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Abstract The interplay of nonlinearity and topology results in many novel and
emergent properties across a number of physical systems such as chiral magnets,
nematic liquid crystals, Bose-Einstein condensates, photonics, high energy physics,
etc. It also results in a wide variety of topological defects such as solitons, vortices,
skyrmions, merons, hopfions, monopoles to name just a few. Interaction among
and collision of these nontrivial defects itself is a topic of great interest. Curvature
and underlying geometry also affect the shape, interaction and behavior of these
defects. Such properties can be studied using techniques such as, e.g. the Bogomolnyi
decomposition. Some applications of this interplay, e.g. in nonreciprocal photonics as
well as topological materials such as Dirac andWeyl semimetals, are also elucidated.
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1 Introduction

The main context of this chapter is how topological effects in nonlinear systems
give rise to a rich playground of excitations and properties. Topology, whether in
real space or momentum space or more generally in a parameter space, is associated
with certain system properties remaining unaltered under continuous deformation.
It follows that during deformation neighboring points remain close to each other.
Topology could be local, e.g. change in the lattice or network due to a defect, or
global. The latter means attributes such as the genus (g) or Euler characteristic (χ)
are overall or global features of a system.

Boundary conditions play an important role (through χ), for example in finite car-
bon nanotubes or edge states in topological materials: quantum Hall systems, topo-
logical insulators [1], topological superconductors [2], Dirac and Weyl semimetals
[3], etc. The latter are three dimensional analogs of graphene featuring gapless elec-
tronic excitations that are protected by topology and (time reversal, space inversion
or other crystalline) symmetry [3]. Very recent experiments indicate that these ma-
terials, specifically Weyl semimetals, may also provide a realization of axions, very
weakly interacting neutral particles in quantum field theory and potential candidates
for dark matter, in condensed matter [4, 5].

In many physical systems and materials [6] there are point defects as well as
extended or topological defects. The topological defects can significantly alter the
physical properties and dynamics of the system. Apart from the celebrated soliton-
like defects there is a whole slew of more elaborate ones that include skyrmions,
merons, hopfions, monopoles, dislocations, disclinations among others. In this chap-
ter we discuss how such defects arise in chiral magnets, nematic liquid crystals,
Bose-Einstein condensates (BECs), etc. We also discuss the role of topology in the
momentum space, particularly in the context of topological materials.

The combination of nonlinearity and topology also provides a highly desirable
functionality in photonics, namely nonreciprocity, which is quite important for a
variety of photonic devices including optical isolators [7]. We thus provide examples
of the interplay between nonlinearity and topology in photonics as well as condensed
matter analogs. In addition, we illustrate the role of geometry and topology in
determining spin textures via the so-called Bogomolnyi decomposition [8]. Finally,
we discuss several open problems and future directions with regard to the role of
topology in the presence of nonlinearity.

2 Topological defects in Nonlinear field theories

We consider a variety of topological defects that arise in a number of field theories
including the nonlinear σ-model [9, 10]. The Hamiltonian for the latter is given by

H =
∫
(∇n)2d2x , n2 = 1 , (1)
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where the unit vector n lives on a unit sphere. This model can support scalar soliton
configurations under special conditions. However, under a scaling transformation
x → λx and y → λy the Hamiltonian H remains invariant and thus a soliton
solution can be trivially scaled to a point because there is no length scale in the
plane. We will return to this point later when we consider the nonlinear σ-model on
curved manifolds.

We note here that to describe disorderedWeyl semimetals an anisotropic topolog-
ical term can be analytically derived from the action of the nonlinear σ model [11].
In the next section we consider a variety of topological defects such as skyrmions,
merons and hopfions. Given their extensive interest and applicability, subsequently
in Sec. 4, we consider vortices and vortex loops/rings. We then turn to different
prototypical applications such as liquid crystals (and the emergence of skyrmions
in them) in Sec. 5, as well as Bose-Einstein condensates in Sec. 6. After providing
an example of a theoretical tool for the study of topology in curved manifolds via
the Bogomolnyi decomposition (section 7), we present a broader perspective of the
impact of topological ideas in Materials (Sec. 8), Optics (Sec. 9) and Acoustics
and beyond (Sec. 10). Then in Sec. 11, we summarize our findings and present our
Conclusions, as well as some directions for future work.

3 Skyrmions, Merons and Hopfions

Beyond the well known solitons, there are more exotic topological defects such as
vector field or spin textures called skyrmions [10], which can have topological charge
of one (or two or even more). As shown in Fig. 1, in a skyrmion at the outer boundary
all spins point up (red arrows) whereas at the center there is a spin pointing down
(blue arrow). Therefore somewhere in the middle the spins have to lie in the plane
(green arrows). Half skyrmions are also referred to as merons and have a topological
charge of one half: the outer spins point up whereas the spin in the center lies in the
plane. There are many other related topological defects such as sphalerons and bags
(or lumps) known in high energy physics [9]. Similarly, three dimensional defects,
e.g. vortex lines, vortex loops (rings) and knots appear in many physical systems,
including, e.g. polymeric knots [12].

3.1 Skyrmions in Chiral Magnets

Before discussing magnets we note that beyond magnetic materials (e.g. ferro-
electrics) skyrmions have been observed at interfaces [13]. In this case, the texture
is given in terms of polar vectors or electric dipoles. Nanodots and nanocomposites
can also stabilize skyrmions (due to boundary conditions) in polar materials [14].

The Hamiltonian for a chiral magnet (i.e. lacking spatial inversion symmetry in
its crystal structure, e.g. MnSi) consists of the nonlinear σ-model plus the Zeeman
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BLOCH- and NEEL-type Skyrmions

Bloch (MnSi) Neel (GaV4S8)

Fig. 1 (a) Bloch and (b) Néel type skyrmions in a chiral magnet MnSi and a lacunar spinel GaV4S8,
respectively. Below the skyrmion textures their radial cross sections show Bloch and Néel wall,
respectively. Reproduced from [16]. ©2015 by the Nature Publishing Group

term in addition to the Dzyaloshinskii-Moriya interaction [15]

H =
∫ [

J(∇n)2 + Dn · (∇ × n) − n · B
]

d2x , (2)

where J denotes the (magnetic) exchange constant, B is the external magnetic field
in the last term in the Hamiltonian representing the Zeeman interaction and D
represents the strength of the Dzyaloshinskii-Moriya interaction. The latter arises
from the spin-orbit interaction at the microscopic level. Here n is a unit vector
describing the direction of the magnetic moment.

