SHIFT-k-OPT heuristic

no improvement is found. Figure 4 presents the pseudocode of SHIFT-k-OPT.

Finally, note that the reinsertion phase of SHIFT-k-OPT can be employed as a local search

mechanism: given a complete sequence Π := (π1, . . . , πn), order πr (r = 1, . . . , n−1) can be removed

and inserted in position n, thus obtaining sequence Π′ := (π1, . . . , πr−1, πr+1, . . . , πn, πr). Then, the

most suitable neighbour for πr can be found by removing orders in positions k (k = n − 1, . . . , 1)

in Π′ , and if a best total completion time is found, then the so-obtained solution becomes the

incumbent solution for reinsertion.

In order to obtain very high-quality solutions for the problem, we combine the excellent results

(presented in Section 4.2) obtained by the constructive heuristic proposed in Section 3.1 with the

local search mechanism above. The result is a Greedy Search Algorithm (GSA) that, starting from

the solution provided by the new constructive heuristic proposed performs a number of iterations

where the SHIFT-k-OPT local search is combined by pairwise interchange in a greedy search schema.

12

The pseudocode of this algorithm is summarised in Figure 5 .

4 Computational experience

In this section, we carry out different computational experiments in order to assess the contribution

of the heuristics proposed in Section 3. The testbeds employed for the experiments are discussed in

Section 4.1, whereas in Section 4.2 we compare the constructive heuristics proposed in Section 3.1.

Finally, in Section 4.3, the GSA proposed in Section 3.2 is compared with different variants of the

tabu search procedure by Leung et al. (2005b).

4.1 Testbed Design

To the best of our knowledge, the most complete experimentation setting is that by Leung et al.

(2005b), where various values of a factor called order diversity are tested. This factor refers to the

number of product types that the orders may contain. More specifically, for a given number of

orders n and a given number of machines m, each order may contain all product types, each one

amounting a different processing time requirements for each machine, or just certain types. Taking

this factor into account, two different types of instances have been generated:

• Instances type #1, for which each order requests all product types, namely m.

• Instances type #2, for which each order requests r product types (r < m).

Different number of customer orders and machines can be set for each testbed type. Both factors,

particularly the number of customer orders, determine whether an instance can be optimally solved

in reasonable time by e.g. exhaustive enumeration, or not. Therefore, for each testbed type, we

build two different sizes of instances:

• Small instances, composed of instances with n ∈ {5, 10, 12} and m ∈ {2, 5, 10, 20}. The goal

of this testbed is to test the quality of the solutions obtained by the approximate methods

against the optimal solution.

13

Procedure Greedy Search Algorithm (GSA)
An initial solution Π := (π1, . . . , πn) is obtained using heuristic NEW;
Set Π as Π∗ the best solution so far, i.e. Π∗ := Π;
for i = 1 to iterations do

Obtain r a random number between 1 and n− 1;
Obtain sequence Π′ by removing order πr in Π and inserting it in position n, i.e.:

Π′ := (π1, . . . , πr−1, πr+1, . . . , πn, πr)

// Reinsertion phase
restart: for k = n− 2 to 1 do

Obtain sequence Ωk by extracting order πk from Π′ and inserting it in position
i− 1;
Compute C(Ωk);
if C(Ωk) < C(Π′) then

Replace Π′ as the incumbent solution, i.e.: Π′ = Ωk;
go to restart;

end
end
// Pairwise interchange
for k = 1 to n− 1 do

for j = k + 1 to n do
Obtain Π′′ by exchanging positions k and j in Π′ ;
if C(Π′′) < C(Π′) then

Π := Π′′

end
end

end
// Update best-so-far if a lower sum of completion times is found
if C(Π) < C(Π∗) then

Π∗ := Π
end

end
end

Figure 5: Pseudo-code of GSA

14

• Big instances, composed of instances with n ∈ {20, 50, 100, 200} and m ∈ {2, 5, 10, 20}. This

testbed has the same size as in Leung et al. (2005b), thus providing a exhaustive benchmark

for the evaluation of the heuristics.

30 instances of each combination of orders and machines have been generated. For the type

#1 instances, we follow the testbed design in Leung et al. (2005b) and, for each product type j in

customer order i, a processing time pij has been generated according to a uniform [1, 99] distribution.

For type #2 instances, for each customer order i, r requested product types have been obtained,

being r drawn from a uniform [1,m] distribution. Also following Leung et al. (2005b), for each

one of these product types, the corresponding processing time has been generated according to a

uniform [1, 99] distribution.

In summary, the following testbeds will be used in the computational experience:

• TEST − 1− S, composed of 360 type #1 instances of small size.

• TEST − 2− S, composed of 360 type #2 instances of small size.

• TEST − 1−B, composed of 480 type #1 instances of big size.

• TEST − 2−B, composed of 480 type #2 instances of big size.

4.2 Comparison of constructive heuristics

In this section, we assess the effectiveness of existing constructive heuristics for the problem, includ-

ing the new constructive heuristics presented in Section 3. More specifically, the following heuristics

are compared:

• The ECT heuristic by Leung et al. (2005b) described in Section 2 as the best-so-far heuristic

for the problem.

• The STPT heuristic by (Sung and Yoon, 1998) described in Section 2 as the second best

heuristic for the problem.

• The heuristic proposed in Section 3.1, denoted as NEW in the following.

15

• The SPT-B sorting order proposed in Section 3. This heuristic is included to check if the

behaviour of NEW is mainly due to that of the SPT-B and therefore, the iterative mechanism

in NEW is not worth the computational effort.

• The heuristic proposed in Section 3.1 using the solution given by ECT as sorting order for

the jobs in U , denoted as NEW-ECT in the following. This heuristic is included to verify the

suitability of the SPT-B procedure as initial ordering for NEW as compared to that of ECT.

• The heuristic proposed in Section 3.1 using the solution given by STPT as sorting order for

the jobs in U , denoted as NEW-STPT in the following. This heuristic is included to verify

the suitability of the SPT-B procedure as initial ordering for NEW as compared to that of

STPT.

• The SHIFT-k heuristic presented in Section 3.2.

• The SHIFT-k-OPT heuristic presented in Section 3.2.

The quality of the solutions provided by these heuristics is measured in terms of the Relative

Percentage Deviation (RPD) obtained by each heuristic. The RPD is defined for heuristic h in the

instance i as follows:

RPDih = Cih − Ci∗

Ci∗
· 100 (4)

where Cih is the completion time obtained by heuristic h on instance i and Ci∗ is the best-so-far

total completion time available for instance i. For instances in TEST-1-S and TEST-2-S, Ci∗ is

the optimal solution obtained by exhaustive enumeration whereas for instances in TEST-1-B and

TEST-2-B, Ci∗ is the best total completion time obtained in the computational experiments by

all heuristics under comparison, including those obtained by the lengthy TS and GSA presented in

Section 4.3. Note that, in this section, we do not measure the computation effort of the heuristics

under comparison as it is negligible.

