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The properties of a dilute granular gas in the homogeneous cooling state are mapped to those of a stationary
state by means of a change in the time scale that does not involve any internal property of the system. The new
representation is closely related with a general property of the granular temperature in the long time limit. The
physical and practical implications of the mapping are discussed. In particular, simulation results obtained by
the direct simulation Monte Carlo method applied to the scaled dynamics are reported. This includes ensemble
averages and also the velocity autocorrelation function, as well as the self-diffusion coefficient obtained from
the latter by means of the Green-Kubo representation. In all cases, the obtained results are compared with
theoretical predictions.
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I. INTRODUCTION

A granular fluid is a collection of macroscopic particles
interacting via short range hard inelastic collisions. Particles
move in a ballistic way between collisions and total momen-
tum is conserved[1]. The prototypical idealized model for
granular fluids is a system of inelastic smooth hard spheres
or disks, with the inelasticity of collisions being described by
means of a constant(independent of the relative velocity)
coefficient of normal restitution. Then, in the last years the
traditional methods of kinetic theory and nonequilibrium sta-
tistical mechanics have been extended to the case of inelastic
collisions. Quite remarkably, it has been realized that the
single feature of incorporating energy dissipation in colli-
sions is able to provide a theoretical scheme where many of
the peculiar features exhibited by real granular fluids can be
tackled. This includes phenomena such as the development
of strong density and temperature inhomogeneities that are
not induced by the boundary conditions[2,3], spontaneous
symmetry breaking in partitioned[4,5] and nonpartitioned
systems[6], segregation in systems composed of different
kind of particles[7], and pattern formation[8], to cite a few
examples. In most of these cases, the usefulness of a collec-
tive description of the system in terms of hydrodynamiclike
equations has been verified. Such a description can only be
fully understood and justified by starting from a more funda-
mental particle level, as considered in kinetic theory.

Due to energy dissipation in collisions, granular systems
do not present a stationary, homogeneous and isotropic state
similar to the equilibrium one of ordinary fluids. The sim-
plest possible state corresponds to a freely evolving homog-
enous and isotropic system whose energy decays monotoni-
cally in time, the so-called homogeneous cooling state
(HCS). This state plays a relevant role in order to investigate
the transport properties of a granular fluid, since it provides
the zeroth order in the gradients approximation when apply-
ing the Chapman-Enskog procedure to derive hydrodynam-
ics from a given kinetic equation[9,10]. Also, linear re-
sponse around this state has been studied and formal
expressions for the Navier-Stokes transport coefficients have
been derived[11,12]. They are the generalization to inelastic
systems of the well-known Green-Kubo formulas. Besides

their theoretical interest, they allow for a direct determina-
tion of the transport coefficients from the dynamics of the
system in the HCS, without introducing any additional ap-
proximation, by using numerical simulation methods.

Molecular dynamics(MD) simulation provides a method
to investigate a system of particles at the most fundamental
level of description. Nevertheless, when applied to a granular
fluid in the HCS, several limitations show up. First, since the
system is continuously cooling, the typical velocity of the
particles becomes very small rather soon and numerical in-
accuracies become very large. In principle, this could be
solved by introducing some kind of external thermostat, but
then the relationship between the original HCS and the state
being actually simulated is not clear. Another possibility is to
take advantage of the fact that there is no intrinsic time scale
in a system of hard particles, and to rescale the velocity of all
particles after every collision, so that the energy is forced to
remain constant[13]. Although it seems that this method
must lead to correct results for time-independent properties
of the HCS, e.g., structural properties or the own scaled ve-
locity distribution, in the infinite system limit, it is not evi-
dent how to extract from the simulation data properties of the
actual dynamics of the system involving time fluctuations or
two-time correlations.

Very recently, a procedure has been introduced according
to which the dynamics of the system in the HCS is exactly
mapped onto the dynamics around a steady state by means of
a change in the time scale being used[14]. The change is
independent of the state of the system. This is possible be-
cause the temperature of the HCS becomes independent of
its initial value in the long time limit. This is a very strong
and fundamental property of that state that has not received
too much attention up to now. Then, the existence of the
steady state in the scaled time representation is tied to the
own physical properties of the mechanism of energy dissipa-
tion.

The second limitation of the MD simulation of a granular
fluid in the HCS is associated with the fact that this state is
unstable with respect to spatial long wavelength perturba-
tions[2,15]. This instability has been identified in the context
of hydrodynamics, and an expression for the critical size of
the system, beyond which it becomes unstable, has been ob-
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tained. The critical size is a function of the density and the
coefficient of restitution, decreasing with the former and in-
creasing with the latter. In practice, this implies that for high
densities and/or small values of the coefficient of restitution,
only very small systems can be simulated in the HCS, and
undesired finite size effects might influence the results.

The aim of this paper is to investigate in detail the physi-
cal and practical implications of the steady-state representa-
tion of the HCS mentioned above for a low density granular
gas. Attention will be paid not only to the one-time proper-
ties of the system, but also to two-time correlation functions.
While the former can be discussed on the basis of the inelas-
tic Boltzmann equation, the analysis of the correlation func-
tions requires to introduce an equation for the two-particle
and two-time distribution function. This is done by a direct
extension of the methods used in the elastic case for out of
equilibrium systems[16]. It is shown that both kind of prop-
erties can be expressed in terms of averages over the station-
ary state of the system. Special emphasis will be put on the
relationship between the theoretical description of the system
in terms of reduced distribution functions in the low density
limit and the underlyingN-particle dynamics. This is impor-
tant in order to implement the calculation of a given property
by means of the direct simulation Monte Carlo(DSMC)
method [17]. It must be kept in mind that this method is
designed not just as a numerical tool to solve the Boltzmann
equation, but as a realN-particle dynamics simulation of a
low density gas. In this sense, it is expected to provide not
only the one-particle distribution function of the system, but
also its complete dynamical description.