The topological charge associated with a skyrmion spin configuration is given by
[15]

Q =
1

4π

∫
dr2 [

n · (∂xn × ∂yn)
]
= ±1 . (3)

For a metallic material when a conduction electron traverses across a skyrmion it
gets spin polarized as a result of its interaction with the spin configuration of the
skyrmion. In addition, the conduction electron is subjected to an effective electric
and magnetic field [15], respectively given by

E =
~

2e
[n · (∇n × ∂tn)], (4)

B =
~c
2e
[n · (∂xn × ∂yn)]. (5)

These emergent fields give rise to the topological and skyrmion Hall effects.
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A.K. Nayak et al. Nature 548, 561 (2017) Fig. 2 (a) Anti-skyrmions (center panels) in Mn1.4Pt0.9Pd0.1Sn and its comparison with the Bloch
(left panels) and Néel skyrmions (right panels). The radial cross sections are shown below the
spin textures. Schematics of the magnetic moments (green arrows) and the associated Lorentz
deflections of transmitted electrons (red arrows) are shown in the middle row. The bottom row
shows the corresponding simulated Lorentz Transmission Electron Microscopy (LTEM) patterns
with dark and bright lobes. Reproduced from [17]. ©2017 by the Nature Publishing Group

Depending on the material or system, skyrmions can have chirality (i.e. Bloch
skyrmion as in MnSi) or no chirality (i.e. Néel skyrmion as in GaV4S8) as depicted
in Fig. 1. They are so called because the radial cut of a Bloch skyrmion provides a
magnetic Bloch domain wall (which is a strictly 3D structure) whereas a radial cut of
the Néel skyrmion leads to a magnetic Néel domain wall (which is a 2D structure).
Note that the spin configurations of the two types of skyrmions are topologically
equivalent. Anti-skyrmions, which have structural characteristics of both the Bloch
and Néel skyrmions, have also been observed using Lorentz Transmission Electron
Microscopy (LTEM) [17] in tetragonal Heusler materials even above the room tem-
perature, as shown in Fig. 2. We note here that spin-1 photonic skyrmions have also
been described in the literature [18].

3.2 Merons

Half-skyrmions whose field covers only a hemisphere (i.e. topological charge 1/2)
are known as merons. They have been observed (and modeled) in liquid crystals
[19] and magnetic multi-layers [20]. If we add a magnetic anisotropy energy term



6 Avadh Saxena, Panayotis G. Kevrekidis, and Jesús Cuevas-Maraver

Fig. 3 Comparison of skyrmion and meron latices in chiral magnets. A triangular skyrmion lattice
arises from a spiral phase (top row) but a triangular meron lattice is at best metastable (bottom left).
In contrast, a square meron lattice is stable (bottom right) but a square skyrmion lattice is at best
metastable. On the other hand, in nematic liquid crystals a triangular meron lattice is stable but a
triangular skyrmion lattice is unstable (not shown). Reproduced from [19]

An2
z to the skyrmion Hamiltonian in Eq. (2), in the large anisotropy limit a skyrmion

breaks into merons [21]. When A > 0 it is called the easy-plane anisotropy which is
what we will consider here. The case of A < 0 is called the easy-axis anisotropy. As
A is increased the skyrmion size increases, particularly due to the expansion of the
equatorial region of the skyrmion. At a certain large value of A, skyrmions become
unstable and merons emerge.

In chiral magnets a stable triangular lattice of skyrmions emerges from the spiral
(or helical) phase as depicted in Fig. 3. In the spiral phase all spins are parallel and
point in the same direction at one end. After a helical twist of 2π they come back
to the original parallel state, see Fig. 3(a). The square skyrmion lattice is at best
metastable; however, a square meron lattice is allowed. On the contrary, in nematic
liquid crystals the triangular skyrmion lattice is at best metastable but a triangular
meron lattice is stable [19].

Merons have been experimentally observed at room temperature in a chiral-lattice
magnet Co8Zn9Mn3, a material exhibiting in-plane magnetic anisotropy [22]. In this
material a meron-antimeron square lattice emerges from the helical state of spins
and then transforms into a triangular lattice of skyrmions when a magnetic field is
applied, see Fig. 4. Interestingly, in analogy with the baryon model in high energy
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X.Z. Yu et al., Nature 564, 95 (2018)Fig. 4 (a) - (d) Various experimentally observed meron and anti-meron spin structures in the chiral
magnet Co8Zn9Mn3 at room temperature. (e) Theoretically predicted and (f) LTEM observed
meron/anti-meron square lattice. Reproduced from [22]

physics, skyrmion bags have been observed both in chiral magnets and nematic liquid
crystals [23]. These bags are multi-skyrmion configurations where a large skyrmion
contains a variable number of antiskyrmions inside it, as depicted in Fig. 5. Merons
can be compared and contrasted with magnetic vortices; there is a difference in their
spin configurations.

3.3 Hopfions and Torons

Three dimensional topological solitons (appearing in 3+1 dimensional scalar field
theories) that can be characterized by the integer-valued Hopf invariant are known as
hopfions [10]. Ludwig Faddeev proposed their existence in the 1970s. They represent
one of the best known examples of knot solitons in field theory. In 1931 Heinz Hopf
considered a link of two loops, thus paving the way for the linking number of circles
as a topological invariant, i.e. the Hopf number.