Tables 1 and 2 show the Average RPD (ARPD) values obtained for each problem size together

with the standard deviation of the RPD for the small and big testbeds respectively. In view of these

tables, the following comments can be done:

16

• As it can be seen in both tables, the heuristic proposed clearly outperforms the ECT heuristic,

which was considered to be the best-so-far for the problem.

• The quality of the proposal can be assessed not only in relative terms when compared with

that obtained by other approximate procedures, but also with respect to the optimal solutions

obtained for the small testbeds, being less than 0.8% on average for all testbeds.

• Both for small and big testbeds, it can be seen that the superiority of the proposed heuristic

does not depend on the problem size, or on the type of testbed, obtaining the best results

for all cases. Additionally, the heuristic seems to be quite robust: it does not only has the

lowest average standard deviation, but also its standard deviation is the lowest among the

rest of the heuristics for all problem sizes in the two testbeds. This speaks for an exceptional

performance as compared with the existing heuristics for the problem. This can be graphically

seen in Figure 6, where 95% confidence intervals of the ARPD values for the two big testbeds

are shown. In Figure 6 the worst-performing heuristic –SPT-B– has been excluded to make

a more homogeneous scaling.

• The sorting order SPT-B is, as expected, a rather bad heuristic itself, although this sorting

order was not designed to be used in isolation. Indeed, SPT-B turns to be crucial for estab-

lishing the estimation mechanism for the proposed heuristic, which can be seen more clearly

by comparing the results obtained by NEW with those found by NEW-ECT and NEW-STPT.

From these results it can be seen that the strategy of focusing on the robust sorting ordering

for the estimation is critical for the proposed algorithm. This fact can also be reinforced in

an indirect manner by checking that STPT is able to outperform ECT as a starting solution.

• The differences in the heuristics are statistically significant for the big testbeds, as shown in

Table 3. The table show that, for both testbeds, the NEW heuristic constitutes a separate

group, indicating statistically significant differences with the rest of the heuristics. A second

group is formed by the SHIFT-k-OPT procedure, followed by SHIFT-k. All of them perform

significantly better than ECT and that its experimental variant.

17

T
E

ST
-1

-S
E

C
T

ST
P

T
N

E
W

SP
T

-B
N

E
W

-E
C

T
N

E
W

-S
T

P
T

SH
IF

T
-k

SH
IF

T
-k

-O
P

T
m

n
Av

er
.

St
.

D
ev

.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
5

2
0.

31
7

1.
13

3
3.

54
2

3.
22

6
0.

11
1

0.
33

0
4.

12
0

4.
79

6
0.

31
7

1.
13

3
0.

33
3

0.
92

2
0.

15
1

0.
53

5
0.

08
4

0.
39

1
5

5
0.

86
3

1.
80

8
4.

02
8

3.
67

6
0.

61
0

1.
32

4
2.

98
7

2.
74

5
0.

86
3

1.
80

8
0.

32
3

0.
83

2
0.

32
1

0.
72

4
0.

21
6

0.
47

7
5

10
0.

83
2

1.
59

6
3.

21
8

2.
11

2
0.

47
9

0.
86

9
1.

58
9

1.
81

9
0.

83
2

1.
59

6
0.

59
9

1.
10

4
0.

72
8

1.
34

0
0.

72
8

1.
34

0
5

20
1.

27
6

1.
89

5
3.

84
9

2.
97

1
0.

37
5

0.
68

9
1.

15
9

4.
71

1
1.

27
6

1.
89

5
0.

68
3

0.
97

8
0.

80
0

1.
56

1
0.

73
6

1.
26

7
10

2
0.

40
2

0.
57

5
4.

60
0

3.
88

2
0.

30
2

0.
47

8
9.

35
6

7.
54

8
0.

40
2

0.
57

5
0.

48
4

0.
66

5
0.

21
8

0.
40

9
0.

17
2

0.
38

6
10

5
0.

80
4

0.
99

6
7.

22
7

4.
11

3
0.

72
6

0.
69

7
7.

51
0

3.
67

7
0.

80
4

0.
99

6
0.

48
2

0.
55

5
0.

49
0

0.
83

9
0.

41
1

0.
77

3
10

10
1.

18
8

1.
21

6
6.

44
4

2.
95

2
0.

77
3

0.
61

2
6.

00
9

2.
12

8
1.

18
8

1.
21

6
0.

89
8

1.
06

4
0.

61
7

0.
64

5
0.

54
2

0.
54

5
10

20
1.

54
2

1.
19

0
6.

52
6

2.
71

9
1.

03
4

0.
80

1
4.

52
2

2.
88

1
1.

54
2

1.
19

0
1.

05
4

0.
85

9
1.

10
2

0.
82

1
1.

03
6

0.
82

1
12

2
0.

69
7

0.
77

9
4.

07
8

3.
07

8
0.

53
5

0.
63

8
10

.0
92

6.
40

1
0.

69
7

0.
77

9
0.

48
0

0.
58

8
0.

30
0

0.
46

2
0.

18
1

0.
33

2
12

5
1.

16
1

1.
24

1
7.

52
4

3.
19

1
0.

85
1

0.
73

4
10

.1
80

3.
82

7
1.

16
1

1.
24

1
0.

78
4

0.
75

2
0.

87
1

1.
03

7
0.

82
7

0.
94

6
12

10
1.

78
9

1.
53

4
7.

09
8

3.
15

1
1.

24
1

1.
21

9
7.

60
0

2.
04

0
1.

78
9

1.
53

4
1.

43
8

1.
21

3
1.

14
2

0.
88

9
1.

03
5

0.
84

7
12

20
1.

86
6

1.
34

7
7.

15
5

2.
76

6
1.

14
2

1.
17

9
5.

49
4

1.
45

3
1.

86
6

1.
34

7
1.

18
0

1.
06

4
1.

18
4

1.
11

6
1.

09
2

1.
09

6
Av

g.
1.

06
1

1.
27

6
5.

44
1

3.
15

3
0.

68
2

0.
79

8
5.

88
5

3.
66

9
1.

06
1

1.
27

6
0.

72
8

0.
88

3
0.

66
0

0.
86

5
0.

58
8

0.
76

9

T
E

ST
-2

-S
E

C
T

ST
P

T
N

E
W

SP
T

-B
N

E
W

-E
C

T
N

E
W

-S
T

P
T

SH
IF

T
-k

SH
IF

T
-k

-O
P

T
m

n
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
5

2
0.

21
3

0.
62

1
3.

10
8

4.
42

1
0.

23
6

0.
61

4
7.

54
9

9.
91

6
0.

21
3

0.
62

1
0.

27
0

0.
68

0
0.

08
7

0.
44

4
0.

08
7

0.
44

4
5

5
0.

24
9

0.
70

1
5.

