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Steady-state representation of the homogeneous cooling state of a granular gas
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The properties of a dilute granular gas in the homogeneous cooling state are mapped to those of a stationary
state by means of a change in the time scale that does not involve any internal property of the system. The new
representation is closely related with a general property of the granular temperature in the long time limit. The
physical and practical implications of the mapping are discussed. In particular, simulation results obtained by
the direct simulation Monte Carlo method applied to the scaled dynamics are reported. This includes ensemble
averages and also the velocity autocorrelation function, as well as the self-diffusion coefficient obtained from
the latter by means of the Green-Kubo representation. In all cases, the obtained results are compared with
theoretical predictions.
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I. INTRODUCTION their theoretical interest, they allow for a direct determina-
A granular fluid is a collection of macroscopic particles tion of the transport coefficients from the dynamics of the

interacting via short range hard inelastic collisions. ParticleSYStem in the HCS, without introducing any additional ap-

move in a ballistic way between collisions and total momen-Proximation, by using numerical simulation methods.
tum is conservedl]. The prototypical idealized model for __ Molecular dynamicgMD) simulation provides a method

granular fluids is a system of inelastic smooth hard spherel@ inlvefstigate_ a system ofrf)a}rticles r?t the ”;.OSI fundamenltal
or disks, with the inelasticity of collisions being described by €Vel Of description. Nevertheless, when applied to a granular

means of a constartndependent of the relative velogjty 11id in the HCS, several limitations show up. First, since the
coefficient of normal restitution. Then, in the last years theSYStem is continuously cooling, the typical velocity of the
traditional methods of kinetic theory and nonequilibrium Sta_partlcles becomes very small rather soon and numerical in-

L . : ccuracies become very large. In principle, this could be
tistical mechanics have been extended to the case of inelas Sived by introducing some kind of external thermostat, but
collisions. Quite remarkably, it has been realized that thq '

inal . g dissination i li hen the relationship between the original HCS and the state
single feature of incorporating energy dissipation in Colli- heing actually simulated is not clear. Another possibility is to
sions is able to provide a theoretical scheme where many qfye advantage of the fact that there is no intrinsic time scale

the peculiar features exhibited by real granular fluids can b, 5 system of hard particles, and to rescale the velocity of all
tackled. This includes phenomena such as the developmepgyticles after every collision, so that the energy is forced to
of strong density and temperature inhomogeneities that argmain constanf13]. Although it seems that this method
not induced by the boundary conditiofi,3], spontaneous must lead to correct results for time-independent properties
symmetry breaking in partitionef#4,5] and nonpartitioned of the HCS, e.g., structural properties or the own scaled ve-
systems[6], segregation in systems composed of differentiocity distribution, in the infinite system limit, it is not evi-
kind of particleg[7], and pattern formatiof8], to cite a few dent how to extract from the simulation data properties of the
examples. In most of these cases, the usefulness of a colleaetual dynamics of the system involving time fluctuations or
tive description of the system in terms of hydrodynamicliketwo-time correlations.
equations has been verified. Such a description can only be Very recently, a procedure has been introduced according
fully understood and justified by starting from a more funda-to which the dynamics of the system in the HCS is exactly
mental particle level, as considered in kinetic theory. mapped onto the dynamics around a steady state by means of
Due to energy dissipation in collisions, granular systemsa change in the time scale being ugéd]. The change is
do not present a stationary, homogeneous and isotropic statedependent of the state of the system. This is possible be-
similar to the equilibrium one of ordinary fluids. The sim- cause the temperature of the HCS becomes independent of
plest possible state corresponds to a freely evolving homogts initial value in the long time limit. This is a very strong
enous and isotropic system whose energy decays monotorand fundamental property of that state that has not received
cally in time, the so-called homogeneous cooling statéoo much attention up to now. Then, the existence of the
(HCYS). This state plays a relevant role in order to investigatesteady state in the scaled time representation is tied to the
the transport properties of a granular fluid, since it providesown physical properties of the mechanism of energy dissipa-
the zeroth order in the gradients approximation when applytion.
ing the Chapman-Enskog procedure to derive hydrodynam- The second limitation of the MD simulation of a granular
ics from a given kinetic equatiofi9,10]. Also, linear re- fluid in the HCS is associated with the fact that this state is
sponse around this state has been studied and formahstable with respect to spatial long wavelength perturba-
expressions for the Navier-Stokes transport coefficients haviions[2,15. This instability has been identified in the context
been derived11,12. They are the generalization to inelastic of hydrodynamics, and an expression for the critical size of
systems of the well-known Green-Kubo formulas. Besideghe system, beyond which it becomes unstable, has been ob-
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tained. The critical size is a function of the density and the Time correlation functions of dynamical variables in the
coefficient of restitution, decreasing with the former and in-HCS are addressed in Sec. IV, where their low density limit
creasing with the latter. In practice, this implies that for highis analyzed and the relationship between their values in the
densities and/or small values of the coefficient of restitutionpriginal and scaled dynamics is established. The particular
only very small systems can be simulated in the HCS, andase of the correlation functions appearing in the Green-
undesired finite size effects might influence the results.  Kubo form of the transport coefficients of a low density gas
The aim of this paper is to investigate in detail the physi-[12] is considered. As an example, the velocity autocorrela-
cal and practical implications of the steady-state representgion function, and from it the self-diffusion coefficient, are
tion of the HCS mentioned above for a low density granularggmnted in Sec. V for a system of inelastic hard disks, and
gas. Attention will be paid not only_ to the one-time Proper-, o reqyits are compared with the theoretical predictions ob-
ties of the system, but also to two-time correlation funCt'onStained by the Chapman-Enskog method in the first Sonine
While the former can be discussed on the basis of the inelas- S . .
tic Boltzmann equation, the analysis of the correlation func-ggzﬁ)g(s'gﬁt'on' The paper ends with a summary and a brief
tions requires to introduce an equation for the two-particle :
and two-time distribution function. This is done by a direct
extension of the methods used in the elastic case for out of || gag|c EQUATIONS AND THE HOMOGENEOUS
equilibrium system$16]. It is shown that both kind of prop- COOLING STATE
erties can be expressed in terms of averages over the station-
ary state of the system. Special emphasis will be put on the \ve consider a system of inelastic hard spherési=3) or
relationship between the theoretical description of the systemgjsks (d=2) of massm and diametero. The position and
in terms of reduced distribution functions in the low density ye|ocity coordinates of particleat timet will be represented
limit .and the un_derlymg\l—parucle dynqm|cs. Th!s IS impor- py R () and V;(t), respectively. The particle dynamics con-
tant in order to lmple_ment t_he cal_culatlon of a given Propertygists of free streaming until a pair of particleand| are at
by means of the direct simulation Monte CalDSMC) ~ oniact and a collision takes place. The effect of the collision