The topological charge or linking number of a hopfion is the homotopy group
of the Hopf map π3(S2) = Z, where Z is the group of relative integers. The Hopf
fibration is a topologically stable texture of a smooth, global configuration of a field.
In effect, it is an interwoven structure of preimages. A preimage is defined as the
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Fig. 5 Skyrmion bags in chiral magnets (MnSi) and nematic liquid crystals. Top panels corresponds
to experimental (optical micrographs) observations in MnSi whereas middle panels are simulations
of the above states. Second and fourth panels in the bottom panel are the result of simulations for the
state of the optical micrograph at their left. This figure has been adapted from the preprint version
of [23] (arXiv:1806.02576v1). Only some of its panels were finally published in [23]. ©2019 by
the Nature Publishing Group

set of all points where a field orientation takes a specific value. The Hopf fibration
has been observed in liquid crystals [24] and so are hopfions [25], see Fig. 6 and
Fig. 7. Similarly, there are light controlled torons in liquid crystals [26, 27]. The
toron is essentially a tube of double twist which is wrapped upon itself such that its
boundary forms a torus. It contains two point defects, which can be manipulated to
create a defect free structure topologically equivalent to a Hopf fibration. Finally,
hopfions have also been considered in chiral magnets [28] and torus knots have been
described as hopfions [29].

3.4 Monopoles

As such, free magnetic monopoles do not exist in nature but recent advances in
condensed matter and atomic physics have demonstrated the existence of effective
magnetic monopoles in artificial spin ice [30, 31], chiral magnets [32] and BECs
[33, 34]. The latter are created in 87Rb atom condensates in a synthetic magnetic
field. Note that a monopole-antimonopole pair is necessarily connected by a Dirac
string. When two skyrmion tubes touch at a point it creates an effective magnetic
monopole because the emergent magnetic field [see Eq. (5)] at that point is radially
outward [32], see Fig. 8. Similarly, a moving heldgehog at the end of a skyrmion
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Fig. 6 Experimentally deduced hopfion texture in a liquid crystal (left panel) and a schematic
of the hopfion as a knotted soliton (right panel). The hopfion is obtained by linking the circle-
like preimages residing on nested tori in the material’s 3D space. The preimages correspond to
color-coded points on S2. Reproduced from [25]. ©2017 by the Nature Publishing Group

Fig. 7 Left panel: The texture of a toron (reproduced from [26]). ©2010 by the Nature Publishing
Group). Second panel: Flow lines of the Hopf fibration. Third panel: The preimage surface of the
Hopf fibration. Right panel: The experimental preimage of a Hopf fibration. Reproduced from [24].
©2010 by the American Physical Society

line (in a ferromagnetic nanowire) constitutes an emergent magnetic monopole [35],
see Fig. 9. An experimentally observed and simulated monopole in a Bose-Einstein
condensate is depicted in Fig. 10.

4 Vortices and Vortex Loops

In many physical systems such as fluids, superconductors and magnets (and those
modeled by the 3D Heisenberg model) vortices, vortex lines and vortex loops (rings)
[37] are observed. Creation and dynamics of trefoil-like (and other) knotted vortices
have been studied in water using specially shaped hydrofoils [38]. Since magnetic,
superconducting and other vortices as well as their dynamics have been studied



10 Avadh Saxena, Panayotis G. Kevrekidis, and Jesús Cuevas-Maraver

Fig. 8 Emergence of mag-
netic monopoles and anti-
monopoles (colored circles).
They result either (a) from
pinching off of a skyrmion
string or (b) a partial merging
of two neighboring skyrmion
strings. Reproduced from [36].
Creative Commons Attribu-
tion License (CC BY) https:
//creativecommons.org/
licenses/by/4.0/

extensively, this is a fully developed area of research and thus we will not dwell on
this general theme, but rather limit ourselves to a number of recent developments.

Vortices are persistent circulating flow patterns that occur in diverse scientific
contexts [39], ranging fromhydrodynamics, superfluids, and nonlinear optics [40, 41]
to specific instantiations in sunspots [42], dust devils [43], and plant propulsion [44].
The study of the associated 2D effective particle dynamics that results from the
logarithmic interaction potential is a theme of broad interest in physics. Not only
it is relevant for the prototypical fluid/superfluid applications (see e.g. the review
of Aref et al. [45] and the book of Newton [46]), but also for a variety of other
settings. As such, we mention electron columns in Malmberg-Penning traps [47] and
magnetized, millimeter sized disks rotating at a liquid-air interface [48, 49], among
others.

The realm of atomic BECs [50, 51, 52] has produced a novel and pristine setting
where numerous features of the exciting nonlinear dynamics of single- and multi-
charge vortices, as well as of vortex lattices, can be not only theoretically studied,
but also experimentally observed. Although BEC is known to be a fundamental
phenomenon connected, e.g. to superfluidity and superconductivity [53], BECs were
only experimentally realized 70 years later: this major achievement took place in
1995 [54, 55, 56] and has already been recognized through the 2001 Nobel prize
in Physics [57, 58]. The role of vortices and the remarkable manifestation of highly
ordered, triangular vortex lattices were, in turn, cited in the 2003 Nobel Prize in
Physics [59]. Importantly, vortex dipoles (pairs of oppositely charged vortices) that
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Fig. 9 Left panel: Spin texture at the end of a Skyrmion line. Middle panel: The magnetization
configuration is topologically equivalent to a hedgehog with radially outward magnetization, i.e. a
magnetic monopole. Right panel: Two separating hedgehogs (or monopoles) with opposite topo-
logical charge with an emergent solenoidal electric field (purple arrows). Reproduced from [35].
©2018 by the American Physical Society

Fig. 10 Experimental observation and theoretical prediction of a monopole in BEC. Reproduced
from [34]. Creative Commons Attribution License (CC BY) https://creativecommons.org/
licenses/by/4.0/

will be relevant in what follows have played a quintessential role in the Kosterlitz-
Thouless (KT) transition [60] from a gas of dipoles to configurations of unbound
vortices, earning its discoverers the 2016 Nobel Prize in Physics! This transition
has, moreover, found one of its most canonical realizations in the context of atomic
BECs [61].
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In addition to being at the epicenter of some of the most important physical
notions of the past few decades, the coherent structures considered herein have
been recognized as having both practical, as well as more exotic applications. For
instance, solitary waves have been argued to provide the potential for 100-fold
improved sensitivity for interferometers to phase shifts [62], while their lifetime of
a few seconds enables precise force sensing applications [63]. Moreover, vortices
present their own potential for applications. An intriguing example is the so-called
“analogue gravity”,whereby theymayplay a role similar to spinning black holes. This
allows to observe in terrestrial, experimentally controllable environments associated
phenomena such as the celebrated Hawking radiation or simpler ones such as super-
radiant amplification of sonic waves scattered from black holes [64]. It has also been
recently argued that vortices of a rotating BEC can collapse towards the generation of
supermassive black holes [65] and that supersonically expanding BECs can emulate
properties of an expanding universe in the lab [66].