One of the main practical advantages of the DSMC
method is that it allows one to incorporate at the level of the
particle dynamics the spatial symmetry properties of the par-
ticular physical situation of interest. For instance, it is easy to
restrict the dynamics of the system so that it remains homo-
geneous, with no possibility of developing spatial inhomoge-
neities. In this way, the second limitation of MD simulations
of the HCS can be overcome for a low density gas with no
restriction on the size of the system or the number of par-
ticles being used. The combination of this feature of the
DSMC method and the steady representation of the HCS
offers an almost unique way to investigate the properties of a
dilute granular gas.

The plan of the paper is as follows. In Sec. II, the Boltz-
mann equation and some of the results for the one-particle
distribution function of the HCS are shortly reviewed. The
peculiar long time behavior of the temperature is indicated,
and in Sec. III it is used to construct a representation of the
dynamics of the system in which the distribution function of
the HCS becomes time independent. It is shown that the
asymptotic steady temperature is determined by an intrinsic
property of the system, namely, the cooling rate. Then, dy-
namical simulations of a system of inelastic hard disks with
the DSMC method are presented, and the numerical results
for the cooling rate obtained from the values of the steady
temperature are compared with the existing theoretical pre-
dictions. Results for the fourth moment of the velocity dis-
tribution function are also reported. They are consistent with
those obtained previously by using the original dynamics, in
which the HCS is time dependent.

Time correlation functions of dynamical variables in the
HCS are addressed in Sec. IV, where their low density limit
is analyzed and the relationship between their values in the
original and scaled dynamics is established. The particular
case of the correlation functions appearing in the Green-
Kubo form of the transport coefficients of a low density gas
[12] is considered. As an example, the velocity autocorrela-
tion function, and from it the self-diffusion coefficient, are
computed in Sec. V for a system of inelastic hard disks, and
the results are compared with the theoretical predictions ob-
tained by the Chapman-Enskog method in the first Sonine
approximation. The paper ends with a summary and a brief
discussion.

II. BASIC EQUATIONS AND THE HOMOGENEOUS
COOLING STATE

We consider a system ofN inelastic hard spheressd=3d or
disks sd=2d of massm and diameters. The position and
velocity coordinates of particlei at timet will be represented
by Ristd and Vistd, respectively. The particle dynamics con-
sists of free streaming until a pair of particlesi and j are at
contact and a collision takes place. The effect of the collision
is to instantaneously change the velocities of the two in-
volved particles according to

Vi → Vi8 ; bsVi = Vi −
1 + a

2
sŝ ·Vi jdŝ,

s1d

V j → V j8 ; bsV j = V j +
1 + a

2
sŝ ·Vi jdŝ,

whereVi j =Vi −V j is the relative velocity,ŝ is the unit vector
pointing from the center of particlej to the center of particle
i at contact, anda is the coefficient of normal restitution. It is
defined in the range 0,aø1 and will be considered as ve-
locity independent along this work.

In the low density limit, it is assumed that the time evo-
lution of the one-particle distribution function of the system
fsr ,v ,td is accurately described by the inelastic Boltzmann
equation[18,19]

S ]

] t
+ v ·

]

] r
D fsr,v,td = Jff, fg, s2d

with the inelastic Boltzmann collision operator given by

Jff, fg ; sd−1E dv1E dŝQsg · ŝdg · ŝsa−2bs
−1

− 1dfsr,v,tdfsr,v1,td. s3d

Here g=v−v1, Q is the Heaviside step function, and
bs

−1sv ,v1d is an operator replacing all the velocitiesv andv1

appearing to its right by the precollisional valuesv* andv1
*

given by
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v* ; bs
−1v = v −

1 + a

2a
sŝ ·gdŝ,

s4d

v1
* ; bs

−1v1 = v1 +
1 + a

2a
sŝ ·gdŝ.

We are using lower-case symbols to represent field variables
as those appearing in the one-particle distribution function,
while capital symbols are used for the particle variables.
Equation (2) has a particular solution describing the HCS
and having the scaling property[18]

fHCSsv,td = nHv0
−dstdxHCSscd, s5d

where

v0std = F2kBTHCSstd
m

G1/2

s6d

is the thermal velocity andxHCSscd is an isotropic function of

c =
v

v0std
. s7d

In Eq. (6), kB is the Boltzmann constant that is usually set
equal to unity in the literature of granular flows. We prefer to
keep it here for dimensional reasons. The number of particles
densityn and the granular temperatureTstd are defined in the
usual way,

nsr,td =E dvfsr,v,td, s8d

d

2
nsr,tdkBTsr,td =E dv

1

2
msv − ud2fsr,v,td, s9d

nsr,tdusr,td =E dvvfsr,v,td. s10d

The evolution equation forTHCSstd is easily obtained from
the Boltzmann equation

]

] t
THCSstd + zHCSstdTHCSstd = 0, s11d

where the cooling ratezHCS is given by

zHCSstd =
s1 − a2dpsd−1d/2sd−1nHv0std

2GSd + 3

2
Dd

3E dcE dc1uc − c1u3xHCSscdxHCSsc1d. s12d

Then, zHCS is proportional toTHCS
1/2 and, therefore, Eq.(11)

can be formally integrated to get the explicit time depen-
dence of the temperature in the HCS,

THCSstd = THCSs0df1 + 1
2zHCSs0dtg−2. s13d

This expression is known as Haff’s law[20] and it has the
interesting property of becoming independent of the initial
temperature in the long time limit. More precisely, it reduces
to

THCS, 4sz̄td−2, s14d

with

z̄ =
zHCSstd
THCS

1/2 std
=

v0stdz0

,THCS
1/2 std

. s15d

In the last transformation we have introduced the time-
independent dimensionless cooling rate

z0 =
,zHCSstd

v0std
, s16d

where,;snHsd−1d−1 is proportional to the mean free path.
The above long time behavior of the temperature implies the
existence of an asymptotic regime in which the HCS be-
comes independent of the initial condition or, in other words,
all the homogeneous cooling states of a given system tend to
converge in the long time limit. This is an exact property
following from the existence itself of the HCS and it will be
exploited in the following Section in order to introduce a
steady representation of the HCS.