method[17]. 1t must be kept in mind that this method IS 5 15 jnstantaneously change the velocities of the two in-
designed not just as a numerical tool to solve the Boltzman%wed particles according to

equation, but as a redl-particle dynamics simulation of a
low density gas. In this sense, it is expected to provide not

only Fhe one-particle dist_ribution fu_nc_tion of the system, but Vi— V! =Db,V,=V, - ﬂ(& V)&,
also its complete dynamical description. 2
One of the main practical advantages of the DSMC (1)
method is that it allows one to incorporate at the level of the +a . R
particle dynamics the spatial symmetry properties of the par- Vi— Vi =Db,V;=V;+ T("' Vipe,

ticular physical situation of interest. For instance, it is easy to
restrict the dynamics of the system so that it remains homo-

geneous, with no possibility of developing spatial inhomoge-WhereVi; =V;—V;j is the relative velocitygr is the unit vector

neities. In this way, the second limitation of MD simulations POinting from the center of particleto the center of particle

of the HCS can be overcome for a low density gas with nd at contact, and is the coefficient of normal restitution. Itis

restriction on the size of the system or the number of pardefined in the range @ <1 and will be considered as ve-

ticles being used. The combination of this feature of thdCiy independent along this work. _

DSMC method and the steady representation of the HCS N the low density limit, it is assumed that the time evo-

offers an almost unique way to investigate the properties of lution of .the one-particle d|s_tr|but|on funptlon olf the system

dilute granular gas. f(r,v,_t) is accurately described by the inelastic Boltzmann
The plan of the paper is as follows. In Sec. Il, the Boltz-€duation[18,19

mann equation and some of the results for the one-particle

distribution function of the HCS are shortly reviewed. The d d

peculiar long time behavior of the temperature is indicated, PYL f(r,v,t) = J[f,f], 2

and in Sec. Il it is used to construct a representation of the

dynamics of the system in which the distribution function of

the HCS becomes time independent. It is shown that th

asymptotic steady temperature is determined by an intrinsic

property of the system, namely, the cooling rate. Then, dy- 4 - - A o1

namical simulations of a system of inelastic hard disks with Jf.f] = o lf dvlf do0(g- 6)g- o(ab,

the DSMC method are presented, and the numerical results

for the cooling rate obtained from the values of the steady — Do, 0f(royb). 3)

temperature are compared with the existing theoretical pre-

dictions. Results for the fourth moment of the velocity dis-Here g=v-v;, O is the Heaviside step function, and

tribution function are also reported. They are consistent witrb:,l(v ,01) Is an operator replacing all the velocitiesanduv,

those obtained previously by using the original dynamics, irappearing to its right by the precollisional valugsand v*1

which the HCS is time dependent. given by

¥Vith the inelastic Boltzmann collision operator given by
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o =blp=p- 1+ Y &-96 Thcet) = Tued0)[ 1+ 3ucd0)t] 2. (13
o 2a H

This expression is known as Haff’'s 1aj20] and it has the

(4) interesting property of becoming independent of the initial
temperature in the long time limit. More precisely, it reduces
to

x _ 1+a . .
v;=bv;=v, + o (o-g)o.

2
We are using lower-case symbols to represent field variables Thcs~ 4(5)-2, (14)
as those appearing in the one-particle distribution function,
while capital symbols are used for the particle variablesWith
Equation(2) has a particular solution describing the HCS o

_ Sucdt) vl

and having the scaling properf$8] = . (15
TG (THRD
— -d
fres,1) = Nhug (VxHes(c), (®)  In the last transformation we have introduced the time-
independent dimensionless cooling rate
where
Chcdl)
2kgThedt) [Y2 o=— (16)
vo(t) = [%CS()} (6) °7 v

where ¢ = (nyo® ™ is proportional to the mean free path.
is the thermal velocity angh,c4C) is an isotropic function of The above long time behavior of the temperature implies the
existence of an asymptotic regime in which the HCS be-
v comes independent of the initial condition or, in other words,
c=—_. (7 - ;
vo(t) all the homogeneous coolmg sfcates _of agiven system tend to
converge in the long time limit. This is an exact property
In Eq. (6), kg is the Boltzmann constant that is usually setfollowing from the existence itself of the HCS and it will be
equal to unity in the literature of granular flows. We prefer toexploited in the following Section in order to introduce a
keep it here for dimensional reasons. The number of particlesteady representation of the HCS.

densityn and the granular temperatufét) are defined in the Substitution of Eq.(5) into the Boltzmann equatio(B)
usual way, provides a closed integrodifferential equation for the func-
tion xycs(©),
n(r,t)=fdvf(r,v,t), (8) o d
an_ “(Cxncs) = Idxres Xresls 17
c
9n(r kg T(r t)—fd }m( - u)?f(r,o,t) (9)
o VBT = | HUSTID 0 ‘JC[XHCS«XHCS]:fdclfda'@[(c_cl)'a']
X(c—cy) - olaMc,cp)
n(r,t)u(r,t) :J dvvf(r,v,t). (10 _ 1]XHCS(C)XHCS(C1)- (18)