The first experimental observation of BEC vortices [67] paved the way for a sys-
tematic investigation of the dynamical properties of such entities. Stirring the BECs
[68, 69] above a certain critical angular speed [70, 71, 72] led to the production of few
vortices [72] and vortex lattices [73, 74]. Other vortex-generation techniques were
also used in experiments, including the breakup of the BEC superfluidity by dragging
obstacles through the condensate [75], as well as nonlinear interference between con-
densate fragments [76]. In addition, apart from unit-charged vortices, higher-charged
vortex structures were produced [77, 78] and their dynamical (in)stability was ex-
amined.

The majority of these early experiments focused on creating individual vortices
and large vortex arrays. However, in 2008, the work of [79] enabled the use of the
so-called Kibble-Zurek (KZ) mechanism to quench a gas of atoms rapidly across
the BEC transition. The result of this is that phase gradients do not have sufficient
time to “heal” but rather freeze, resulting in the formation of vortices. Then, in
2010 another technique was devised that enabled for the first time the dynamical
visualization of vortices [80] during an experiment. This, in turn, spearheaded the
work of [81, 82] where particle models were developed that predicted the dipole
dynamics (equilibria, near-equilibrium epicyclic precessions and far from equilib-
rium quasi-periodic motions) observed in these experiments. A nearly concurrent
development concerned the production in the lab of such vortex dipoles (one or mul-
tiple such), by the superfluid analogue of dragging a cylinder through a fluid [83].
More recently, the KZ mechanism together with rotation (i.e. injection of angular
momentum) have been used to “dial in” and observe the dynamics of vortex clusters
of, controllably, any number of vortices between 1 and 11. This is because rotation
favors the formation of vortices of the same charge and in this way, depending on
the angular momentum provided, different charge configurations (vortex clusters)
arise. The resulting configurations may suffer symmetry breaking events [84]. As
a result, instead of the commonly expected anti-diametric pair, equilateral triangle,
or square configurations that one may expect, it is possible to observe symmetry
broken configurations featuring asymmetric pairs, isosceles triangles, and rhombi
or general/asymmetric quadrilaterals [85]. To further add to these developments,
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Fig. 11 Sampler of small vortex clusters in recent BEC experiments. Top row: vortex dipole
dynamics; reproduced from [83] (©2010 by the Americal Physical Society). Bottom row: dynamics
for three (top row) and four (bottom row) same-charge vortices reported in [84]

3-vortex configurations of (same but also of) alternating charge in the form of a
tripole (i.e. a positive-negative-positive or its opposite) have been experimentally
produced [86, 87]. This turns out to be one of the simplest setups where chaotic
dynamics can ensue [88, 89]. A sampler of experimental images from these different
experimental efforts is depicted in Fig. 11.

It is evident from the above recent developments that there is a tremendous
momentum toward the study of vortex dynamics in atomic physics. Moreover, this
theme presents nontrivial twists in comparison to the classical fluid or superfluid
playground [45, 46]. To mention a canonical difference between the two, atomic
BECs are typically confined by parabolic traps [50, 51, 52, 90] constraining the
density and hence the region within which the vortices evolve. This trapping induces
vortices to rotate around the center of the trap [90, 91, 92]. The frequency of this
precessional motion can be well approximated by a constant close to the center of
the trap, yet as the edges of the BEC are approached and the density decreases,
the relevant frequency increases drastically [84, 85, 93]. These modifications of the
“standard” picture of the vortices interacting through a logarithmic potential are
critically responsible for some of the phenomena observed recently. For instance,
the competition between the rotation and the interaction in the case of the vortex
dipole [81, 82] is responsible for the existence of stationary states or epicyclic/quasi-
periodic trajectories; the deviation from a constant precession frequency is, in turn,
responsible [85, 93] for the symmetry-breaking bifurcations enabling asymmetric
vortex configurations [84].

5 Skyrmions in Liquid Crystals

One can describe a liquid crystal by a tensor order parameterQ(r), which is related to
the director field n(r) and the scalar order parameter S(r) byQαβ = S( 32 nαnβ− 1

2δαβ).
According to the Landau-de Gennes theory, one can express the free energy density
in terms of Q as [19]
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F =
1
2

aTrQ2 +
1
3

bTrQ3 +
1
4

c
(
TrQ2

)2
(6)

+
1
2

L(∂γQαβ)(∂γQαβ) − 2Lq0εαβγQαδ∂γQβδ .

The first line represents the free energy of a uniform system, when we expand it in
powers of the tensor order parameter. This part favors those eigenvalues of Q, which
are associated with a specific magnitude of uniaxial nematic order. One assumes
the coefficient a varies linearly with temperature, whereas b and c are constant with
regard to temperature. The last two terms are the elastic free energy corresponding
to variations in Q as a function of position. The first of these terms is the (equal)
energy cost of splay, twist, and bend deformations, where L is an elastic coefficient.
The last term allows a chiral twist of the nematic order, where q0 is a characteristic
inverse length that arises from the molecular chirality. Other possible elastic terms
giving different energy costs for splay, twist, and bend, e.g. 1

2 L2(∂αQαγ)(∂βQβγ),
are neglected here for simplicity.

The chiral twist term q0 is analogous to the Dzyaloshinskii-Moriya interaction in
the magnetic case [see Eq. (2)]. Comparative analysis and simulations based on (2)
for the magnetic case and (6) for the liquid crystals [19] provide the results depicted
in Fig. 3. For chiral magnets the triangular (or hexagonal) skyrmion lattice is stable
and it arises from the spiral (or helical) phase. However, a triangular meron lattice
is not stable but a square meron lattice is allowed. In contrast, based on energetic
grounds, in liquid crystals the skyrmion lattice is disfavored but a triangular lattice
of merons is allowed. This difference arises from the nature of the order parameter:
vector for chiral magnets versus tensor for nematic liquid crystals.