15
7

5.
66

6
0.

37
9

0.
76

7
5.

72
6

4.
61

3
0.

24
9

0.
70

1
0.

46
0

0.
93

0
0.

18
3

0.
61

7
0.

18
3

0.
61

7
5

10
1.

20
7

3.
39

7
6.

86
5

6.
72

7
0.

23
6

0.
83

6
4.

04
6

4.
79

0
1.

20
7

3.
39

7
0.

26
2

0.
54

4
1.

14
4

3.
13

8
1.

14
4

3.
13

8
5

20
0.

40
5

1.
82

3
5.

76
6

4.
38

9
0.

11
3

0.
55

1
2.

13
3

6.
75

3
0.

40
5

1.
82

3
0.

12
0

0.
58

1
0.

08
3

0.
49

0
0.

08
3

0.
49

0
10

2
1.

10
4

1.
54

2
6.

19
7

5.
02

6
0.

62
1

0.
99

9
22

.5
31

13
.1

48
1.

10
4

1.
54

2
0.

76
6

1.
00

3
0.

41
3

0.
92

8
0.

35
9

0.
91

7
10

5
1.

30
6

1.
74

2
9.

85
9

6.
61

3
1.

23
4

2.
17

2
16

.5
65

8.
87

9
1.

30
6

1.
74

2
0.

78
6

0.
95

8
0.

69
1

1.
27

9
0.

69
1

1.
27

9
10

10
0.

94
4

1.
81

4
11

.3
17

8.
26

5
0.

75
7

1.
15

6
13

.8
48

5.
76

5
0.

94
4

1.
81

4
0.

61
0

0.
68

2
0.

53
4

0.
87

5
0.

35
4

0.
53

7
10

20
1.

10
1

1.
68

7
11

.7
73

7.
84

6
0.

97
3

1.
10

0
8.

77
8

2.
60

7
1.

10
1

1.
68

7
1.

20
3

1.
50

6
0.

81
1

1.
39

5
0.

80
5

1.
39

2
12

2
1.

08
1

1.
51

0
7.

23
1

5.
43

2
0.

72
7

0.
85

0
23

.4
89

14
.2

40
1.

08
1

1.
51

0
0.

91
3

1.
48

4
0.

49
3

0.
86

2
0.

25
7

0.
41

2
12

5
1.

14
3

1.
39

4
10

.4
47

8.
73

6
1.

01
6

1.
14

4
18

.3
74

6.
39

0
1.

14
3

1.
39

4
1.

02
0

1.
17

7
0.

59
1

0.
97

6
0.

44
9

0.
75

3
12

10
1.

54
4

1.
72

1
15

.3
54

8.
34

4
1.

13
1

1.
12

9
15

.5
01

5.
35

1
1.

54
4

1.
72

1
1.

30
1

1.
24

9
1.

03
1

1.
28

8
1.

01
2

1.
26

0
12

20
1.

72
2

1.
67

4
10

.7
71

4.
98

4
1.

23
7

1.
53

0
10

.3
95

3.
22

1
1.

72
2

1.
67

4
0.

79
7

0.
78

3
1.

29
4

1.
31

7
1.

20
0

1.
33

7
Av

g.
1.

00
2

1.
63

6
8.

65
4

6.
37

1
0.

72
2

1.
07

1
12

.4
11

7.
13

9
1.

00
2

1.
63

6
0.

70
9

0.
96

5
0.

61
3

1.
13

4
0.

55
2

1.
04

8

Ta
bl

e
1:

Av
er

ag
e

an
d

St
an

da
rd

D
ev

ia
tio

n
of

R
PD

fo
r

th
e

co
ns

tr
uc

tiv
e

he
ur

ist
ic

s
on

th
e

sm
al

lt
es

tb
ed

s

18

T
E

ST
-1

-B
E

C
T

ST
P

T
N

E
W

SP
T

-B
N

E
W

-E
C

T
N

E
W

-S
T

P
T

SH
IF

T
-k

SH
IF

T
-k

-O
P

T
m

n
Av

er
.

St
.

D
ev

.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
2

20
1.

19
3

0.
74

6
4.

71
2

2.
72

3
0.

54
5

0.
35

0
15

.0
60

7.
61

5
1.

19
3

0.
74

6
0.

90
9

0.
50

3
0.

65
4

0.
39

8
0.

46
6

0.
36

7
2

50
1.

63
7

0.
68

4
3.

72
4

2.
11

8
0.

42
9

0.
17

8
18

.9
25

5.
83

2
1.

63
7

0.
68

4
1.

42
0

0.
48

5
0.

89
1

0.
39

5
0.

69
1

0.
33

3
2

10
0

2.
51

9
0.

64
3

3.
35

3
2.

01
7

0.
39

5
0.

12
7

24
.5

45
4.

70
0

2.
51

9
0.

64
3

2.
05

1
0.

37
4

1.
39

5
0.

38
2

1.
08

7
0.

28
0

2
20

0
2.

94
6

0.
41

8
2.

74
9

1.
08

4
0.

34
0

0.
10

5
25

.8
73

3.
07

7
2.

94
6

0.
41

8
2.

38
8

0.
21

2
1.

68
0

0.
25

0
1.

33
9

0.
17

1
5

20
1.

29
5

0.
82

3
6.

34
2

2.
38

6
0.

95
9

0.
69

7
11

.9
66

3.
53

0
1.

29
5

0.
82

3
1.

06
8

0.
89

3
0.

85
3

0.
58

6
0.

74
3

0.
53

9
5

50
1.

94
3

0.
60

2
6.

90
7

2.
11

7
1.

06
0

0.
43

6
16

.6
75

2.
68

3
1.

94
3

0.
60

2
1.

49
3

0.
39

7
1.

45
7

0.
38

4
1.

37
9

0.
36

9
5

10
0

1.
76

1
0.

32
6

6.
54

5
1.

90
6

1.
03

4
0.

22
5

16
.7

18
2.

18
1

1.
76

1
0.

32
6

1.
61

0
0.

36
7

1.
35

0
0.

24
8

1.
28

4
0.

24
2

5
20

0
1.

96
5

0.
28

4
4.

97
4

1.
52

0
1.

11
1

0.
19

1
17

.8
87

1.
77

7
1.

96
5

0.
28

4
1.

82
9

0.
35

0
1.

59
4

0.
23

4
1.

51
3

0.
22

0
10

20
1.

79
3

0.
89

6
8.

51
1

2.
56

1
1.

24
1

0.
74

3
9.

91
2

1.
96

0
1.

79
3

0.
89

6
1.

29
3

0.
79

7
1.

42
4

0.
77

8
1.

36
8

0.
76

7
10

50
1.

92
5

0.
67

3
8.

76
2

2.
33

2
1.

42
2

0.
58

5
13

.0
76

1.
65

3
1.

92
5

0.
67

3
1.

54
4

0.
48

0
1.