The evolution equation foFyc(t) is easily obtained from The operatob,’(c,c,) is again defined by Eqg4) but sub-

the Boltzmann equation stituting the velocities,v; by c,c;.
The solution of Eq(17) is only partially known. In par-

9 ticular, an expansion in Sonine polynomials has been consid-
ETHCS(t) + LD Thest) =0, (11)  ered. To first orderycc) is approximated by
. . . e®¢
where the cooling ratéycs is given by Yued©) = W[l +a,(a)S?(A)], (19)
_ 2\ (d-D)/2_d-1
Shest) = (-a)m " +Z Mot where
ZF(—)d ¢ d+2 , dd+2
2 gZ)(CZ) — E _ 2, ( ) . (20)

c
2 8
_ 3
xfdcjdcﬂc C1XresOxres(e). (12) e coefficienta,(e) turns out to be proportional to the
fourth cumulant of the distribution, namely,

(-4 e

Then, {ycs is proportional toTras and, therefore, Eq11)
can be formally integrated to get the explicit time depen- a,(a) =
dence of the temperature in the HCS, 2 d(d+2)
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(= f dectyed©). (22) ((% +woﬁiw-W+W-%>~f(r,w,t):.][~f,~f]. 29)

When Eq.(19) is substituted into Eq17) a closed equation HereJ is the same collision operator as defined in &ybut
for &, is obtained. If nonlinear terms ia, are neglected in - supstituting the velocities,v; by w,wy, and the scaled one-
this equation, it is found th&l 8,27 particle distribution function is

16(1 - a)(1 - 247

ay(a) = . (23 F(r,w,t) = (wgt) 9(r,v,1). 30
A9 = 5 s Bd—4Das sad 308 D (r.w,t) = (wg) “f(r,0.) (30
o _ Therefore, the only modification of the Boltzmann equa-
In the same approximation, Eqd.2) and(16) yield tion is that a new term appears in the streaming part of the
5 (D2 2 equation, as expected because of K@3) [14]. This term
_\2m (1-47) 3 has the same form as some thermostats introduced more or
0o~ 1 + az(a) . (24) .. . i
d q 16 less artificially in order to allow the system to have a station-
r 2 ary state; however here it arises solely from a change in the

time scale.

The above expression foiyc4C) is expected to be accurate  Let us assume now that the system is initially in the HCS
in the thermal velocity region, i.e., for velocities of the  and that it remains in it along its time evolution. This implies
order of a few units. This has been confirmed by DSMCto suppress the possibility that the system spontaneously de-
simulations of a granular gd22]. velops spatial inhomogeneities due to the existence of a long
wavelength hydrodynamic instability, the so-called clustering
instability [2,15]. It is worth to stress that this effect is also
present in the low density description provided by the Bolt-

The long time behavior of the HCS discussed in the prezmann equatiori22,23. In principle, the instability can be
ceding Section, suggests that a steady representation of it canoided by considering small enough systems, but this might
be obtained on a time scatedefined by[14] lead to the presence of undesired finite size effects, espe-
cially for small values of the coefficient of restitutiom.
Nevertheless, at the level of description provided by the
Boltzmann equation, this can be formally accomplished by
restricting ourselves to consider the homogeneous form of

where wy and ty are arbitrary constants. Consistently, the Eq. (29). Then, a scaled temperatu?ﬁcs(r) can be defined
velocity W; of particlei is given in the new scale by by

Ill. STEADY-STATE REPRESENTATION OF THE HCS

t
woT=1In—, (25)
to

Wi(7) = ooV (1) = wtVi (1), (26)

d ~ 1 =
The particle dynamics in these variables consists of an accel- EnHkBTHCS(T) - f dWEmV\FfHCS(W’ 7, (3D

erating streaming between collisions,

P wheref,c{w, 7) is the scaled one-particle distribution of the
—Ri(D=W(7), HCS. An evolution equation for this temperature is easily
ar obtained by using Eq11),

(27)

d ~ —
5 Wil7) = woWi(7), ((% - 2wO>THCS(T) =~ (Thed 7). (32)

while the effect of a collision between particleandj is to  The solution of this equation is
instantaneously modify their velocities accordingly with the

same rules as given in Egd), i.e., _ 200\ 2 2w -2
Thed7) = (T()) 1+ <_~—1/2 0 - 1) e | . (33
l+a 4 {Thcd0)

Wi — W[ =Db,W; =W, - > (o-W;)o,
It follows that any initial value of the temperature tends to a
final steady value given by

2
. . . . Tst:<2_20> - (34
Of course, this invariance of the collision rules is a conse- 14
quence of the instantaneous character of the hard collisions
or, in other words, of the absence of an intrinsic time scaléAs discussed above, this result only holds as long as the
for hard particles. In the time scale, the Boltzmann equa- system stays indefinitely in the HCS. By means of Edp),
tion (2) takes the form it can also be expressed in the equivalent form