Substitution of Eq.(5) into the Boltzmann equation(3)
provides a closed integrodifferential equation for the func-
tion xHCSscd,

z0

2

]

] c
· scxHCSd = JcfxHCS,xHCSg, s17d

JcfxHCS,xHCSg =E dc1E dŝQfsc − c1d · ŝg

3sc − c1d · ŝfa−2bs
−1sc,c1d

− 1gxHCSscdxHCSsc1d. s18d

The operatorbs
−1sc,c1d is again defined by Eqs.(4) but sub-

stituting the velocitiesv,v1 by c,c1.
The solution of Eq.(17) is only partially known. In par-

ticular, an expansion in Sonine polynomials has been consid-
ered. To first order,xHCSscd is approximated by

xHCSscd =
e−c2

pd/2f1 + a2sadSs2dsc2dg, s19d

where

Ss2dsc2d =
c4

2
−

d + 2

2
c2 +

dsd + 2d
8

. s20d

The coefficienta2sad turns out to be proportional to the
fourth cumulant of the distribution, namely,

a2sad =
4

dsd + 2dFkc4l −
dsd + 2d

4
G , s21d
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kc4l ; E dcc4xHCSscd. s22d

When Eq.(19) is substituted into Eq.(17) a closed equation
for a2 is obtained. If nonlinear terms ina2 are neglected in
this equation, it is found that[18,21]

a2sad =
16s1 − ads1 − 2a2d

9 + 24d + s8d − 41da + 30a2 − 30a3 . s23d

In the same approximation, Eqs.(12) and (16) yield

z0 =
Î2psd−1d/2s1 − a2d

GSd

2
Dd

F1 +
3

16
a2sadG . s24d

The above expression forxHCSscd is expected to be accurate
in the thermal velocity region, i.e., for velocitiesc of the
order of a few units. This has been confirmed by DSMC
simulations of a granular gas[22].

III. STEADY-STATE REPRESENTATION OF THE HCS

The long time behavior of the HCS discussed in the pre-
ceding Section, suggests that a steady representation of it can
be obtained on a time scalet defined by[14]

v0t = ln
t

t0
, s25d

where v0 and t0 are arbitrary constants. Consistently, the
velocity Wi of particle i is given in the new scale by

Wistd = v0t0e
v0tVistd = v0tVistd. s26d

The particle dynamics in these variables consists of an accel-
erating streaming between collisions,

]

] t
Ristd = Wistd,

s27d
]

] t
Wistd = v0Wistd,

while the effect of a collision between particlesi and j is to
instantaneously modify their velocities accordingly with the
same rules as given in Eqs.(1), i.e.,

Wi → Wi8 ; bsWi = Wi −
1 + a

2
sŝ ·Wi jdŝ,

s28d

Wj → Wj8 ; bsWj = Wj +
1 + a

2
sŝ ·Wi jdŝ.

Of course, this invariance of the collision rules is a conse-
quence of the instantaneous character of the hard collisions
or, in other words, of the absence of an intrinsic time scale
for hard particles. In thet time scale, the Boltzmann equa-
tion (2) takes the form

S ]

] t
+ v0

]

] w
·w + w ·

]

] r
D f̃sr,w,td = Jf f̃, f̃g. s29d

HereJ is the same collision operator as defined in Eq.(3) but
substituting the velocitiesv,v1 by w,w1, and the scaled one-
particle distribution function is

f̃sr,w,td = sv0td−dfsr,v,td. s30d

Therefore, the only modification of the Boltzmann equa-
tion is that a new term appears in the streaming part of the
equation, as expected because of Eqs.(27) [14]. This term
has the same form as some thermostats introduced more or
less artificially in order to allow the system to have a station-
ary state; however here it arises solely from a change in the
time scale.

Let us assume now that the system is initially in the HCS
and that it remains in it along its time evolution. This implies
to suppress the possibility that the system spontaneously de-
velops spatial inhomogeneities due to the existence of a long
wavelength hydrodynamic instability, the so-called clustering
instability [2,15]. It is worth to stress that this effect is also
present in the low density description provided by the Bolt-
zmann equation[22,23]. In principle, the instability can be
avoided by considering small enough systems, but this might
lead to the presence of undesired finite size effects, espe-
cially for small values of the coefficient of restitutiona.
Nevertheless, at the level of description provided by the
Boltzmann equation, this can be formally accomplished by
restricting ourselves to consider the homogeneous form of

Eq. (29). Then, a scaled temperatureT̃HCSstd can be defined
by

d

2
nHkBT̃HCSstd =E dw

1

2
mw2f̃HCSsw,td, s31d

where f̃HCSsw,td is the scaled one-particle distribution of the
HCS. An evolution equation for this temperature is easily
obtained by using Eq.(11),

S ]

] t
− 2v0DT̃HCSstd = − z̄T̃HCS

3/2 std. s32d

The solution of this equation is

T̃HCSstd = S2v0

z̄
D2F1 +S 2v0

z̄T̃HCS
1/2 s0d

− 1De−v0tG−2

. s33d

It follows that any initial value of the temperature tends to a
final steady value given by

T̃st = S2v0

z̄
D2

. s34d

As discussed above, this result only holds as long as the
system stays indefinitely in the HCS. By means of Eq.(15),
it can also be expressed in the equivalent form
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z0 =
2v0,

ṽ0,st

s35d

with

ṽ0,st = S2kBT̃st

m
D1/2

. s36d

Therefore,v0/ ṽ0,st is independent ofv0 and proportional to
an intrinsic property of the system, namely, the dimension-
less cooling ratez0.