64
2

0.
52

9
1.

54
8

0.
48

5
10

10
0

1.
73

1
0.

43
3

7.
42

0
1.

96
7

1.
29

2
0.

36
7

13
.8

79
1.

39
3

1.
73

1
0.

43
3

1.
52

6
0.

28
4

1.
57

4
0.

40
6

1.
53

7
0.

40
0

10
20

0
1.

69
3

0.
27

3
5.

55
0

1.
36

8
1.

08
4

0.
19

0
14

.0
23

1.
15

2
1.

69
3

0.
27

3
1.

42
8

0.
22

9
1.

59
3

0.
23

0
1.

57
6

0.
22

5
20

20
1.

86
6

0.
93

4
7.

80
0

2.
76

9
1.

08
2

0.
67

8
7.

98
5

1.
53

3
1.

86
6

0.
93

4
1.

76
8

1.
02

1
1.

57
7

0.
79

4
1.

49
1

0.
75

8
20

50
1.

79
9

0.
66

4
8.

64
6

2.
24

9
1.

38
2

0.
65

9
10

.5
77

1.
21

0
1.

79
9

0.
66

4
1.

55
0

0.
55

6
1.

56
6

0.
46

2
1.

51
3

0.
41

6
20

10
0

1.
62

8
0.

33
0

8.
14

1
2.

07
2

1.
31

2
0.

32
9

11
.4

68
0.

96
1

1.
62

8
0.

33
0

1.
47

7
0.

43
8

1.
52

2
0.

29
9

1.
48

1
0.

29
3

20
20

0
1.

59
8

0.
21

8
6.

19
6

1.
39

0
1.

14
6

0.
22

8
11

.3
88

0.
85

9
1.

59
8

0.
21

8
1.

33
8

0.
23

7
1.

54
5

0.
20

7
1.

53
3

0.
20

4
Av

g.
1.

83
1

0.
71

9
6.

27
1

2.
78

9
0.

99
0

0.
55

5
14

.9
97

5.
78

9
1.

83
1

0.
71

9
1.

54
3

0.
62

4
1.

39
5

0.
53

4
1.

28
4

0.
53

3

T
E

ST
-2

-B
E

C
T

ST
P

T
N

E
W

SP
T

-B
N

E
W

-E
C

T
N

E
W

-S
T

P
T

SH
IF

T
-k

SH
IF

T
-k

-O
P

T
m

n
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
2

20
1.

59
5

1.
12

0
7.

24
5

3.
70

5
1.

06
5

0.
89

3
32

.6
54

14
.0

73
1.

59
5

1.
12

0
1.

40
7

0.
96

1
0.

57
0

0.
51

2
0.

34
8

0.
40

7
2

50
2.

43
7

0.
94

3
7.

22
2

3.
75

8
0.

75
7

0.
30

2
41

.2
52

9.
69

5
2.

43
7

0.
94

3
2.

18
7

0.
81

8
1.

14
2

0.
48

8
0.

82
9

0.
39

3
2

10
0

2.
98

9
0.

91
6

6.
15

1
3.

20
9

0.
70

6
0.

29
5

47
.2

41
12

.3
98

2.
98

9
0.

91
6

2.
34

7
0.

61
5

1.
40

4
0.

50
8

1.
05

1
0.

41
6

2
20

0
3.

85
9

0.
76

0
3.

91
9

2.
28

6
0.

55
2

0.
19

0
53

.3
04

7.
70

0
3.

85
9

0.
76

0
2.

82
0

0.
34

6
1.

79
5

0.
43

3
1.

34
6

0.
28

3
5

20
2.

02
5

1.
35

9
12

.8
10

5.
81

4
1.

62
0

0.
93

5
29

.3
34

8.
90

0
2.

02
5

1.
35

9
1.

40
9

0.
82

8
1.

40
1

1.
22

4
1.

16
6

0.
91

7
5

50
3.

47
2

1.
10

1
12

.8
46

4.
23

8
1.

83
3

0.
64

9
33

.8
36

6.
90

1
3.

47
2

1.
10

1
2.

60
2

0.
68

3
2.

61
7

0.
89

7
2.

37
3

0.
75

9
5

10
0

3.
86

2
0.

80
4

11
.0

04
3.

36
0

2.
10

7
0.

63
9

39
.7

76
4.

90
7

3.
86

2
0.

80
4

3.
15

5
0.

80
7

3.
01

0
0.

71
1

2.
88

2
0.

69
2

5
20

0
4.

57
0

0.
86

3
10

.3
14

3.
39

6
2.

43
7

0.
62

6
40

.0
22

3.
62

3
4.

57
0

0.
86

3
3.

94
2

0.
80

6
3.

59
9

0.
57

7
3.

39
3

0.
54

4
10

20
2.

43
2

1.
79

0
14

.8
99

4.
97

4
1.

82
0

1.
15

3
23

.1
19

6.
40

4
2.

43
2

1.
79

0
1.

91
0

1.
31

1
1.

90
5

1.
31

9
1.

78
8

1.
24

9
10

50
3.

00
8

1.
31

4
16

.1
68

5.
47

0
2.

12
1

1.
06

2
31

.1
09

4.
77

7
3.

00
8

1.
31

4
2.

61
1

0.
78

8
2.

53
6

1.
11

4
2.

45
4

1.
05

8
10

10
0

3.
33

9
0.

96
4

14
.0

96
3.

53
6

2.
27

7
0.

68
9

34
.4

45
2.

63
4

3.
33

9
0.

96
4

2.
77

8
0.

54
8

2.
90

8
0.

83
4

2.
84

2
0.

78
5

10
20

0
3.

42
8

0.
58

0
11

.9
14

2.
69

2
2.

30
7

0.
37

0
35

.6
02

2.
78

7
3.

42
8

0.
58

0
3.

01
2

0.
55

0
3.

11
8

0.
51

6
3.

02
9

0.
52

6
20

20
2.

69
5

1.
77

2
13

.3
18

4.
29

1
1.

69
7

1.
48

6
18

.7
37

4.
31

7
2.

69
5

1.
77

2
2.

06
3

1.
17

3
2.

10
6

1.
35

8
1.

91
5

1.
26

2
20

50
2.

80
4

0.
92

0
15

.8
91

4.
23

6
2.

27
8

1.
10

7
26

.4
65

3.
64

1
2.

80
4

0.
92

0
2.

53
4

0.
78

0
2.

43
2

0.
89

5
2.

33
4

0.
88

3
20

10
0

2.
71

7
0.

55
4

14
.6

54
3.

78
4

2.
15

6
0.

67
0

30
.7

90
3.

69
2

2.
71

7
0.

55
4

2.
35

4
0.

61
1

2.
47

5
0.

48
3

2.
41

9
0.

47
9

20
20

0
2.

93
5

0.
52

7
12

.4
85

2.
94

3
2.

06
7

0.
34

0
32

.6
91

2.
28

4
2.