(28)
, lta, ., -
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2wql One of the main technical advantages of DSMC, as com-
fo== (35 pared with other particle simulation methods, is that it allows
Vost to incorporate in the simulation algorithm the eventual sym-
with metry properties of the particular physical situation of inter-
est. The most trivial effect of this is the possibility of increas-
~ \1/2 ing the numerical statistics of the results, but it also permits
~  _ [ 2keTst to force the system to stay with a given symmetry, by elimi-
Vost=\ ™ (36) nating from the dynamics the degrees of freedom associated

with the “irrelevant” directions. For instance, for our present
Therefore,wo/To ¢, is independent o and proportional to  PUrposes we want the system to stay in the HCS, so that no
an intrinsic property of the system, namely, the dimensionsPatial instabilities can be developed in any direction, and at
less cooling rate,. the same time we want to avoid the introduction of finite size
Moreover, once the scaled temperature has reached ifg[€CtS: This can be accomplished by simulating the

steady value, the scaled distribution function has the timé\l'partICIe dyr_mamlcs assouatgd with the.moge.ne_ou30It—_
independent form zmann equation. The way of implementing this in the simu-

lation is by considering only one cell, i.e., any pair of par-
5 c 7 ticles in the system can collide and no attention is paid to
fo(W) = NTgdxned©), ©=— =" (37)  their positions. Since the technical details of the method have

Wost  volt) ' been extensively discussed in the literat{iré,24, they will
. o , not be reproduced here.
Upon writing the last equality fo¢, we have taken into ac- The simulations we will present in the following corre-

count the asymptotic form of,,c(t) given in Eq.(14). The  gpond to a two-dimensional system of hard disks, de:2.
existence of a steady solution of E@9) is enabled by the As already discussed, no boundary conditions are needed
term proportional tow,, so that the acceleration between gince we are simulating homogeneous situations and the po-
collisions is able to balance the loss of energy in them. Insjtions of the particles play no role. For the same reason,
order to avoid misunderstandings, it must be noted that thghere is no system size to be specified. Moreover, the numeri-
fact that the system is in the HCS does not imply by itselfca| data we will report have been averaged over a number of
that the temperature in the scaled variables takes its stea@ygjectories, typically of the order of a few thousands. The
value. This only happens in the long time limit. However, numper of particles in the systemNs=10%, but we insist on
what is relevant is that there is a mapping between the stead)at it has only a statistical meaning, since the dynamics of
state in the scaled representation and the associated HCS, {gg system being used in the simulation corresponds always
arbitrary value of the parameter,. Of course, for any arbi- by construction to that of a low density gas.
trary state of the system, it is possible to relate every prop-~ accordingly with the scenario we have developed, the
erty in the original variables with the corresponditsgaled  simylation of a low density gas whose underlying particle
prop_erty ir_1 the scaled_ representation, but attention will bedynamics is defined by Eq$27) and (28) is expected to
restricted in the following to the HCS. yield a steady state after a relatively short transient period.
In order to confirm the practical usefulness of the steadyayerages of properties in the steady state are simply related
representation, we have carried out DSMC simulatiid  ith the (time dependentproperties of the HCS. In this way,
of a low density granular gas whose dynamics is defined byhe difficulties associated with the fast cooling of the fluid
Egs.(27) and (28). This N-particle simulation algorithm is  \yhen described in terms of the actual variables, leading very
known to be consistent with the Boltzmann equation, in thésoon to numerical inaccuracies, are overcome. One technical
sense that it provides numerical solutions of the equationgint requiring some attention is that the total momentum is
But the results coming from this kind of simulations go ynstable in the mapped representation for all sizes of the
much further and cover all the properties of a dilute gas. Thigystem[13]. Round-off numerical errors lead to the presence
includes, in particular, fluctuations and nonequilibrium cor-gf nonzero total momentum that grow very quickly due to
relations, although the precise relationship between the simyne instability. This is easily avoided by calculating the total

lation algorithm and the theory following from a description momentum at each simulation step and subtracting it evenly
of the system in the context of kinetic theory, or nonequilib-from the momentum of each particle.

rium statistical mechanics, has not been established yet. In | the results to be reported in the following, the unit of
fact, the method tries to mimic, by_means of a Marko_v PrO-time is given by€[2kB'~|'(O)/m]‘1’2, the unit of length i/, the
cess, the dynamics of a low density gas by uncoupling the . ) . .
streaming motion of the particles, given by Eg7), and unit of mass.lsm, andkg has been set eqkla_l to unity. In Fig.
collisions during a small enough time interval, and also byl the evolution of the scaled temperatdrés plotted as a
neglecting velocity correlations in collisions. This is donefunction of the timer for several values ofx, namely, «
independently of the numbé¥ of particles being simulated =0-5, 0.6, 0.7, and 0.9. The value @} used in each case is
(and, therefore, of their number densityn practice, this is  wo={T(0)2/2, with {(a) approximated by its estimate in
implemented by dividing the coordinate space into cells ofthe first Sonine approximation as given by E@$5) and
size smaller than the mean free path, and considering that g24). If this latter expression were exact, the final steady
pairs of particles in the same cell can collide with a probabil-temperature would be exactly the same as the initial one. The
ity proportional to their relative velocity. observed behavior is consistent with the theoretical predic-
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FIG. 1. Evolution of the scaled temperatufeas a function of o
the scaled timer. Units are defined in the main text. The different
line styles correspond to different values @fas indicated in the FIG. 2. The dimensionless cooling ralg as a function of the
figure. coefficient of restitutiona. The symbols are the values obtained

from the simulations, while the solid line is the theoretical predic-

tions. In all the cases the temperature fluctuates around .8 < first Sonine approximation.