Moreover, once the scaled temperature has reached its
steady value, the scaled distribution function has the time
independent form

f̃ stswd = nHṽ0,st
−dxHCSsc̃d, c̃ =

c

w̃0,st

=
ṽ0,st

v0std
v. s37d

Upon writing the last equality forc̃, we have taken into ac-
count the asymptotic form ofTHCSstd given in Eq.(14). The
existence of a steady solution of Eq.(29) is enabled by the
term proportional tov0, so that the acceleration between
collisions is able to balance the loss of energy in them. In
order to avoid misunderstandings, it must be noted that the
fact that the system is in the HCS does not imply by itself
that the temperature in the scaled variables takes its steady
value. This only happens in the long time limit. However,
what is relevant is that there is a mapping between the steady
state in the scaled representation and the associated HCS, for
arbitrary value of the parameterv0. Of course, for any arbi-
trary state of the system, it is possible to relate every prop-
erty in the original variables with the corresponding(scaled)
property in the scaled representation, but attention will be
restricted in the following to the HCS.

In order to confirm the practical usefulness of the steady
representation, we have carried out DSMC simulations[17]
of a low density granular gas whose dynamics is defined by
Eqs. (27) and (28). This N-particle simulation algorithm is
known to be consistent with the Boltzmann equation, in the
sense that it provides numerical solutions of the equation.
But the results coming from this kind of simulations go
much further and cover all the properties of a dilute gas. This
includes, in particular, fluctuations and nonequilibrium cor-
relations, although the precise relationship between the simu-
lation algorithm and the theory following from a description
of the system in the context of kinetic theory, or nonequilib-
rium statistical mechanics, has not been established yet. In
fact, the method tries to mimic, by means of a Markov pro-
cess, the dynamics of a low density gas by uncoupling the
streaming motion of the particles, given by Eqs.(27), and
collisions during a small enough time interval, and also by
neglecting velocity correlations in collisions. This is done
independently of the numberN of particles being simulated
(and, therefore, of their number density). In practice, this is
implemented by dividing the coordinate space into cells of
size smaller than the mean free path, and considering that all
pairs of particles in the same cell can collide with a probabil-
ity proportional to their relative velocity.

One of the main technical advantages of DSMC, as com-
pared with other particle simulation methods, is that it allows
to incorporate in the simulation algorithm the eventual sym-
metry properties of the particular physical situation of inter-
est. The most trivial effect of this is the possibility of increas-
ing the numerical statistics of the results, but it also permits
to force the system to stay with a given symmetry, by elimi-
nating from the dynamics the degrees of freedom associated
with the “irrelevant” directions. For instance, for our present
purposes we want the system to stay in the HCS, so that no
spatial instabilities can be developed in any direction, and at
the same time we want to avoid the introduction of finite size
effects. This can be accomplished by simulating the
N-particle dynamics associated with thehomogeneousBolt-
zmann equation. The way of implementing this in the simu-
lation is by considering only one cell, i.e., any pair of par-
ticles in the system can collide and no attention is paid to
their positions. Since the technical details of the method have
been extensively discussed in the literature[17,24], they will
not be reproduced here.

The simulations we will present in the following corre-
spond to a two-dimensional system of hard disks, i.e.,d=2.
As already discussed, no boundary conditions are needed
since we are simulating homogeneous situations and the po-
sitions of the particles play no role. For the same reason,
there is no system size to be specified. Moreover, the numeri-
cal data we will report have been averaged over a number of
trajectories, typically of the order of a few thousands. The
number of particles in the system isN=104, but we insist on
that it has only a statistical meaning, since the dynamics of
the system being used in the simulation corresponds always
by construction to that of a low density gas.

Accordingly with the scenario we have developed, the
simulation of a low density gas whose underlying particle
dynamics is defined by Eqs.(27) and (28) is expected to
yield a steady state after a relatively short transient period.
Averages of properties in the steady state are simply related
with the(time dependent) properties of the HCS. In this way,
the difficulties associated with the fast cooling of the fluid
when described in terms of the actual variables, leading very
soon to numerical inaccuracies, are overcome. One technical
point requiring some attention is that the total momentum is
unstable in the mapped representation for all sizes of the
system[13]. Round-off numerical errors lead to the presence
of nonzero total momentum that grow very quickly due to
the instability. This is easily avoided by calculating the total
momentum at each simulation step and subtracting it evenly
from the momentum of each particle.

In the results to be reported in the following, the unit of

time is given by,f2kBT̃s0d /mg−1/2, the unit of length is,, the
unit of mass ism, andkB has been set equal to unity. In Fig.

1 the evolution of the scaled temperatureT̃ is plotted as a
function of the timet for several values ofa, namely,a
=0.5, 0.6, 0.7, and 0.9. The value ofv0 used in each case is

v0= z̄T̃s0d1/2/2, with z̄sad approximated by its estimate in
the first Sonine approximation as given by Eqs.(15) and
(24). If this latter expression were exact, the final steady
temperature would be exactly the same as the initial one. The
observed behavior is consistent with the theoretical predic-
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tions. In all the cases the temperature fluctuates around a
steady value after an initial transient time. In the original
time scale, this corresponds to the regime in which the
granular temperature has already reached its asymptotic form
given in Eq.(14). The steady value is very close to the initial
temperature, as expected, although a small deviation is
clearly identified fora=0.5, indicating the approximated na-
ture of expression(24) for z0. It is also seen in the figure that
the amplitude of the long time temperature fluctuations in-
creases as the value of the coefficient of restitution decreases,
i.e., as the system is more inelastic. This is due to the change
of the shape of the velocity distribution function and also to
the presence of velocity correlations in the HCS that are
generated by theN-particle dynamics of the system, even in
the low density limit. This will be discussed in more detail
elsewhere.

From the values ofT̃st, the cooling ratez0 can be obtained
as a function ofa by means of Eq.(35). In Fig. 2 these
numerical results are compared with the theoretical predic-
tion given by Eq.(24). As already indicated by the weak
dependence ona of the steady temperature in Fig. 1, there is
a very good agreement. The discrepancy observed in the lat-
ter for a=0.5 cannot be made out on the scale used in Fig. 2.