93
5

0.
52

7
2.

41
1

0.
56

7
2.

72
8

0.
49

0
2.

70
1

0.
50

8
Av

g.
3.

01
0

1.
28

6
11

.5
58

5.
27

7
1.

73
8

0.
99

2
34

.3
99

10
.8

92
3.

01
0

1.
28

6
2.

47
1

0.
99

7
2.

23
4

1.
13

9
2.

05
4

1.
13

7

Ta
bl

e
2:

Av
er

ag
e

an
d

St
an

da
rd

D
ev

ia
tio

n
of

R
PD

fo
r

th
e

co
ns

tr
uc

tiv
e

he
ur

ist
ic

s
on

th
e

bi
g

te
st

be
ds

19

TEST-1-B
Subset

Constructive Heuristic Observations 1 2 3 4 5
NEW 480 0.990

SHIFT-K-OPT 480 1.284
SHIFT-k 480 1.395

NEW-STPT 480 1.543
ECT 480 1.831

NEW-ECT 480 1.831
Sig. 1.000 1.000 1.000 1.000 1.000

TEST-2-B
Subset

Constructive Heuristic Observations 1 2 3 4 5
NEW 480 1.738

SHIFT-K-OPT 480 2.054
SHIFT-k 480 2.234

NEW-STPT 480 2.471
ECT 480 3.010

NEW-ECT 480 3.010
Sig. 1.000 1.000 1.000 1.000 1.000

Table 3: HSD Tukey for the testbeds with big instances. Homogeneous subsets of ARPD values for the factor
Constructive Heuristic

Figure 6: 95% CI RPD for all constructive heuristics (except SPT-B) on the testbeds with big instances

20

4.3 Comparison of improvement heuristics

In this section, we compare several improvement heuristics for the problem, including the GSA

proposed in Section 3.2. More specifically, the following algorithms are compared:

• The tabu search by Leung et al. (2005b) described in Section 2 as the best-so-far metaheuristic

for the problem. This algorithm is denoted in the following TS(ECT), as it uses the ECT

heuristic as starting solution.

• The TS using NEW as initial solution. This algorithm is included in order to assess the

beneficial effect of using NEW as initial solution as compared to using ECT. This algorithm

is denoted in the following TS(NEW).

• The GSA presented in Section 3.2.

Different stopping criteria are tested for the algorithms, which are measured in terms of their

ARPD and the CPU time effort. More specifically, for the two TS procedures, the number of

iterations allowed without improvement is set to 10, 50, and 100. Similarly, the number of iterations

allowed in GSA is 10, 50, and 100. Note however that the effort required in the iterations of GSA

is different than that of TS, therefore the CPU time has to be computed as well.

The results are shown in terms of RPD in Table 4, and in terms of CPU time in Table 6.

According to these results, the following comments can be done:

• Using the proposed heuristic (NEW) as a starting solution of the TS procedure by Leung

et al. (2005b) improves the quality of solutions obtained by the tabu search regardless the

stopping criteria.

• The results obtained by the proposed GSA are better than those obtained by the TS(NEW)

procedure and, consequently, than those obtained by the original TS for the three tested

stopping criteria. On average, the best results obtained by the GSA procedure (GSA 100)

are around 7 times lower than those obtained by the best TS procedure (TS(NEW) 100).

The difference is more striking by taking into account that GSA 100 requires, on average,

around 16 times less computational effort in the less favourable case. We think that these

21

Figure 7: 95% CI RPD for the improvement heuristics on the testbeds with big instances

facts speak for the efficiency of the specific local search mechanism devised for the problem

(SHIFT-k-OPT).

• Tukey HSD for the three procedures under comparison are shown in Table 5. From these

results, it can be seen that there are statistically significant differences among most procedures

(see also Figure 7 where the 95% confidence intervals of ARPD are shown). As it can be seen,

GSA stands out as the best procedure, being superior to all versions of TS, with the exception

of GSA 10, which is not different than TS(NEW) 100. It has to be taken into account, however,

that TS(NEW) 100 is, on average, around 100 times slower than GSA 10.

• For the GSA proposed, the decrease in the ARPD as a function of the number of allowed

iterations shows the scalability of the proposed procedure, particularly if compared with that

of the TS.

5 Conclusions

In this paper, we address the problem of scheduling orders composed of different product types

in a parallel machine environment where each machine is able to manufacture a single product

type. The objective is that of minimising the sum of the completion times of the orders. For this

22

T
E

ST
-1

-B
T

S(
E

C
T

)1
0

T
S(

E
C

T
)5

0
T

S(
E

C
T

)1
00

T
S(

N
E

W
)1

0
T

S(
N

E
W

)5
0

T
S(

N
E

W
)1

00
G

SA
10

G
SA

50
G

SA
10

0
m

n
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
2

20
0.

08
6

0.
21

6
0.

08
5

0.
21

6
0.

06
0

0.
12

8
0.

03
8

0.
09

3
0.

03
8

0.
09

3
0.

03
8

0.
09

3
0.

05
3

0.
06

8
0.

01
3

0.
03

2
0.

00
4

0.
01

4
2

50
0.

05
9

0.
08

1
0.

05
5

0.
08

2
0.

05
2

0.
08

2
0.

00
8

0.
01

6
0.

00
4

0.
00

6
0.

00
2

0.
00

5
0.

07
0

0.
03

3
0.

03
6

0.
02

5
0.

02
9

0.
02

2
2

10
0

0.
04

3
0.

05
3

0.
04

0
0.

05
2

0.
04

0
0.

05
2

0.
00

5
0.

00
6

0.
00

3
0.

00
5

0.
00

2
0.

00
5

0.
06

3
0.

01
8

0.
04

2
0.

01
4

0.
03

8
0.

01
4

2
20

0
0.

03
9

0.
04

2
0.

03
9

0.
04

2
0.

03
9

0.
04

2
0.

00
3

0.
00

6
0.

00
3

0.
00

6
0.

00
2

0.
00

6
0.

03
1

0.
01

5
0.

02
3

0.
00

9
0.

02
1

0.
00

8
5

20
0.

16
9

0.
25

9
0.

11
7

0.
17

9
0.

09
4

0.
15

3
0.

14
1

0.
24

3
0.

09
8

0.
23

0
0.

07
8

0.
23

1
0.

13
2

0.
11

4
0.

05
0

0.
06

6
0.

03
0

0.
05

5
5

50
0.

17
8

0.
16

4
0.

11
9

0.
12

7
0.

10
6

0.
12

3
0.

09
6

0.
11

9
0.

07
0

0.
11

3
0.

06
1

0.
10

9
0.

22
7

0.
10

2
0.

11
3

0.
08

0
0.

06
9

0.
05

5
5

10
0

0.
15

5
0.

11
4

0.
12

0
0.

11
6

0.
10

8
0.

10
2

0.
11

3
0.