steady value after an initial transient time. In the original
time scale, this corresponds to the regime in which the . i i
granular temperature has already reached its asymptotic forﬁhow,n that the scaling is also useful to study time correlation
given in Eq.(14). The steady value is very close to the initial TUnctions.
temperature, as expected, although a small deviation is
clearly identified fora=0.5, indicating the approximated na- V. AVERAGES AND TIME-CORRELATION FUNCTIONS
ture of expressio24) for {,. It is also seen in the figure that IN THE STEADY REPRESENTATION
the amplitude of the long time temperature fluctuations in- ) ]
creases as the value of the coefficient of restitution decreases, Consider a phase function of the form
i.e., as the system is more inelastic. This is due to the change
of the shape of the velocity distribution function and also to
the presence of velocity correlations in the HCS that are
generated by th&l-particle dynamics of the system, even in
the low density limit. This will be discussed in more detail wherel” denotes a point in the phase space of the system and
elsewhere. ~ a(R;,V,) is a given one-particle dynamical variable. The av-
From the values of, the cooling rate, can be obtained erage value oA at timet is
as a function ofa by means of Eq(35). In Fig. 2 these
numerical results are compared with the theoretical predic-
tion given by Eq.(24). As already indicated by the weak
dependence on of the steady temperature in Fig. 1, there is
a very good agreement. The discrepancy observed in the latierep(I,t) is theN-particle distribution function of the sys-
ter for «=0.5 cannot be made out on the scale used in Fig. 2em at timet. This equation is equivalent to
Since the steady velocity distribution has the same form
as the steady representation also provides very accu-
rat()a(HcT:ta for it. Asyanpexample, in Fig. gthe coeffici):a@t (A,t)-jdr f dva(r,v)f(r,v.0), (40
defined by Eq(21) is plotted as a function of the coefficient
of restitution and compared with the approximated expreswhich, using the scaling defined by Eq&5) and(30), can
sion given by Eq(23). In this case, a small but systematic also be expressed as
deviation is observed. The results presented so far in the
above three figures are consistent, and physically equivalent,
to those obtained previously by carrying out DSMC simula-
tions in the actual variables of the system, i.e. by dealing . )
directly with the time-dependent HJ82]. The main advan- Suppose now a dilute system in the HCS. It has been
tage of the present representation is that it reduces the statigStablished in Sec. Il that in the long time limit, the scaled
tical uncertainties by introducing a steady state that mapdistribution function tends to the steady fofig{w) given by
exactly into the HCS. In the following section, it will be Eq. (37), so that Eq(41) becomes

N
A =2 aR,Vy), (39)
i=1

(At) = J drA(T,t)p(T',0) = J drAD)p(T,1).  (39)

<A;t):jerdwa[r,(wot)']wﬁ(r,w,r). (41)
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hl/l(rlvvbt;rivviyt,) = fl/l(rlavlvt; I’i,vi,t')

(A;Ducs= f dr f dwa[r,lio—(t)w}nfst(w). (42
~ fucsv,Dfucdvyt). (49

Vo st

This is the low density limit of Here fq;; is the two-particle two-time reduced distribution

function of the HCS,

(ADucs= J drAT)pe(D), (43
N N
wherel'={R,,W,;i=1,... N}, fia(rpontirgogt’) = .;1 gl dl'pycdI)
o vo(t) Xdr; = Ri®)]dvy - ViH)]
D=2 a{R"@W‘] | 44 X o} = R (0]dlo} - V)],

(50)

andpg(I") is the scaled\-particle distribution of the steady
state. In the low density limit, and by using the same kind of as-

In this way, averages in the HCS are exacﬂy mapped 0nt§umpti0ns as needed to derive the Boltzmann equation, it is
averages in the steady state of the scaled dynamics. It couRPssible to obtain a formal expression fay; involving only
be thought that since EQ42) has been obtained as the |0ng the Steady One-pal’ticle distribution fUnCtiprﬁ]. A sketch of
time limit of Eq. (41) for the HCS, its validity is somewhat the calculations is given in Appendix A. When this expres-
restricted to very low actual temperatufBs.(t). Neverthe- ~ Sion is substituted into Eq48) it is obtained that
less, this is not the case, because formally the initial tempera- "
ture Tycq0) can be as large as wanted and, consequently, Eq. N ~ vo(t
(42) can be applied at any temperatdrgedt). In fact, it is Cag(tt )_J dr1J dw, fSt(Wl)a{rl"'_Wl’T_ Tl}
easily verified that the same equation can be derived from ,
the particularization of Ec40) to the HCS by making the xb{rl, ”~0(t )Wli|- (52)
change of variablev=v, c, without introducing any long Uost
time limit. Of course, the difference is that in this latter case
Thegt), present in Eq(42) throughuy(t), cannot be substi- The time dependence of the dynamical variable given by
tuted by its asymptotic form.

Next, let us consider time correlation functions in the
HCS defined by

Uost

a(ry,wy, 7) = €™8Ma(r;,wy). (52

Cag(t,t') = (ADB(t); Oppes— (A Ded Bt des, (45) WherefB(wl) is the adjoint of the linearized Boltzmann op-
erator around the steady state in the scaled dynamics,

with
J— 0’) J—
Le(Wy) =Wy - — + Ag(wy), (53
(AMB(); O)ncs= | dIAI OB t)prcdl’,0) (46) Ir
and it is assumed thdt>t’>0. The phase functiona(I") — a Ja —
and B(I') are the sum of one-particle dynamical variables, Aslwy) = wgwy - aw, * Ksiwy), (54)
i.e., Ais again given by Eq38) and
N — ~
B(I') = >, b(R;,V,). @a7)  Kelwy) =0 f dw, (o)
i=1
Then, Eq.(45) can be rewritten in the equivalent form X f dor®(Wip - )Wip - 6 b, (Wy, W) — 1]
X(1+Pyy). 55
CAB(t’t,):Jdrlj dvljdl’i ( 12) ( )
The operatofPy, interchanges the subindexes 1 and 2 to its
X f dva(ry,v)b(r], o) hy right. Of course, if the dynamical variabtedoes not depend
on the positiorr, Lg(w;) can be substituted hi(w,) in Eq.