Since the steady velocity distribution has the same form
as xHCS, the steady representation also provides very accu-
rate data for it. As an example, in Fig. 3 the coefficienta2
defined by Eq.(21) is plotted as a function of the coefficient
of restitution and compared with the approximated expres-
sion given by Eq.(23). In this case, a small but systematic
deviation is observed. The results presented so far in the
above three figures are consistent, and physically equivalent,
to those obtained previously by carrying out DSMC simula-
tions in the actual variables of the system, i.e. by dealing
directly with the time-dependent HCS[22]. The main advan-
tage of the present representation is that it reduces the statis-
tical uncertainties by introducing a steady state that maps
exactly into the HCS. In the following section, it will be

shown that the scaling is also useful to study time correlation
functions.

IV. AVERAGES AND TIME-CORRELATION FUNCTIONS
IN THE STEADY REPRESENTATION

Consider a phase function of the form

AsGd = o
i=1

N

asRi,Vid, s38d

whereG denotes a point in the phase space of the system and
asRi ,Vid is a given one-particle dynamical variable. The av-
erage value ofA at time t is

kA;tl ; E dGAsG,tdrsG,0d ; E dGAsGdrsG,td. s39d

HerersG ,td is theN-particle distribution function of the sys-
tem at timet. This equation is equivalent to

kA;tl =E dr E dvasr,vdfsr,v,td, s40d

which, using the scaling defined by Eqs.(25) and (30), can
also be expressed as

kA;tl =E dr E dwafr,sv0td−1wg f̃sr,w,td. s41d

Suppose now a dilute system in the HCS. It has been
established in Sec. III that in the long time limit, the scaled

distribution function tends to the steady formf̃ stswd given by
Eq. (37), so that Eq.(41) becomes

FIG. 1. Evolution of the scaled temperatureT̃ as a function of
the scaled timet. Units are defined in the main text. The different
line styles correspond to different values ofa as indicated in the
figure.

FIG. 2. The dimensionless cooling ratez0 as a function of the
coefficient of restitutiona. The symbols are the values obtained
from the simulations, while the solid line is the theoretical predic-
tion in the first Sonine approximation.
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kA;tlHCS=E dr E dwaFr,
v0std
ṽ0,st

wG f̃ stswd. s42d

This is the low density limit of

kA;tlHCS=E dG̃ÃsG̃dr̃stsG̃d, s43d

whereG̃=hRi ,Wi ; i =1, . . . ,Nj,

ÃsG̃d = o
i=1

N

aFRi,
v0std
ṽ0,st

WiG , s44d

and r̃stsG̃d is the scaledN-particle distribution of the steady
state.

In this way, averages in the HCS are exactly mapped onto
averages in the steady state of the scaled dynamics. It could
be thought that since Eq.(42) has been obtained as the long
time limit of Eq. (41) for the HCS, its validity is somewhat
restricted to very low actual temperaturesTHCSstd. Neverthe-
less, this is not the case, because formally the initial tempera-
tureTHCSs0d can be as large as wanted and, consequently, Eq.
(42) can be applied at any temperatureTHCSstd. In fact, it is
easily verified that the same equation can be derived from
the particularization of Eq.(40) to the HCS by making the
change of variablew= ṽ0,st c, without introducing any long
time limit. Of course, the difference is that in this latter case
THCSstd, present in Eq.(42) throughv0std, cannot be substi-
tuted by its asymptotic form.

Next, let us consider time correlation functions in the
HCS defined by

CABst,t8d ; kAstdBst8d;0lHCS− kA;tlHCSkB;t8lHCS, s45d

with

kAstdBst8d;0lHCS;E dGAsG,tdBsG,t8drHCSsG,0d s46d

and it is assumed thatt. t8.0. The phase functionsAsGd
and BsGd are the sum of one-particle dynamical variables,
i.e., A is again given by Eq.(38) and

BsGd = o
i=1

N

bsRi,Vid. s47d

Then, Eq.(45) can be rewritten in the equivalent form

CABst,t8d =E dr1E dv1E dr18

3E dv18asr1,v1dbsr18,v18dh1/1

3sr1,v1,t;r18,v18,t8d, s48d

whereh1/1 is the two-particle two-time correlation function
of the HCS defined by[16]

h1/1sr1,v1,t;r18,v18,t8d ; f1/1sr1,v1,t;r18,v18,t8d

− fHCSsv1,tdfHCSsv18,td. s49d

Here f1/1 is the two-particle two-time reduced distribution
function of the HCS,

f1/1sr1,v1,t;r18,v18,t8d ; o
i=1

N

o
j=1

N E dGrHCSsGd

3dfr1 − Ristdgdfv1 − Vistdg

3 dfr18 − Rjstdgdfv18 − V jstdg.

s50d

In the low density limit, and by using the same kind of as-
sumptions as needed to derive the Boltzmann equation, it is
possible to obtain a formal expression forh1/1 involving only
the steady one-particle distribution function[16]. A sketch of
the calculations is given in Appendix A. When this expres-
sion is substituted into Eq.(48) it is obtained that

CABst,t8d =E dr1E dw1 f̃ stsw1daFr1,
v0std
ṽ0,st

w1,t − t1G
3bFr1,

v0st8d
ṽ0,st

w1G . s51d

The time dependence of the dynamical variablea is given by

asr1,w1,td = etL̄Bsw1dasr1,w1d. s52d

whereL̄Bsw1d is the adjoint of the linearized Boltzmann op-
erator around the steady state in the scaled dynamics,

L̄Bsw1d = w1 ·
]

] r1
+ L̄stsw1d, s53d

L̄stsw1d = v0w1 ·
]

] w1
+ K̄stsw1d, s54d

K̄stsw1d = sd−1E dw2f̃ stsw2d

3E dŝQsw12 · ŝdw12 · ŝfbssw1,w2d − 1g

3s1 +P12d. s55d

The operatorP12 interchanges the subindexes 1 and 2 to its
right. Of course, if the dynamical variablea does not depend

on the positionr, L̄Bsw1d can be substituted byL̄stsw1d in Eq.
(52).