In addition to skyrmions and merons, stable skyrmion bags have been observed
in liquid crystals [23]. An observed and simulated example is illustrated in Fig. 5.
Corresponding skyrmions bags in chiral magnets are also possible as shown in Fig.
5 as a result of micromagnetic simulations. Interestingly, these bags are similar to
the models of atomic nuclei containing different number of baryons, as originally
surmised by T.H.R. Skyrme.

6 Bose-Einstein condensates: From Vortex Lines to Rings, From
Hopfions to Skyrmions and Knots

We already discussed in Sec. 4 the relevance of Bose-Einstein condensates as a
prototypical playground where two-dimensional topological excitations in the form
of vortices naturally arise. We now turn to a 3D extension of such structures, starting
with the natural generalization of the vortex, namely the vortex line (VL). A VL,
also referred to as a solitonic vortex, is the 3D extension of a 2D vortex by (infinitely
and homogeneously) extending the solution into the axis perpendicular to the vortex
plane. VLs might be rendered finite in length if their background is made bounded
by an external potential. In that case, VLs are called vorticity “tubes” that are straight
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or bent in U and S shapes depending on the aspect ratio of the background [94, 95].
If a VL is bent enough to close on to itself or if two VLs are close enough to each
other then they can produce a vortex ring [96]. Vortex rings (VRs) are 3D structures
whose core is a closed loop with vorticity around it [97] (i.e. a vortex that is looped
back into itself). VRs can also be produced by an impurity traveling faster than the
speed of sound of the background [98], by nonlinear interference between colliding
blobs of atomic matter [99, 100], by phase and density engineering techniques
[101, 102, 103], or even by introducing “bubbles” of one component in the other
component in two-component nonlinear Schrödinger (NLS) systems [104].

It should be noted that VRs inherently possess a velocity perpendicular to the ring
plane due to Helmholtz’s law [105] (unless they are stopped by the presence of an
external trap [106, 107]). Also, another special feature of VLs and VRs is that they
support intrinsic dynamics along the vortex line/ring. For example, it is possible to
transversally excite the vorticity line to produce oscillations called Kelvin modes (or
Kelvons) [108, 109, 110, 111]. Kelvin modes not only have their own dynamics and
interactions across vortex lines [112], but they can also self interact within a single
VR and slowdown or even reverse the velocity of theVR [113, 114].We note here that
Kelvin modes have also been studied in the context of skyrmion tubes [115]. Another
possibility for exciting the vorticity line of the VR is by creating varicose or capillary
waves (periodic compressions of the vortex tube along its length) [109, 116]. Lastly,
VRs interact in intriguing ways involving, e.g. leapfrogging motions when they are
co-axial (see Fig. 12), but also more complex interactions when they are not [117].
Recently, an effective particle description has been utilized not only in order to
understand the stability and dynamics of a single VR [118, 119], but also that of
multiple or interacting VRs [120].

It is important to highlight here that the relevance of VLs and VRs goes beyond
atomic BECs. They emerge ubiquitously in fluid mechanics [117] and in Helium and
other related superfluid systems [97]. Rather, what is the case here is that atomic
condensates present a pristine, well-controlled setting for the creation and exploration
of these structures.

In addition to VRs and VLs, it was also realized that BECs offer also the potential
for the formation of more complex topological structures. This is to a considerable
extent due to the potential of creating atomic condensates either of different species
(e.g. 87Rb and 23Na, i.e. hetero-nuclear mixtures) or of the same species (e.g. confin-
ing and condensing two different hyperfine states of the same gas, such as spin-1 and
spin-2 states of 87Rb) [90]. Among the early suggestions along this vein, is the multi-
component Skyrmion state creation in BECs. The topological properties of such a
state enable its structural realization in a multi-component BEC. Here, as originally
proposed in [122, 123], the Skyrmion consists of a VR in one of the components,
“trapping” a VL in a second component. Interestingly, more complex Skyrmion
states involving three-component (so-called spinor) BECs have been recently real-
ized experimentally in both 2D [124] and 3D [125], involving, respectively, coupled
states of topological charge S = −1, 0, 1 and S = 0, 1, 2; see also the recent theoretical
work of [126].
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Fig. 12 The top panel shows
the snapshots of the evolution
of two vortex rings leapfrog-
ging through each other.
The bottom panel illustrates
this type of motion in the
radial-polar (r, z) plane on a
co-moving reference frame.
The solid lines correspond to
the orbits predicted by ordi-
nary differential equations for
the radius and vertical position
of the rings as a function of
time. The dashed lines are the
corresponding numerics of
the full 3-dimensional NLS
equation. Bottom panel is
adapted from [121]. ©2016
by the American Institute of
Physics

Of increased interest recently has been not only this structure, but also its one-
component counterpart, which in the relevant recent BEC literature is referred to as
a hopfion state [127, 128, 129]. The latter consists of a VR and a VL in the same
component with the axis of the VR constituting the line of vorticity of the VL. A
stable hopfion state was found to exist both in the setup of [127] which, however,
involved the rather elaborate realization of radially increasing nonlinear interactions
and the purely dynamical exploration of [128] for condensates that are being rotated
(and was suggested to be stable only for some intermediate rotation rate).