X(rl,vl,t;l’i,vi,t'), (48) (52)
In the particular, but quite frequent case thaandb are
whereh,;; is the two-particle two-time correlation function homogeneous functions of the velocity of degggeand g,
of the HCS defined by16] respectively, i.e.,
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0.15 T T

(A(7)B; 0)st= f dlps (AT, DB(IL), (61)

with A(I') and B(I") given by Egs.(38) and (47), respec-
tively. Besides,A(I',7) is generated fronA(I') by the dy-
namics defined by Eqg27) and (28), and ps(I") is the
N-particle distribution function of the steady state eventually
reached by the system. Although the existence of this state is
not rigorously proven, it is supported by the discussion car-
ried in Sec. lll at the level of the Boltzmann equation and
also by molecular dynamics simulatiofist,25. The DSMC
method provides an efficient tool to generate Myparticle
dynamical representation of a dilute gas, that is consistent
with the Boltzmann equation. In summary, it allows for the

0.10

a, 0.05

0.00

~0.05 . . direct evaluation of Eq(59) in the low density limit, where
04 0.6 0.8 1.0 it is equivalent to Eq(58).
o An important application of the above ideas is the evalu-

N S _ ation of the Navier-Stokes transport coefficients of a dilute
FIG. 3. Coefficienta, defined in Eq.(21) as a function of the  granular gas composed of hard spheres or disks. In Refs.

coefficient of restitutionr. The symbols are from the DSMC simu- [12,26,27, these coefficients were derived from the inelastic
lations, while the solid line is the theoretical prediction discussed ingg|tzmann equation by means of the Chapman-Enskog pro-
the main text. cedure, eigenfunctions expansions, and linear response
theory, finding equivalent results. The expressions of all the

vo(t) vo(t) | transport coefficients are proportional to time integrals of

v~ Wi | == (re,wy),

correlation functions of the form

Uost Uost
(56
’ n g —
b{rl, l >Wl] _ [vgﬂ >} 900, Dufs= [ deupcdciatcusiicy, (62
0,st 0,st

with the time dependence afc,s) determined by
the time-correlation function becomes

a(cy,s) = Ma(cy), (63
Uql(t)qu(t') -
Cap(t,t’) = O’l;quz J drlJ dw; fe(wpa(r,wy, 7= 1)
0,st

«b(FLWy). (57) Kc(cl):JdCZXHCS(CZ)fd&(CIZ'&)CIZ'&[bG(Clacz)_1]

In the context of the steady representation of the HCS of
a low density granular gas as discussed in this paper, the
relevant point of the above analysis is the following: suppose
that a property of the gas can be expressed in terms of theinally, the time scale is defined as

time correlation function
b oolt)
o= f ar 2ot (65)
0 €

o d
X(1+Pqo)+=Cy - —. 64
( 12) 201 TS (64)

(a(nb)g = f dr f dvfe(v)a(r,v,Db(r,v), (58
Although the above representation is appropriate for for-
mal manipulations, for computational purposes the dynamics

with the time-dependence air,v, ) given by Eq.(52. A agsociated with the operatdr, presents the technical com-
slight modification of the preceding discussion shows thablication that it involves the cooling rat&, that therefore

this is the low density limit of must be knownra priori instead of being determined by the
simulation itself, as it is the case for the scaled dynamics

Capst(7) =(A(7)B;0)g; — (A)s{B)st, (59) being used in the present paper. For this reason, it is conve-
nient to transform EQ(62) by writing it in terms of that
where dynamics. This is easily accomplished by introducing
go 2(1)05 ~
=—sS, w= c= C. 66
(A= J dlp(DAT),  (B)g= j dCpe(D)B(T), ™ o ;, = Yos (66)

(60) Then, for an arbitrary functiog(c) it is obtained
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sA.g(c) = sztg<~£) : (67)

Uost

where/TSt is the operator defined by E¢p4). It follows that
Eq. (62) is the same as

S GNLE UA
Dab(s) B N<a(50,st,7)b(50,5t)>5t,

where we use the notation introduced in E8B). The above

(68)

result relates the expression of the transport coefficients of ¢
dilute granular gas, as obtained from the Boltzmann equatior

for the one-particle distribution function, with the low den-
sity limit of time-correlation functions in thé&l-particle dy-

namics, computed in the steady state of the scaled represel

tation introduced in Sec. lll.

V. SELF-DIFFUSION

In Ref. [28], the expression of the self-diffusion coeffi-

PHYSICAL REVIEW E 69, 051303(2004

1.0 T T T T
; oo 0=0.9
sema =07
08 e 0=0.5 1
< 06 |
3
<)
Qo 0.4 |
0.2 |
me:x‘**
a&:.ﬁﬁ:a***
0.0 o
0 2 3 4 5

FIG. 4. Time evolution of the normalized velocity autocorrela-
tion functionC,,(7)/C,,(0) as a function of the scaled time The

cient D of a dilute inelastic gas of hard particles has beenresults for three different values of the coefficient of restitution
derived from the Boltzmann-Lorentz equation by theare shown, as indicated in the figure.
Chapman-Enskog procedure. In Appendix B it is shown that

the results reported in RgR28] can be expressed in the form

e (7
D= %fo dsf dcypcedo)c(s) - ¢

_ o) [ _
~U—o,stNd Jo dt(w(t) - w)g;. (69)

In the last transformation we have used E§). In fact, this
is a special case, since the time dependence(®fis not
given by the linearized Boltzmann collision operatfgras in

Eq.(63), but by the Lorentz-Boltzmann onfg; (c), defined
in Eq. (B11),

N N
> 2 | dlpg(TWi(D) - W;.

i=1j=1

(74)

Of course, this has to be taken into account when computing
the self-diffusion coefficient by means of DSMC simula-
tions.