In the particular, but quite frequent case thata andb are
homogeneous functions of the velocity of degreeq1 andq2,
respectively, i.e.,
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aFr1,
v0std
ṽ0,st

w1G = Fv0std
ṽ0,st

Gq1

asr1,w1d,

s56d

bFr1,
v0st8d
ṽ0,st

w1G = Fv0st8d
ṽ0,st

Gq2

bsr1,w1d,

the time-correlation function becomes

CABst,t8d =
v0

q1stdv0
q2st8d

ṽ 0,st
q1+q2

E dr1E dw1f̃ stsw1dasr1,w1,t − t1d

3bsr1,w1d. s57d

In the context of the steady representation of the HCS of
a low density granular gas as discussed in this paper, the
relevant point of the above analysis is the following: suppose
that a property of the gas can be expressed in terms of the
time correlation function

kastdblst ;E dr E dv f̃ stsvdasr,v,tdbsr,vd, s58d

with the time-dependence ofasr ,v ,td given by Eq.(52). A
slight modification of the preceding discussion shows that
this is the low density limit of

CAB,ststd = kAstdB;0lst − kAlstkBlst, s59d

where

kAlst =E dGrstsGdAsGd, kBlst =E dGrstsGdBsGd,

s60d

kAstdB;0lst =E dGrstsGdAsG,tdBsGd, s61d

with AsGd and BsGd given by Eqs.(38) and (47), respec-
tively. Besides,AsG ,td is generated fromAsGd by the dy-
namics defined by Eqs.(27) and (28), and rstsGd is the
N-particle distribution function of the steady state eventually
reached by the system. Although the existence of this state is
not rigorously proven, it is supported by the discussion car-
ried in Sec. III at the level of the Boltzmann equation and
also by molecular dynamics simulations[14,25]. The DSMC
method provides an efficient tool to generate theN-particle
dynamical representation of a dilute gas, that is consistent
with the Boltzmann equation. In summary, it allows for the
direct evaluation of Eq.(59) in the low density limit, where
it is equivalent to Eq.(58).

An important application of the above ideas is the evalu-
ation of the Navier-Stokes transport coefficients of a dilute
granular gas composed of hard spheres or disks. In Refs.
[12,26,27], these coefficients were derived from the inelastic
Boltzmann equation by means of the Chapman-Enskog pro-
cedure, eigenfunctions expansions, and linear response
theory, finding equivalent results. The expressions of all the
transport coefficients are proportional to time integrals of
correlation functions of the form

Dabssd =E dc1xHCSsc1dasc1,sdbsc1d, s62d

with the time dependence ofasc,sd determined by

asc1,sd = esL̄csc1dasc1d, s63d

L̄csc1d =E dc2xHCSsc2d E dŝQsc12 · ŝdc12 · ŝfbssc1,c2d − 1g

3s1 +P12d +
z0

2
c1 ·

]

] c1
. s64d

Finally, the time scales is defined as

s=E
0

t

dt8
v0st8d

,
. s65d

Although the above representation is appropriate for for-
mal manipulations, for computational purposes the dynamics

associated with the operatorL̄c presents the technical com-
plication that it involves the cooling ratez0, that therefore
must be knowna priori instead of being determined by the
simulation itself, as it is the case for the scaled dynamics
being used in the present paper. For this reason, it is conve-
nient to transform Eq.(62) by writing it in terms of that
dynamics. This is easily accomplished by introducing

t =
z0

2v0
s, w =

2v0,

z0
c = ṽ0,st c. s66d

Then, for an arbitrary functiongscd it is obtained

FIG. 3. Coefficienta2 defined in Eq.(21) as a function of the
coefficient of restitutiona. The symbols are from the DSMC simu-
lations, while the solid line is the theoretical prediction discussed in
the main text.
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sL̄cgscd = tL̄stgS w

ṽ0,st
D , s67d

whereL̄st is the operator defined by Eq.(54). It follows that
Eq. (62) is the same as

Dabssd =
1

NKaS v
ṽ0,st

,tDbS v
ṽ0,st

DL
st

, s68d

where we use the notation introduced in Eq.(58). The above
result relates the expression of the transport coefficients of a
dilute granular gas, as obtained from the Boltzmann equation
for the one-particle distribution function, with the low den-
sity limit of time-correlation functions in theN-particle dy-
namics, computed in the steady state of the scaled represen-
tation introduced in Sec. III.

V. SELF-DIFFUSION

In Ref. [28], the expression of the self-diffusion coeffi-
cient D of a dilute inelastic gas of hard particles has been
derived from the Boltzmann-Lorentz equation by the
Chapman-Enskog procedure. In Appendix B it is shown that
the results reported in Ref.[28] can be expressed in the form

D =
v0std,

d
E

0

`

dsE dcxHCSscdcssd ·c

=
v0std

ṽ0,stNd
E

0

`

dtkwstd ·wlst. s69d

In the last transformation we have used Eq.(68). In fact, this
is a special case, since the time dependence ofcssd is not

given by the linearized Boltzmann collision operatorL̄c as in

Eq. (63), but by the Lorentz-Boltzmann oneL̄BL,cscd, defined
in Eq. (B11),

cssd = esL̄BL,cscdc. s70d

Consequently, in Eq.(69) it is

wstd = etL̄BL,stswdw, s71d

L̄BL,stswd = s d−1E dw1f̃ stsw1d E dŝQsg · ŝdg · ŝfbssw,w1d

− 1g +
z0

2
w ·

]

] w
. s72d

Nevertheless, all the reasonings in Sec. IV and Appendix A
can be easily adapted to the present case. The only, but rel-
evant, difference, is that now the expressionkwstd ·wlst is the
low density limit of

Cvvstd ; o
i=1

N E dGrstsGdWistd ·Wi s73d

and not of

o
i=1

N

o
j=1

N E dGrstsGdWistd ·Wj . s74d

Of course, this has to be taken into account when computing
the self-diffusion coefficient by means of DSMC simula-
tions.