09
8

0.
08

0
0.

08
5

0.
06

1
0.

06
2

0.
12

7
0.

07
2

0.
03

9
0.

04
4

0.
03

1
0.

04
5

5
20

0
0.

09
7

0.
07

7
0.

08
8

0.
07

8
0.

08
5

0.
08

0
0.

05
9

0.
03

8
0.

05
3

0.
04

1
0.

04
5

0.
04

0
0.

10
4

0.
04

9
0.

02
5

0.
02

5
0.

01
1

0.
01

8
10

20
0.

24
0

0.
32

8
0.

17
4

0.
30

3
0.

12
7

0.
26

5
0.

21
2

0.
32

3
0.

10
1

0.
15

8
0.

07
3

0.
10

7
0.

22
9

0.
19

1
0.

07
4

0.
07

7
0.

05
5

0.
07

2
10

50
0.

47
7

0.
25

9
0.

39
2

0.
21

3
0.

35
5

0.
20

9
0.

26
3

0.
21

5
0.

19
6

0.
20

3
0.

14
5

0.
18

9
0.

27
8

0.
14

2
0.

07
2

0.
09

1
0.

04
0

0.
06

7
10

10
0

0.
37

4
0.

24
5

0.
31

2
0.

24
6

0.
26

3
0.

18
3

0.
29

5
0.

15
8

0.
24

9
0.

15
6

0.
23

6
0.

16
4

0.
13

2
0.

06
5

0.
03

1
0.

03
7

0.
00

7
0.

01
9

10
20

0
0.

34
1

0.
14

1
0.

30
7

0.
15

0
0.

29
1

0.
14

8
0.

30
7

0.
08

4
0.

28
0

0.
09

1
0.

26
1

0.
08

9
0.

20
2

0.
06

8
0.

02
6

0.
02

7
0.

00
0

0.
00

0
20

20
0.

31
0

0.
30

6
0.

23
2

0.
28

0
0.

19
1

0.
24

9
0.

28
0

0.
30

8
0.

19
8

0.
28

2
0.

11
3

0.
18

6
0.

20
9

0.
16

6
0.

06
0

0.
08

5
0.

04
1

0.
07

7
20

50
0.

42
7

0.
32

5
0.

32
2

0.
30

7
0.

25
8

0.
27

9
0.

49
0

0.
40

8
0.

44
6

0.
40

4
0.

38
2

0.
39

4
0.

30
2

0.
16

8
0.

08
3

0.
08

4
0.

03
2

0.
06

4
20

10
0

0.
66

8
0.

33
5

0.
62

8
0.

33
8

0.
57

5
0.

34
3

0.
62

7
0.

21
7

0.
59

2
0.

23
4

0.
57

1
0.

24
9

0.
21

9
0.

14
3

0.
03

9
0.

05
4

0.
00

0
0.

00
0

20
20

0
0.

85
6

0.
22

5
0.

78
6

0.
23

8
0.

75
4

0.
23

8
0.

70
8

0.
17

6
0.

69
5

0.
18

2
0.

68
4

0.
18

0
0.

34
3

0.
10

1
0.

04
3

0.
04

9
0.

00
0

0.
00

0
Av

g.
0.

28
3

0.
31

6
0.

23
8

0.
29

2
0.

21
2

0.
27

1
0.

22
8

0.
28

8
0.

19
4

0.
27

2
0.

17
2

0.
26

0
0.

17
0

0.
14

1
0.

04
8

0.
06

1
0.

02
5

0.
04

7

T
E

ST
-2

-B
T

S(
E

C
T

)1
0

T
S(

E
C

T
)5

0
T

S(
E

C
T

)1
00

T
S(

N
E

W
)1

0
T

S(
N

E
W

)5
0

T
S(

N
E

W
)1

00
G

SA
10

G
SA

50
G

SA
10

0
m

n
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
Av

g.
St

d.
2

20
0.

03
2

0.
11

4
0.

03
2

0.
11

4
0.

02
2

0.
10

3
0.

03
0

0.
11

3
0.

03
0

0.
11

3
0.

03
0

0.
11

3
0.

06
3

0.
12

2
0.

02
9

0.
06

5
0.

01
2

0.
02

9
2

50
0.

05
1

0.
09

5
0.

04
9

0.
09

6
0.

04
7

0.
09

6
0.

00
8

0.
01

6
0.

00
8

0.
01

6
0.

00
8

0.
01

6
0.

09
8

0.
05

3
0.

04
4

0.
03

0
0.

03
0

0.
02

3
2

10
0

0.
04

9
0.

06
2

0.
04

9
0.

06
2

0.
04

8
0.

06
2

0.
00

3
0.

00
6

0.
00

2
0.

00
6

0.
00

2
0.

00
6

0.
08

5
0.

03
0

0.
04

4
0.

02
4

0.
03

9
0.

02
1

2
20

0
0.

03
5

0.
04

0
0.

03
5

0.
04

0
0.

03
5

0.
04

0
0.

00
1

0.
00

2
0.

00
1

0.
00

2
0.

00
1

0.
00

2
0.

04
0

0.
01

1
0.

03
3

0.
01

1
0.

02
9

0.
01

2
5

20
0.

29
9

0.
30

9
0.

23
4

0.
28

8
0.

21
9

0.
27

1
0.

28
1

0.
40

5
0.

21
4

0.
38

3
0.

21
2

0.
38

5
0.

24
6

0.
30

4
0.

04
1

0.
09

1
0.

02
3

0.
08

1
5

50
0.

26
5

0.
25

9
0.

23
5

0.
25

0
0.

21
4

0.
25

9
0.

15
9

0.
13

5
0.

13
7

0.
14

1
0.

12
6

0.
14

3
0.

28
9

0.
11

5
0.

09
3

0.
08

1
0.

05
1

0.
06

8
5

10
0

0.
24

6
0.

16
9

0.
22

3
0.

16
8

0.
21

3
0.

16
9

0.
19

4
0.

25
5

0.
17

8
0.

25
2

0.
15

9
0.

25
6

0.
14

0
0.

07
7

0.
02

6
0.

04
1

0.
01

8
0.

04
0

5
20

0
0.

26
1

0.
15

9
0.

25
4

0.
16

0
0.

25
1

0.
16

3
0.

14
4

0.
09

1
0.

13
4

0.
09

1
0.

12
9

0.
09

0
0.

07
1

0.
04

8
0.

01
0

0.
01

8
0.

00
1

0.
00

4
10

20
0.

58
8

0.
71

3
0.

49
2

0.
71

2
0.

47
3

0.
71

5
0.

49
9

0.
72

2
0.

24
1

0.
44

0
0.

16
8

0.
40

3
0.

22
2

0.
26

0
0.

02
6

0.
07

9
0.

01
6

0.
04

3
10

50
0.

62
5

0.
49

0
0.

51
9

0.
49

2
0.

47
7

0.
49

1
0.