Lastly, the study of quantum (vortex) knots is one that has only a relatively short
history in the context of atomic BECs. To the best of our knowledge, the possibility
of such complex topological structures was introduced in the work of [130] (see
also [131]), illustrating how different torus knots TK,q , with co-prime K and q,
can be generated in the wavefunction of an atomic species. Subsequently the work
of [132] seemed to put a full stop on the subject through the extensive simulation of
1458 vortex knots from the so-called “knot atlas” [133], and finding that the trapless
Gross-Pitaevskii equation (GPE) could not support stable knots: all of the simulated
knots would eventually untie into simpler patterns. Nevertheless, the recent work
of [134, 135], both at the level of the Biot-Savart dynamical law (for the vortex
knot motion), as well as at that of the full 3D GPE has, perhaps counter-intuitively,
indicated that the trefoil knot can be a very long lived structure in the context of a
trapped atomic BEC [136].
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7 Topology and curved manifolds: Bogomolnyi decomposition

Wenowprovide an example of how the types of configurations considered hereinmay
be used to minimize the energy of a system of classical spins. The continuum limit
of (classical) Heisenberg spins on a two-dimensional (planar or) curved manifold
corresponds to the nonlinear σ model. That is, the corresponding Hamiltonian H is
given by (1). If we impose homogeneous boundary conditions on the vector field n in
the plane R2, i.e. limr→∞ n→ n0, then we can compactify the plane into the surface
of a sphere S2. This allows us to classify different configurations according to the
homotopy class π2(S2) = Z, where Z is the group of relative integers [137, 138].

Topology does not directly help us to state anything about the energy of the field
configuration but indirectly, by invoking the so-called Bogomolnyi inequalities [8],
it enables us to establish energy bounds for configurations belonging to equivalent
homotopy classes labeled by n ∈ Z. The inequality in the present case can be
expressed as

(∂in − εi j∂jn)2 ≥ 0 , (7)

whereby it follows that

H ≥
∫

n · (∂xn × ∂yn)dxdy . (8)

Thus, the minimum energy in each homotopy class is attained when

∂in = ±εi j∂jn , (9)

i.e. when these self-dual equations are satisfied by the field configurations.
If we consider this model on a plane (R2), there is no characteristic length. As a

result the nonlinear σ model Hamiltonian can be scaled and thus all the nontrivial
field configurations (satisfying homogeneous boundary conditions) can be scaled as
well. This situation is drastically changed if there is a characteristic length scale, e.g.
if the underlying manifold is curved. We will introduce a length scale in two ways:
(i) first we will consider the nonlinear σ model on a rigid cylinder and then (ii)
we will also apply an axial magnetic field through the cylinder. In the first case the
radius ρ0 of the cylinder is the characteristic length whereas in the second case there
is an additional length scale introduced by the magnetic field B. There are other
ways of introducing a length scale, e.g. through magnetic anisotropy, ellipticity of
the cylinder cross section, etc. but we will not consider these different cases here.

We set the unit vector n = (sin θ cosΦ, sin θ sinΦ, cos θ) in terms of the co-
latitude θ and the azimuthal angle Φ. Next, we write the Hamiltonian [137] in terms
of cylindrical coordinates (ρ, z, φ)

H = J
∫∫

cyl

[
(∂zθ)2 + sin2 θ(∂zΦ)2 + (∂φθ)2/ρ2

0 + sin2 θ(∂φΦ)2/ρ2
0
]
ρ0dzdφ,

(10)



18 Avadh Saxena, Panayotis G. Kevrekidis, and Jesús Cuevas-Maraver

where J denotes the spin exchange interaction energy. In order to invoke topological
considerations let us impose homogeneous boundary conditions, i.e. limz→∓∞ ≡ 0[π]
and limz→∓∞ dθ/dz = 0. If we seek cylindrically symmetric solutions then Φ = φ
and ∂θ/∂φ = 0. Thus the Hamiltonian simplfies to

H = 2πρ0J
∫ ∞

−∞

[
(∂zθ)2 + sin2 θ/ρ2

0
]

dz . (11)

The variation of this Hamiltonian (δH = 0), i.e. the Euler-Lagrange equation turns
out to be the celebrated sine-Gordon equation

d2θ(z)/dz2 = (1/2ρ2
0) sin 2θ , (12)

with the well known kink solution θ(z) = arctan[exp(z/ρ0)]. It is depicted in Fig.
13(a). The energy for this configuration is H = 8πJ, which is the minimum energy
belonging to the first homotopy class.

By invoking the technique used by Belavin and Polyakov [138], or equivalently
the Bogomolnyi decomposition [8], we note that the solutions that correspond to the
minimum energy in each homotopy class satisfy the first order self-dual equations

ρ0∂xθ = ± sin θ∂φΦ , ∂φθ = ∓ρ0 sin θ∂zΦ . (13)

If we apply an external magnetic field (B) along the axis of the cylinder then the
Hamiltonian is modified as [140]

Hmag = J
∫∫

cyl
(∇n)2dS − gµ

∫∫
cyl

n · B dS , (14)

where g is the gyromagnetic ratio and µ denotes the magnetic moment. With ho-
mogeneous boundary conditions (θ = 0 as z → ±∞) the Hamiltonian simplifies
as

Hmag = 2J(2πρ0)
∫ ∞

−∞
[θ2

z + {sin2 θ/2ρ2
0 + (1/ρ

2
B)(1 − cos θ)}]dz , (15)

where ρ2
B = 2J/gµB is the magnetic length scale. Variation of this Hamiltonian

leads to
θzz = (1/2ρ2

0) sin 2θ + (1/ρ2
B) sin θ , (16)

which is the double sine-Gordon equation. The corresponding 2π-kink solution that
is consistent with the boundary conditions is given by

θ(z) = 2 arcsin
1√

cosh2(z/ξ) − (ξ2/ρ2
0) sinh2(z/ξ)

, (17)

where the kink width ξ = ρ0ρB/(ρ2 + ρ2
B)1/2 is another characteristic length in the

problem. This solution is depicted in Fig. 13(b).
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(a) (b)

Fig. 13 (a) Heisenberg spins on a cylinder as a sine-Gordon π-soliton (reproduced from [139],
©1994 by Elsevier Science B.V.) and (b) in the presence of an axial magnetic field as a double
sine-Gordon 2π soliton (reproduced from [140])

Because of the homogeneous boundary conditions at the cylinder boundaries all
the spins point in the same direction, see Fig. 13. Thus they can be compactified to
a single spin and the spin configuration in Fig. 13(a) covers the unit sphere once,
i.e. it is a skyrmion of topological charge 1. Similarly, the spin configuration in Fig.
13(b) covers the unit sphere twice, thus it is a skyrmion of topological charge 2. If
the cylinder were semi-infinite, it will be topologically equivalent to a plane with a
hole of radius ρ0. The spin configuration in this case will be a half-skyrmion (or a
meron) [141].