Figure 4 shows the velocity autocorrelation function
C,,(7) for three different values of the coefficient of restitu-
tion. It is seen that it decays quite fast to zero, implying the
convergence of its time integral and, therefore, the existence
of the constant diffusion coefficient. The value of the veloc-
ity autocorrelation at each timeis based on an average of
all the times included in the simulation, once the steady state

c(s) = e L0, (70 has been reached. In Fig. 5, the same quantity is plotted on a
Consequently, in Eq69) it is o
10° 18, . .
N §§** oo 0=0.9
w(7) = e™LsiWyy, (72) e
Q‘Q'A%*‘*_ Breeene A 0C=0.7
a.ﬁl *y
o S, % 0=0.5
— _ N B‘QAA. ¥, N
Rovaiw) =02 [ awifuiwy) | d6(g- - b, (wwy) S
o B T
m‘a_ AA *. .
1] + §0 (9 (72) @ > Q’& ‘A}AA b **.*
- T E— T 2 L o *x E
2 A Q 10 a&b AA‘A_A. *"***
Q> E‘Q-Q AAA. ***
Nevertheless, all the reasonings in Sec. IV and Appendix A W ****_*_
can be easily adapted to the present case. The only, but rel 0o L Sa, AAM ***.*E
evant, difference, is that now the expressfui(t) -w),; is the ‘GQ_Q 2,
low density limit of RN
Qn A’A
. 10 ‘ . ‘
Cop(n =2 | dlpsDIWi(t) - W, (73) 0 1 2 3 4
i=1 T

and not of

FIG. 5. The same as in Fig. 4 but on a logarithmic scale.
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of a if D"(@) is computed in the second Sonine approxima-
tion. Although the analysis is restricted to the case of inelas-
. tic hard spheres, it seems sensible to expect the same kind of
behavior for a system of inelastic hard disks.

As already mentioned several times, the main feature of
the numerical method used here is that it takes advantage of
the steady representation of the HCS, removing any limita-
tion on the time on which trajectories of the system may be
followed. In addition, let us point out that the analysis of the
self-diffusion coefficient based on the velocity autocorrela-
tion function as developed here, is expected to give more
accurate results, from a statistical point of view, than those
based on the mean-square displacement. This is because,
while each value of the former in a given trajectory of the
system is obtained from an average over the whole simula-
1.0 ' ‘ g tion interval, each value of the latter is obtained from a

0.4 0.6 0.8 1.0 ) .
o single evaluation.

2.0

1.5

FIQ. 6. Dimensiqqless reducled.dif'fusion coefficiddt as a VI. DISCUSSION AND CONCLUSION
function of the coefficient of restitutioa. The symbols are from
the simulations, while the solid line is the theoretical prediction In this paper, the actual dynamics of a low density granu-
from the Chapman-Enskog procedure in the first Soninelar gas composed of smooth hard inelastic particles has been
approximation. transformed to another one in which the HCS becomes time
independent. In this way, the need for more or less uncon-
logarithmic scale where an exponential decay for all times igrolled mechanisms such as internal thermostats in order to
clearly identified. get a stationary state is eliminated. The transformation is
From the velocity autocorrelation function the self- closely related to the fact that the temperature of the HCS
diffusion coefficient is obtained by means of the Green-Kubddecomes independent from its initial value in the asymptoti-
relation(69). Figure 6 shows the ratio of the obtained valuescally long time limit, a property that has not received enough
D(Tyes @) to the elastic limitla— 1) of the value predicted attention up to now. The exact correspondence between both
by the Chapman-Enskog method in the first Sonine approxiformulations for averages and time correlation functions has
mation Dy(Tycg), namely, been explicitly established. This requires to consider the ki-
netic equation for the one-particle distribution function, i.e.,
the inelastic Boltzmann equation, and also the equation for
the two-particle and two-time correlation function in the low
density limit. The latter is obtained by extending in a natural
way the standard methods of kinetic theory. In particular, it
(76) has been shown that the steady temperature directly deter-
mines the value of the cooling rate of the system. Then, the
DSMC method has been used to measure it and the numeri-
cal results have been compared with the theoretical predic-
tions obtained by solving the Boltzmann equation in the first
-1 Sonine approximation.
(4+a- 36!2)] . (77 The introduction of the steady representation of the HCS
enables the evaluation of the Green-Kubo expressions for the
The agreement between theory and simulation is quitéransport coefficients of a dilute granular gas by means of the
good in the whole range of values afconsidered, although DSMC method, just as for normal fluids whose particles col-
a systematic deviation, which increases as the value: of lide elastically. To put this in a proper context, we have em-
decreases, is observed. Self-diffusion in the HCS of a systemphasized that the DSMC method is not just a numerical tool
of inelastic hard sphergsl=3) has been previously studied to solve the Boltzmann equation, but it formulates an effec-
by means of DSMC in the actual variables, i.e., under contive N-body dynamics that is expected to be equivalent to the
tinuous cooling, in Ref[28], where the diffusion constant Newtonian one in the low density limit. Moreover, it has the
was calculated from the mean-square displacement by meaaslivantage of allowing to incorporate in the own effective
of the (inelastig Einstein relation and also from the linear dynamics of the particles the symmetry properties of the par-
response of the system to a density perturbation. The conticular state being simulated. So, it is possible to force the
parison between the numerical results obtained there and tleystem to stay homogeneous, avoiding the spontaneous de-
theoretical prediction given by E@77) is very similar to the velopment of spatial inhomogeneities associated with the
one presented in Fig. 6. Very recenfB#], it has been shown clustering instability. Here this has been illustrated for the
that the agreement improves over the whole range of valuesimplest case of self-diffusion, whose expression involves

D(Thcs @)

e Do(Thee

(75)

I(d/2)d [ kgThes\?
Do(Thee) = 477(d—1)/2n0_d—1< m :

Also plotted is the theoretical prediction f@'(«) again in
the first Sonine approximatiof28],

agle)

D'(e) = 4{(1 +a)?- 6
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the velocity autocorrelation function. The results have been Tost
compared with the theoretical prediction obtained by the W:v_(t)v' (A5)
Chapman-Enskog method and also with previous numerical 0
simulations carried out in the actual dynamics in which therespectively. We are using the same symbols as in Sec. lll
HCS is time-dependent. The study of the remaining Naviersince we have seen that in the long time limit the scaling
Stokes transport coefficients will be reported elsewhere.  defined by Eq(A4) is equivalent to that defined by E@®5).