43
4

0.
32

7
0.

32
5

0.
24

4
0.

21
8

0.
22

1
0.

42
3

0.
22

4
0.

12
3

0.
11

1
0.

05
8

0.
08

8
10

10
0

0.
65

0
0.

35
9

0.
59

1
0.

35
4

0.
54

4
0.

36
9

0.
48

2
0.

25
0

0.
44

0
0.

23
5

0.
41

9
0.

24
8

0.
21

7
0.

09
6

0.
04

2
0.

06
0

0.
01

3
0.

03
8

10
20

0
0.

61
2

0.
20

9
0.

58
5

0.
21

6
0.

57
4

0.
20

8
0.

51
2

0.
14

5
0.

46
9

0.
13

7
0.

46
1

0.
13

2
0.

15
3

0.
09

5
0.

02
3

0.
02

8
0.

00
0

0.
00

0
20

20
0.

54
2

0.
77

1
0.

22
8

0.
28

4
0.

19
3

0.
26

2
0.

32
6

0.
38

2
0.

20
5

0.
29

0
0.

19
5

0.
29

2
0.

26
5

0.
34

0
0.

03
6

0.
07

3
0.

02
7

0.
05

3
20

50
0.

65
2

0.
43

5
0.

53
0

0.
39

9
0.

48
9

0.
38

8
0.

56
2

0.
35

7
0.

39
3

0.
29

1
0.

35
3

0.
30

2
0.

47
0

0.
20

2
0.

07
9

0.
10

0
0.

01
7

0.
05

0
20

10
0

0.
74

6
0.

37
1

0.
69

3
0.

38
6

0.
64

5
0.

35
3

0.
66

5
0.

42
3

0.
60

4
0.

34
1

0.
56

9
0.

35
1

0.
23

4
0.

14
9

0.
02

8
0.

05
6

0.
00

0
0.

00
3

20
20

0
0.

96
2

0.
25

6
0.

93
9

0.
26

4
0.

93
0

0.
26

1
0.

90
1

0.
26

8
0.

85
0

0.
23

9
0.

83
9

0.
23

6
0.

24
1

0.
10

1
0.

05
2

0.
05

7
0.

00
0

0.
00

0
Av

g.
0.

41
3

0.
46

0
0.

35
5

0.
40

8
0.

33
6

0.
40

0
0.

32
5

0.
39

8
0.

26
4

0.
33

1
0.

24
3

0.
32

5
0.

20
4

0.
20

5
0.

04
6

0.
07

0
0.

02
1

0.
04

7

Ta
bl

e
4:

Av
er

ag
e

an
d

St
an

da
rd

D
ev

ia
tio

n
of

R
PD

fo
r

th
e

im
pr

ov
em

en
t

he
ur

ist
ic

s
on

th
e

bi
g

te
st

be
ds

23

TEST-1-B
Subset

Improvement Heuristic Observations 1 2 3 4 5
GSA100 480 0.0255
GSA50 480 0.0481
GSA10 480 0.1700

TS(NEW) 100 480 0.1720
TS(NEW) 50 480 0.1941 0.1941
TS(ECT) 100 480 0.2123 0.2123
TS (NEW) 10 480 0.2278

TS(ECT) 50 480 0.2385
TS(ECT) 10 480 0.2825

Sig. 0.4497 0.3598 0.7358 0.2492 1.0000

TEST-2-B
Subset

Improvement Heuristic Observations 1 2 3 4 5
GSA100 480 0.0208
GSA50 480 0.0456
GSA10 480 0.2035

TS(NEW) 100 480 0.2429 0.2429
TS(NEW) 50 480 0.2643

TS (NEW) 10 480 0.3249
TS(ECT) 100 480 0.3360
TS(ECT) 50 480 0.3554
TS(ECT) 10 480 0.4135

Sig. 0.8478 0.2771 0.9272 0.6381 1.0000

Table 5: HSD Tukey for big instances testbeds. Homogeneous subsets of ARPD values for the factor Im-
provement Heuristic

24

T
E

ST
-1

-B

n
m

T
S(

E
C

T
)

10
T

S(
E

C
T

)
50

T
S(

E
C

T
)

10
0

T
S(

N
E

W
)

10
T

S(
N

E
W

)
50

T
S(

N
E

W
)

10
0

G
SA

10
G

SA
50

G
SA

10
0

20
2

0.
02

0.
07

0.
10

0.
02

0.
08

0.
16

0.
00

0.
01

0.
02

20
5

0.
03

0.
13

0.
20

0.
04

0.
13

0.
31

0.
01

0.
02

0.
04

20
10

0.
07

0.
20

0.
25

0.
06

0.
19

0.
40

0.
01

0.
04

0.
07

20
20

0.
10

0.
33

0.
48

0.
11

0.
34

0.
60

0.
01

0.
06

0.
12

50
2

0.
41

0.
81

1.
53

0.
44

0.
82

1.
50

0.
03

0.
12

0.
22

50
5

0.
84

1.
79

3.
25

0.
83

1.
75

3.
21

0.
06

0.
24

0.
41

50
10

1.
23

2.
81

8.
22

1.
23

2.
80

5.
28

0.
10

0.
40

0.
66

50
20

2.
37

5.
04

13
.4

6
2.

49
5.

06
10

.4
4

0.
17

0.
63

1.
01

10
0

2
4.

47
7.

97
27

.6
4

4.
90

8.
48

13
.5

3
0.

18
0.

63
1.

01
10

0
5

10
.1

7
20

.2
8

88
.1

2
10

.3
6

20
.0

6
37

.4
7

0.
35

1.
11

2.
06

10
0

10
15

.9
2

34
.7

6
84

.7
1

15
.9

2
35

.0
4

63
.5

1
0.

59
1.

92
3.

70
10

0
20

28
.6

3
55

.7
3

12
1.

00
28

.9
7

56
.4

4
10

6.
89

0.
97

3.
56

6.
91

20
0

2
77

.7
9

10
0.

66
29

7.
40

87
.8

1
11

2.
61

15
7.

36
0.

91
3.

40
6.

48
20

0
5

19
0.

00
26

0.
46

59
5.

65
19

0.
26

26
1.

07
35

4.
12

2.
30

7.
94

15
.0

3
20

0
10

35
0.

09
50

0.
25

97
0.

69
35

1.
50

50
3.

24
72

7.
41

4.
46

14
.4

5
28

.5
7

20
0

20
49

2.
60

86
2.

04
16

18
.1

6
50

6.
35

88
6.

34
13

66
.5

9
8.

15
28

.4
1

56
.6

5
Av

g.
73

.4
2

11
5.

83
23

9.
43

75
.0

8
11

8.
40

17
8.

05
1.

14
3.

93
7.