If the cylinder is elastic (i.e. deformable) then the geometric frustration caused
by the mismatch of the cylinder radius and kink width can be relieved by a pulse-
like deformation in the region of the magnetic kink [137, 140]. The Bogomolnyi
technique is quite general and can be used in a broader context. Another application
of the Bogomolnyi decomposition is in the calculation of elastic deformation energy
of vesicles as a function of genus [142]. The latter has significance in the context of
the Willmore conjecture [143].



20 Avadh Saxena, Panayotis G. Kevrekidis, and Jesús Cuevas-Maraver

8 Topological Materials

In conventional materials such as metals, insulators and semiconductors the non-
relativistic Schrödinger equation describes the energy dispersion of low-lying elec-
tronic excitations, ES = p2/2m∗, which is quadratic in the electron momentum p
with effective mass m∗. However, over the past decade there is a growing class of
materials, which are known as Dirac materials [144] or more generally topological
materials, exhibiting linear electronic dispersion in their band structure. Examples
include topological insulators [1, 145], topological superconductors [2], topologi-
cal crystalline insulators [146] as well as Dirac semimetals and Weyl semimetals
[3, 147].

One of the distinguishing features of these materials are Dirac points, where the
(conduction and valence) bands touch each other at an isolated set of points. The
corresponding band features are called Dirac cones. These points are topologically
protected due to specific (time reversal, spatial inversion or crystalline) symmetries in
that they are robust under perturbations. An example is graphenewhere the protection
comes from the sublattice symmetry (of the underlying honeycomb lattice) and the
energy dispersion of its electrons is linear in the momentum. Specifically, it is given
by the relativistic Dirac equation: ED = cσ · p + mc2σ. Here σ = (σx, σy) denotes
Pauli matrices and the speed of light c is replaced by the Fermi velocity vF . In d
spatial dimensions (with c = 1) the Dirac equation is written as (iγµ∂µ − m)ψ = 0
[3], where µ = 0, 1, ..., d with µ = 0 denoting time and the Dirac gamma matrices
γµ anticommute. In odd dimensions (d = 1, 3, ...) it can be simplified. In particular,
for d = 1 one gets i∂tψ = (γ0γ1p + mγ0)ψ with momentum p = −i∂x . If we further
consider massless (m = 0) particles, we get the one-dimensional Weyl equation
i∂tψ± = ±pψ±. Thus we get simple linear dispersion E± = ±p representing the right
and left moving chiral particles or Weyl fermions.

Topology seems to enhance the nonlinear response of topological materials. A
recent important experimental technique is TFISH (Terahertz Field-Induced Second
Harmonic Generation) which allows to understand the nonlinear response of topo-
logical Dirac and Weyl semimetals, e.g. TaAs [148]. In particular, second harmonic
generation (SHG) is found to be enhanced in Weyl semimetals. The latter contain
Weyl points (or nodes) in their electronic structure at which linearly dispersing, non-
degenerate bands cross. They also exhibit Fermi arc surface states that are attached to
the Weyl nodes in the bulk material (Fig. 14). In these materials there is a transition
between the topological and non-topological (or trivial) phases which proceeds via
a gapless state.

When an appropriate nonlinearity is added to the usual (linear) Dirac equation
and Weyl equation, a nonlinear Dirac (NLD) equation [149] and a nonlinear Weyl
(NLW) equation [150] results, respectively. Their properties and attendant nonlinear
(topological) excitations such as solitons and vortices [151] are quite different as
compared to the nonlinear Schrödinger (NLS) equation. Currently, a significant
amount of analytical and numerical effort is being devoted to understanding the
stability and collision dynamics of solitons in NLD and NLW equations [152].
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Fig. 14 The double Dirac
cone structure of a Weyl
semimetal with two Weyl
nodes connected by a Fermi
arc. Here EF denotes the
Fermi energy. These materials
exhibit characteristic surface
states which can be observed
experimentally. Reproduced
from [156]. ©2011 by the
American Physical Society.

In closing this section we note that in addition to chiral magnets, liquid crystals
and BECs, there are many other materials including topological materials in which
a variety of topological defects can form under right conditions. In particular, fer-
roelectrics [13], multiferroic materials, e.g. Cu2OSeO3 [153] and magnetic shape
memory alloys such as Ni2MnGa [154] can also support skyrmion-like topological
excitations. There has been a recent observation of skyrmions in the heterostructures
of a ferromagnet (Cr2Te3) and a topological insulator (Bi2Te3) [155]. It would be
highly desirable to observe hopfions in such materials as well.

Although we have not discussed dislocations separately here, they play an impor-
tant role in determining the properties of topological materials [157].

9 Nonreciprocal Topological Photonics

Many of the modern photonic devices such as optical isolators and optical circula-
tors are based on the principle of Lorentz reciprocity. It entails that in a (i) linear,
(ii) time-independent material or medium with (iii) symmetric property (or con-
stitutive optical) tensors, the received and transmitted fields are identical for both
forward and time-reversed propagation directions [158]. However, in some cases
reciprocity is deleterious, as, e.g. in self-echo in antennas. In addition, for many
desired and emerging optical functionalities (e.g. optical circulators) it is impor-
tant to break Lorentz reciprocity by relaxing any of the three conditions. Clearly,
one way to obtain nonreciprocity is by way of introducing optical nonlinearity. The
latter in conjunction with non-Hermitian photonics and topological photonics can
significantly enhance nonreciprocity [7]. Examples of optical nonlinearities include
the Kerr effect, two-photon absorption and the thermo-optic effect. An example of
nonreciprocal topological photonic setup employing a nonlinear coupled resonator
array is depicted in Fig. 15.
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Fig. 15 Nonlinear coupled
ring lattice or resonator ar-
ray for transmittance studies
related to nonreciprocal topo-
logical photonics. (a) Trans-
mittance T through a linear
lattice as a function of phase
shift ξ . (b) Transmittance as
a function of input power I
through the nonlinear lattice.
(c) Field intensity distribu-
tion (normalized) above the
discontinuity (I > 3). (d) Av-
erage phase shift as a function
of I . Reproduced from [159].
Creative Commons Attribu-
tion License (CC BY) https:
//creativecommons.org/
licenses/by/3.0/

One can create topologically nontrivial photonic band structures in analogy with
the electronic band structure of topological materials discussed above. In particular,
one can create topological edge states that are robust against perturbations or defects.
One way to create such states is by forming an interface between a topologically
nontrivial and a trivial optical material. Just like in electronic topological materials,
photonic nontrivial topological bands cannot be deformed to trivial bands in an
adiabaticway.A photonic realization of a two-dimensional electronicChern insulator
uses a lattice of magnetized ferrite rods at microwave scale [160] in which the
lattice edge state acts as an isolating waveguide. This structure leads to almost
perfect forward transmission and exponentially suppressed backward transmission
for frequencies in the photonic bandgap.