Figure 4 shows the velocity autocorrelation function
Cvvstd for three different values of the coefficient of restitu-
tion. It is seen that it decays quite fast to zero, implying the
convergence of its time integral and, therefore, the existence
of the constant diffusion coefficient. The value of the veloc-
ity autocorrelation at each timet is based on an average of
all the times included in the simulation, once the steady state
has been reached. In Fig. 5, the same quantity is plotted on a

FIG. 4. Time evolution of the normalized velocity autocorrela-
tion functionCvvstd /Cvvs0d as a function of the scaled timet. The
results for three different values of the coefficient of restitutiona
are shown, as indicated in the figure.

FIG. 5. The same as in Fig. 4 but on a logarithmic scale.
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logarithmic scale where an exponential decay for all times is
clearly identified.

From the velocity autocorrelation function the self-
diffusion coefficient is obtained by means of the Green-Kubo
relation(69). Figure 6 shows the ratio of the obtained values
DsTHCS,ad to the elastic limitsa→1d of the value predicted
by the Chapman-Enskog method in the first Sonine approxi-
mationD0sTHCSd, namely,

D*sad ;
DsTHCS,ad
D0sTHCSd

, s75d

D0sTHCSd =
Gsd/2dd

4psd−1d/2ns d−1SkBTHCS

m
D1/2

. s76d

Also plotted is the theoretical prediction forD*sad again in
the first Sonine approximation[28],

D*sad = 4Fs1 + ad2 −
a2sad

16
s4 + a − 3a2dG−1

. s77d

The agreement between theory and simulation is quite
good in the whole range of values ofa considered, although
a systematic deviation, which increases as the value ofa
decreases, is observed. Self-diffusion in the HCS of a system
of inelastic hard spheressd=3d has been previously studied
by means of DSMC in the actual variables, i.e., under con-
tinuous cooling, in Ref.[28], where the diffusion constant
was calculated from the mean-square displacement by means
of the (inelastic) Einstein relation and also from the linear
response of the system to a density perturbation. The com-
parison between the numerical results obtained there and the
theoretical prediction given by Eq.(77) is very similar to the
one presented in Fig. 6. Very recently[29], it has been shown
that the agreement improves over the whole range of values

of a if D*sad is computed in the second Sonine approxima-
tion. Although the analysis is restricted to the case of inelas-
tic hard spheres, it seems sensible to expect the same kind of
behavior for a system of inelastic hard disks.

As already mentioned several times, the main feature of
the numerical method used here is that it takes advantage of
the steady representation of the HCS, removing any limita-
tion on the time on which trajectories of the system may be
followed. In addition, let us point out that the analysis of the
self-diffusion coefficient based on the velocity autocorrela-
tion function as developed here, is expected to give more
accurate results, from a statistical point of view, than those
based on the mean-square displacement. This is because,
while each value of the former in a given trajectory of the
system is obtained from an average over the whole simula-
tion interval, each value of the latter is obtained from a
single evaluation.

VI. DISCUSSION AND CONCLUSION

In this paper, the actual dynamics of a low density granu-
lar gas composed of smooth hard inelastic particles has been
transformed to another one in which the HCS becomes time
independent. In this way, the need for more or less uncon-
trolled mechanisms such as internal thermostats in order to
get a stationary state is eliminated. The transformation is
closely related to the fact that the temperature of the HCS
becomes independent from its initial value in the asymptoti-
cally long time limit, a property that has not received enough
attention up to now. The exact correspondence between both
formulations for averages and time correlation functions has
been explicitly established. This requires to consider the ki-
netic equation for the one-particle distribution function, i.e.,
the inelastic Boltzmann equation, and also the equation for
the two-particle and two-time correlation function in the low
density limit. The latter is obtained by extending in a natural
way the standard methods of kinetic theory. In particular, it
has been shown that the steady temperature directly deter-
mines the value of the cooling rate of the system. Then, the
DSMC method has been used to measure it and the numeri-
cal results have been compared with the theoretical predic-
tions obtained by solving the Boltzmann equation in the first
Sonine approximation.

The introduction of the steady representation of the HCS
enables the evaluation of the Green-Kubo expressions for the
transport coefficients of a dilute granular gas by means of the
DSMC method, just as for normal fluids whose particles col-
lide elastically. To put this in a proper context, we have em-
phasized that the DSMC method is not just a numerical tool
to solve the Boltzmann equation, but it formulates an effec-
tive N-body dynamics that is expected to be equivalent to the
Newtonian one in the low density limit. Moreover, it has the
advantage of allowing to incorporate in the own effective
dynamics of the particles the symmetry properties of the par-
ticular state being simulated. So, it is possible to force the
system to stay homogeneous, avoiding the spontaneous de-
velopment of spatial inhomogeneities associated with the
clustering instability. Here this has been illustrated for the
simplest case of self-diffusion, whose expression involves

FIG. 6. Dimensionless reduced diffusion coefficientD* as a
function of the coefficient of restitutiona. The symbols are from
the simulations, while the solid line is the theoretical prediction
from the Chapman-Enskog procedure in the first Sonine
approximation.
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the velocity autocorrelation function. The results have been
compared with the theoretical prediction obtained by the
Chapman-Enskog method and also with previous numerical
simulations carried out in the actual dynamics in which the
HCS is time-dependent. The study of the remaining Navier-
Stokes transport coefficients will be reported elsewhere.