In summary, we believe that the transformed dynamicsThe scaled correlation function is

discussed in this work is of both formal and practical interest 4
for the study of granular fluids in the low density limit. Al- v, wy, 7w}, 7') = [M] hya(rnontirolt)
though we have restricted here ourselves to its application to U0t

the HCS, the mapping with the actual dynamics can be easily (AB)

extended to any arbitrary state.
and, in terms of the new variables, E&1) becomes
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APPENDIX A: LOW DENSITY LIMIT OF TIME-

J
Ag(wy) = KgWy) — wog— W A
CORRELATION FUNCTIONS IN THE HCS stWa) = Kswa) PO, T (A8)

In the low density limit, neglecting three-patrticle correla- whereKg, is the steady linear Boltzmann collision operator
tions, the functiorh,;; obeys the equation,

KSt(Wl) =0 d_lf dWZJ da’@(wlz . (})le . 6’

J 17

[—+v1-——K(vl,t)]hl,l(rl,vl,t;ri,vi,t’)=0, -
gt on X[ 205wy, W) = 1](1+ P1)Te(wa). (A9)
Al

(A1) Integration of Eq(A7) gives

whereK is the linearized Bolztmann operator ~ R R o
Ryja(ra, Wy, 7373, Wy, 7') = € BNy p(rg,Wa, 7513, Wy, 7)),

K(Ul,t) = O'd_lf dvzf d(}@(vlz . (})|U:|_2 . (}|(C¥_2b0._ 1) (Alo)

J
X(1+P)fpcdvat). (A2) La(Wy) = Ag(Wp) =Wy -~ (A11)
1

The permutation operatdf;, mterphapges the indexes 1 an_d The initial condition on the right-hand side is
2 of the velocities appearing to its right. The above equation
Qngdsiti?r:t>t’>0 and it has to be solved with the initial hya(ry,wy, WL T) = oL W T W, 7)
. s + 8(ry = 1) 3wy = Wi fwy),
hya(r, ot r,00t") = o pedr, v, v,t)

(A12)
+8(ry—ry) v, —vyf ), .
(ry =11 w1~ vy frcdvyt’) with
(A3)
~ ' r — vo(t,) 2 )
2 Hes being the two-particle one-time correlation function of G2 Hes(ry,Wa, M, Wy, 7') = Tour Garuvg,rogt).
s

the HCS. Equation(Al) can be derived by the hierarchy
method starting from the pseudo-Liouville equation for a (A13)
system of inelastic hard spheres or disks. A detailed analysis Now the assumption is made that the contribution to Eq.
for the elastic case is pres_ented in H&ﬂ. S|_nce th_e same  (A10) coming fromg, can be neglected in the low density
method can be applietutatis mutandiso the inelastic case, |imit we are considering. Although there is no explicit proof
it will be not reproduced here. Now, time and velocities aréfor this, it is consistent with the hypothesis made to derive
scaled by the Boltzmann equation. On the other hand, it must be real-
) , ized that the HCS is not an equilibrium state and, therefore,
T:f dt’M (A4) it can present relevant position and velocity correlations, but
0 Vost we expect them to become negligible for asymptotically
small densities. Then, substitution of E&12) into Eq.(48)
and yields
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cuttr= [, o o o]
- o o[ [ ] 1.2

1%
o ~o( )
Vo st
li

(t')
r,—=
Vo st

gl

Wi] 8ry—ry) 8w, - wiﬁst(wl)eW”LB‘Wﬁa{ r1=
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’ UO(t ) ’
1r ~
Uo,st

ot o =T

.

vo(t)

Uo st

" t
J dry f dwlfst(wl)b{rl, ~( ) ]e(” >LB<W1>a[rl, ’f’( )wl], (A14)
Uost Uo,st
[
wherefB is the adjoint ofLg and it is given by Eq(53). The o d B =
above equation is the same as Esf). KeLc Jc CB(C) = Cxrcs(C), (BS)
with
APPENDIX B: GREEN-KUBO EXPRESSION FOR SELF-
DIFFUSION FROM THE CHAPMAN-ENSKOG Uo(t)
RESULTS B(O="{"B() (B6)
In Ref. [28], the self-diffusion coefficient of a dilute and
granular fluid was obtained from the Boltzmann-Lorentz by ¢
the Chapmann-Enskog method. Equati¢24) and (26) in KgLc(€) = ()KBL(U) (B7)
the above-mentioned reference are
The formal solution of Eq(B5) can be written as
1 %
D=- a f dvwv- B(v)! (Bl) E(C) - _ J dSéABL’C(C)CXHCS(C), (BB)
0
whereB(v) is the solution of the integral equation
( J
1 Agc(C) =Kpc(C) — T (B9)
<KBL +{ucsThes; 77— )B(U) = —vfpcdv), (B2
dThe Ny

Kg. being the inelastic Boltzmann-Lorentz collision operator

KgL(v) =0 d_lf dvlf do0(g- 6)g- ol 2 v,v,)
— fpcdoyt). (B3)

We introduce dimensionless time and velocity scales by

S:J dt'——
0

In terms of them, Eq(B2) becomes

vo(t’ )
4

v

=0 (B4)

Substitution of Eq(B8) into Eq.(B1) gives

e [~
:Uoij) fo dsf dec - el cycd0)]

e [~ A
=—”°g) f ds f dcfe*eLec] - cxce(©), (B10)
0
whereKBL,C(c) is the adjoint ofAg ((C),

KBL,C(Cl):JdCZXHCS(CZ)fda@(clz'&)clf&[bo-(claCZ)

- 1]+ %’cl (B11)
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