68

T
E

ST
-2

-B
n

m
T

S(
E

C
T

)
10

T
S(

E
C

T
)

50
T

S(
E

C
T

)
10

0
T

S(
N

E
W

)
10

T
S(

N
E

W
)

50
T

S(
N

E
W

)
10

0
G

SA
10

G
SA

50
G

SA
10

0
20

2
0.

01
0.

07
0.

09
0.

01
0.

07
0.

17
0.

00
0.

01
0.

02
20

5
0.

03
0.

13
0.

15
0.

03
0.

12
0.

26
0.

00
0.

02
0.

04
20

10
0.

05
0.

17
0.

24
0.

05
0.

18
0.

33
0.

01
0.

04
0.

07
20

20
0.

08
0.

32
0.

31
0.

09
0.

32
0.

52
0.

01
0.

06
0.

11
50

2
0.

38
0.

80
1.

18
0.

37
0.

74
1.

59
0.

03
0.

12
0.

22
50

5
0.

65
1.

47
2.

77
0.

66
1.

46
3.

03
0.

06
0.

24
0.

41
50

10
1.

02
2.

62
5.

08
1.

01
2.

63
4.

51
0.

09
0.

39
0.

62
50

20
1.

62
4.

31
7.

91
1.

63
4.

29
7.

52
0.

17
0.

61
1.

00
10

0
2

3.
48

6.
14

11
.0

0
3.

45
6.

36
10

.9
2

0.
17

0.
61

0.
98

10
0

5
9.

18
17

.0
0

27
.7

3
9.

13
16

.9
1

27
.0

6
0.

35
1.

10
1.

99
10

0
10

12
.1

3
25

.0
9

42
.2

2
12

.1
8

25
.3

3
53

.2
5

0.
58

1.
86

3.
56

10
0

20
22

.9
4

48
.3

8
84

.7
5

23
.1

8
49

.0
5

85
.4

8
0.

86
3.

46
6.

74
20

0
2

60
.3

7
81

.9
5

11
3.

44
63

.8
0

85
.3

3
11

3.
10

0.
83

3.
31

6.
48

20
0

5
17

2.
28

23
4.

28
30

1.
62

17
2.

86
23

4.
33

31
2.

29
1.

66
7.

39
14

.6
4

20
0

10
25

1.
74

38
0.

54
50

7.
00

25
5.

01
38

4.
91

53
8.

86
2.

99
13

.9
0

27
.5

0
20

0
20

42
2.

21
62

0.
75

27
58

.0
4

43
6.

15
63

8.
97

87
9.

57
6.

24
28

.0
9

55
.8

2
Av

g.
59

.8
9

89
.0

0
24

1.
47

61
.2

3
90

.6
9

12
7.

40
0.

88
3.

82
7.

51

Ta
bl

e
6:

C
om

pu
ta

tio
na

le
ffo

rt
(s

ec
on

ds
)

re
qu

ire
d

by
th

e
im

pr
ov

em
en

t
he

ur
ist

ic
s

on
th

e
te

st
be

ds
w

ith
bi

g
in

st
an

ce
s

25

NP-hard problem, the state-of-art constructive heuristic is the so-called ECT (Earliest Completion

Time), which selects as the next order to be scheduled the one with lowest completion time among

the unscheduled orders. After an in-depth analysis of the problem, we propose a constructive

heuristic with the same complexity than the ECT. The key element of this heuristic lies in its

ability to estimate the expected contribution of the unscheduled orders, therefore mitigating the

greedy behaviour of the ECT. In addition, we propose two improvement mechanisms that are

further embedded into a greedy search procedure (GSA), so high-quality solutions can be obtained

if a greater CPU effort is allowed.

An extensive computational experience has been carried out to test the performance of the

proposed constructive heuristic, which turns to yield a much higher quality of solutions, both for

the case where each order should contain all product types, or the case where the orders are just

composed of a subset of the product types. The statistical analysis carried out confirms that the

proposal outperforms ECT for all problem sizes, being also more robust within each problem size.

Furthermore, the comparison of the GSA with an existing tabu search approach for the problem

shows the efficiency of our proposal for different stopping criteria.

Acknowledgements

The authors are sincerely grateful to the anonymous referees, who provide very valuable comments

on earlier versions of the paper. This research has been funded by the Spanish Ministry of Science

and Innovation, under grant “ADDRESS” with reference DPI2013-44461-P.

References

Ahmadi, R. and Bagchi, U. (1990). Scheduling of mult-jobs customer orders in multi-machine

enviroments. In ORSA/TIMS, Philadelphia.

Ahmadi, R., Bagchi, U., and Roemer, T. A. (2005). Coordinated scheduling of customer orders for

quick response. Naval Research Logistics, 52(6):493–512.

26

Blocher, J. D. and Chhajed, D. (1996). The customer order lead-time problem on parallel machines.

Naval Research Logistics, 43(5):629–654.

Lee, I. S. (2013). Minimizing total tardiness for the order scheduling problem. International Journal

of Production Economics, 144(1):128–134.

Leung, J.-T., Li, H., and Pinedo, M. (2005a). Multidisciplinary Scheduling: Theory and Applications,

chapter Order scheduling models: An overview, pages 37–53. Springer.

Leung, J. Y. T., Li, H., and Pinedo, M. (2005b). Order Scheduling in an Environment with Dedicated

Resources in Parallel. Journal of Scheduling, 8(5):355–386.

Leung, J. Y. T., Li, H., and Pinedo, M. (2007a). Scheduling orders for multiple product types to

minimize total weighted completion time. Discrete Applied Mathematics, 155(8):945–970.

Leung, J. Y. T., Li, H., and Pinedo, M. (2008). Scheduling orders on either dedicated or flexible

machines in parallel to minimize total weighted completion time. Annals of Operations Research,

159(1):107–123.

Leung, J. Y.-T., Li, H., Pinedo, M., and Zhang, J. (2007b). Minimizing total weighted completion

time when scheduling orders in a flexible environment with uniform machines. Information

Processing Letters, 103(3):119–129.

Roemer, T. and Ahmadi, R. (1997). The complexity of scheduling customer orders. In INFORMS

Conference 1997, Dallas.

Sung, C. S. and Yoon, S. H. (1998). Minimizing total weighted completion time at a pre-

assembly stage composed of two feeding machines. International Journal of Production Eco-

nomics, 54(3):247–255.

Wagneur, E. and Sriskandarajah, C. (1993). Openshops with jobs overlap. European Journal of

Operational Research, 71(3):366–378.

27

Wang, G. and Cheng, T. (2007). Customer order scheduling to minimize total weighted completion

time. In Proceedings of the 1st Multidisciplinary Conference on Scheduling Theory and Applica-

tions, pages 409–416.

Yang, J. (2005). The complexity of customer order scheduling problems on parallel machines.

Computers & Operations Research, 32(7):1921–1939.

Yang, J. and Posner, M. E. (2005). Scheduling Parallel Machines for the Customer Order Problem.

Journal of Scheduling, 8(1):49–74.

28