In summary, we believe that the transformed dynamics
discussed in this work is of both formal and practical interest
for the study of granular fluids in the low density limit. Al-
though we have restricted here ourselves to its application to
the HCS, the mapping with the actual dynamics can be easily
extended to any arbitrary state.
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APPENDIX A: LOW DENSITY LIMIT OF TIME-
CORRELATION FUNCTIONS IN THE HCS

In the low density limit, neglecting three-particle correla-
tions, the functionh1/1 obeys the equation,

F ]

] t
+ v1 ·

]

] r1
− Ksv1,tdGh1/1sr1,v1,t;r18,v18,t8d = 0,

sA1d

whereK is the linearized Bolztmann operator

Ksv1,td = s d−1E dv2E dŝQsv12 · ŝduv12 · ŝusa−2bs − 1d

3s1 +P12dfHCSsv2,td. sA2d

The permutation operatorP12 interchanges the indexes 1 and
2 of the velocities appearing to its right. The above equation
holds for t. t8.0 and it has to be solved with the initial
condition

h1/1sr1,v1,t8;r18,v18,t8d = g2,HCSsr1,v1,r18,v18,t8d

+ dsr1 − r18ddsv1 − v18dfHCSsv1,t8d,

sA3d

g2,HCS being the two-particle one-time correlation function of
the HCS. Equation(A1) can be derived by the hierarchy
method starting from the pseudo-Liouville equation for a
system of inelastic hard spheres or disks. A detailed analysis
for the elastic case is presented in Ref.[16]. Since the same
method can be appliedmutatis mutandisto the inelastic case,
it will be not reproduced here. Now, time and velocities are
scaled by

t =E
0

t

dt8
v0st8d
ṽ0,st

sA4d

and

w =
ṽ0,st

v0std
v, sA5d

respectively. We are using the same symbols as in Sec. III
since we have seen that in the long time limit the scaling
defined by Eq.(A4) is equivalent to that defined by Eq.(25).
The scaled correlation function is

h̃1/1sr1,w1,t;r18,w18,t8d = Fv0stdv0st8d
ṽ0,st

2 Gd

h1/1sr1,v1,t;r18,v18,t8d

sA6d

and, in terms of the new variables, Eq.(A1) becomes

F ]

] t
+ w1 ·

]

] r1
− Lstsw1dGh̃1/1sr1,w1,t;r18,w18,t8d = 0,

sA7d

valid for t.t8. The operatorLst is defined by

Lstsw1d = Kstsw1d − v0
]

] w1
·w1, sA8d

whereKst is the steady linear Boltzmann collision operator

Kstsw1d = s d−1E dw2E dŝQsw12 · ŝdw12 · ŝ

3fa−2bs
−1sw1,w2d − 1gs1 +P12d f̃ stsw2d. sA9d

Integration of Eq.(A7) gives

h̃1/1sr1,w1,t;r18,w18,t8d = est−t8dLBsw1dh̃1/1sr1,w1,t8;r18,w18,t8d,

sA10d

LBsw1d = Lstsw1d − w1 ·
]

] r1
. sA11d

The initial condition on the right-hand side is

h̃1/1sr1,w1,t8;r18,w18,t8d = g̃2,HCSsr1,w1,r18,w18,t8d

+ dsr1 − r18ddsw1 − w18d f̃ stsw1d,

sA12d

with

g̃2,HCSsr1,w1,r18,w18,t8d = Fv0st8d
ṽ0,st

G2d

g2sr1,v1,r18,v18,t8d.

sA13d

Now the assumption is made that the contribution to Eq.
(A10) coming from g̃2 can be neglected in the low density
limit we are considering. Although there is no explicit proof
for this, it is consistent with the hypothesis made to derive
the Boltzmann equation. On the other hand, it must be real-
ized that the HCS is not an equilibrium state and, therefore,
it can present relevant position and velocity correlations, but
we expect them to become negligible for asymptotically
small densities. Then, substitution of Eq.(A12) into Eq.(48)
yields
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CABst,t8d =E dr1E dw1E dr18E dw18aFr1,
v0std
ṽ0,st

w1GbFr18,
v0st8d
ṽ0,st

w18Gest−t8dLBsw1ddsr1 − r18ddsw1 − w18d f̃ stsw1d

=E dr1E dw1E dr18E dw18bFr18,
v0st8d
ṽ0,st

w18Gdsr1 − r18ddsw1 − w18d f̃ stsw1dest−t8dL̄Bsw1daFr1,
v0std
ṽ0,st

w1G
=E dr1E dw1f̃ stsw1dbFr1,

v0st8d
ṽ0,st

w1Gest−t8dL̄Bsw1daFr1,
v0std
ṽ0,st

w1G , sA14d

whereL̄B is the adjoint ofLB and it is given by Eq.(53). The
above equation is the same as Eq.(51).

APPENDIX B: GREEN-KUBO EXPRESSION FOR SELF-
DIFFUSION FROM THE CHAPMAN-ENSKOG

RESULTS

In Ref. [28], the self-diffusion coefficient of a dilute
granular fluid was obtained from the Boltzmann-Lorentz by
the Chapmann-Enskog method. Equations(24) and (26) in
the above-mentioned reference are

D = −
1

d
E dv v ·Bsvd, sB1d

whereBsvd is the solution of the integral equation

SKBL + zHCSTHCS
]

] THCS
DBsvd =

1

nH
vfHCSsvd, sB2d

KBL being the inelastic Boltzmann-Lorentz collision operator

KBLsvd = s d−1E dv1E dŝQsg · ŝdg · ŝfa−2bs
−1sv,v1d

− 1gfHCSsv1,td. sB3d

We introduce dimensionless time and velocity scales by

s=E
0

t

dt8
v0st8d

,
, c =

v
v0std

. sB4d

In terms of them, Eq.(B2) becomes

SKBL,c −
z0

2

]

] c
·cDB̃scd = cxHCSscd, sB5d

with

B̃scd =
v0

dstd
,

Bsvd sB6d

and

KBL,cscd =
,

v0std
KBLsvd. sB7d

The formal solution of Eq.(B5) can be written as

B̃scd = −E
0

`

dsesLBL,cscdcxHCSscd, sB8d

LBL,cscd = KBL,cscd −
z0

2

]

] c
·c. sB9d

Substitution of Eq.(B8) into Eq. (B1) gives

D =
v0std,

d
E

0

`

dsE dcc ·esLBL,cscdfcxHCSscdg

=
v0std,

d
E

0

`

dsE dcfesL̄BL,cscdcg ·cxHCSscd, sB10d

whereL̄BL,cscd is the adjoint ofLBL,cscd,

L̄BL,csc1d =E dc2xHCSsc2d E dŝQsc12 · ŝdc12 · ŝfbssc1,c2d

− 1g +
z0

2
c1 ·

]

] c1
. sB11d
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