There are two ways of realizing nonlinear topological photonic structures. One
can consider nonlinear propagation dynamics in an otherwise linear topological
photonic system. Here the nonlinearity locally alters the system properties. An
example is that of waveguide arrays with evanescent coupling between neighboring
waveguides. Another way is to use a probe beam to induce a phase transition in
the dynamics of a linearized probe beam. Coupled optical resonator lattices provide
a realization of this type where one gets quite strong nonlinear effects due to the
resonant light confinement as compared to waveguide lattices. Finally, we note that
a one dimensional nontrivial topological lattice can be modeled by the photonic
Su-Schrieffer-Heeger (SSH) model [161, 162].
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10 Topological modes in Acoustics and Beyond

Admittedly, the study of topological insulators has drawn considerable interest in a
variety of fields, among other reasons because of the ability of such media to feature
transport that is immune to the presence of defects [1, 145]. One of the most recent
venues for such studies has been in the area of mechanical and acoustic systems,
where the topological properties can inspire the design of unconventionalmechanical
structures with unique elastic and vibrational properties [163, 164, 165, 166, 167].
This, in turn, can lead to significant new paradigms in the realm of energy harvesting,
as well as in that of vibration isolation [168].

One of the canonical examples that is possible to realize in this mechanical setting
is a direct analogue of a dimer in the form of an SSH model as has been suggested
e.g. in [169]. This enables through its corresponding phononic band-gap structure
the emergence of a zero-frequency topological mode. Finite (non-zero) frequency
topological modes can also be achieved [170]. There have been numerous recent
efforts in this direction of harnessing topological properties of suitable mechanical
media to improve the propagation or storage of energy. These include, among others,
the examination of edge solitons [171] and their ability for nonlinear conduction
in topological mechanical insulators [172, 173], the study of nonlinear edge states
that arise in phononic lattices [174], as well as the examination of topological band
transitions in tunable phononic systems, under the variation of suitable (e.g. stiffness)
parameters [175, 176].

Lastly, we touch upon the theme of topology optimization which is an impor-
tant method used for many industrial and technological applications. For structural
robustness and additive manufacturing, nonlinear topology optimization [177] and
topology optimization for geometrically nonlinear structures [178] have been re-
cently studied. In the former case a nonlinear elastic model of the materials is
considered along with plasticity aspects in conjunction with invoking the von Mises
(yield) criterion. In the latter case it is assumed that the structures under consideration
experience large displacement but small strain. In particular, high-resolution topol-
ogy optimized solutions are obtained for structures that are geometrically nonlinear.
Invariably, the results are quite important for many engineering applications.

11 Conclusions and Future Work

In this chapter, we have delineated the importance of topology in a variety of physical
systems and discussed the ubiquity of topological defects such as skyrmions, merons,
vortices, hopfions and monopoles in a number of distinct nonlinear systems, e.g.
chiral magnets, liquid crystals, BEC, etc. We have also elucidated the pervasive role
of topology in nonlinear condensedmatter and photonic, aswell as phononic systems.
Althoughwe did not discuss it here, topology in softmatter is also quite important e.g.
in topological colloids [179]. In addition, we illustrated the interplay of nonlinearity,
topology and geometry by considering the nonlinear σ model on simple curved
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manifolds. The resulting spin configurations are sine-Gordon or double sine-Gordon
solitons.

Despite the above significant progress over the last few years, there are several
important open problems related to the interplay of nonlinearity and topology. Non-
linearity with “fragile topology” in a quantum system is a topic for future research.
Fragile topology (as opposed to strong topology) refers to a set of quantum phe-
nomena that endow materials or systems with unusual properties [180, 181, 182].
Examples include the misaligned layers of graphene [183] and “knotty” electronic
quantum states in some topological materials. In the latter case electrons are re-
stricted to move along certain directions. Understanding these states properly may
require considerations other than K-theory [184], as discussed in e.g. [180].

Akin to the study of soliton collisions and vortex interactions, it would be desirable
to study interaction between and collision of different hopfions. This certainly is a
challenging numerical problem.

A study of one-dimensional NLD and NLW equations on (planar and space)
curves and higher (two and three) dimensional such equations on curved manifolds
will provide important insights into the interplay of topology, geometry and nonlin-
earity. In particular, the shape and dynamics of soliton and vortex solutions will be
modified by the curved geometry.

There are three fundamental (relativistic) fermions in nature: Dirac, Weyl (with
zeromass) andMajorana (which are their own antiparticles and thus neutral). Similar
to NLD and NLW equations there could exist a nonlinear Majorana equation; it
would be intriguing to explore its soliton solutions and their dynamics. Majorana
fermions also have potential applications in the growing field of (braiding-based)
topological quantum computing [185], especially with fault tolerance. We note here
that the nonlinear dynamics of Majorana modes has been studied using topological
Josephson junctions [186]. Similarly, it was proposed that Majorana-like modes of
light can also be realized in a one-dimensional array of nonlinear cavities [187].

During the last few years there have been studies of a class of nonlinear models
that harbor kink solitonswith non-exponential tails. Collision of such kinkswith non-
exponential tails, e.g. power-law [188] or super-exponential, in 1+1 dimensional field
theories is an important open question.

Recently the field of quantum time crystals [189] has emerged with many insights
including topological considerations [190]. The role of nonlinearity in quantum time
crystals with topological aspects remains an open field.
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