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Abstract: - This paper presents a comparison between Kalman filter and the running DFT for the computation of 
harmonics in power systems applications. The performance of both filters is compared for events like voltage dips 
or those in which a  decaying DC component is present. The comparison considers also the presence of higher 
order harmonics. 
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1   Introduction 
Many power systems applications, like digital 
protection or power quality assessment, rely on the 
accurate computation of harmonics. Although the use 
of the short-time discrete Fourier transform (STDFT) 
has been extensively considered for this purpose, other 
techniques are also available [1], [2], [3]. 
Among them, Kalman filtering shows great promise 
because its estimate is unbiased and optimal in the 
sense that the covariance of the estimation error is 
minimized. 
 
In this paper the basic theory of the STDFT and 
Kalman filter will be first reviewed, as well as the 
Kalman filter models available for harmonic 
estimation. 
 
The comparison presented in this paper considers 
three main scenarios: A) Single harmonic model and 
sudden amplitude dips at different phase angles of the 
purely sinusoidal signal. B) Decaying DC component 
at different phase angles, and C) Presence of higher 
harmonics to be modeled in the Kalman filter.  
 
 
2 Short-time Discrete Fourier 
Transform 
The Short-time discrete Fourier transform (STDFT) or 
running discrete Fourier transform of a signal )(nz  
and window length N can be seen as the discrete 
Fourier transform (DFT) of the sequence 
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where nkZ )( is the harmonic number k  
( 1,1,0 −= Nk K ) at  time instant n . 
 
The computation of every harmonic can be seen as the 
output a digital filter, with a frequency response 
similar to that of figure 1, for the fundamental 
harmonic ( 1=k ), where it can be easily verified that 
each filter rejects perfectly the presence of other 
harmonics: 
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 Fig. 1: Frequency response of the fundamental 
harmonic filter nZ )1( . 
 
Direct computation of a single harmonic using 
equation (1) involves O( N ) floating operations but 
several algorithms have been developed to reduce this 
computational cost. Recursive algorithms like [4] or 
[5] have low cost, independent of N , but long-term 
accuracy deterioration has been reported [6]. 
Non-recursive algorithms, like [7], [8] are free of these 
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problems and still have a low computational cost, 
O( Nlog ). 
 
3   Kalman Filters 
Kalman filtering theory assumes a system model with 
the following equation in the state space 

)()()()1( nwnxnnx +Φ=+  
and a measurement model given by 

)()()()( nvnxnHnz +=  
where 

• )(nx  is the state vector 
• )(nΦ  is the state transition matrix 
• )(nH  is the measurement matrix. 
• )(nw  and )(nv  are the model and the 

measurement error vectors. Each of their 
components is considered to be a white noise. 
The covariance matrices, )()( TwwEnQ =  
and )()( TvvEnR =  respectively, are 
assumed to be diagonal matrices of constant 
terms: IQnQ 0)( =  and IRnR 0)( = . 

 
Having a priori knowledge of error covariances 
Q  and R , the filter can be implemented with the 
following equations 
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where )(ˆ nx  is the estimation of )(nx , 
)(nK  is the Kalman gain, )(nP  is the covariance 

matrix of the estimation error,  
[ ]TxxxxEnP )ˆ)(ˆ()( −−= , )(ˆ nx−  and )(nP−  are 

estimations at instant n  using only information 
available at instant 1−n . 
 
The filter needs initial values for the state estimation 
vector )0(x̂  and estimation error covariance )0(P ,  
which is considered to be diagonal, IPP 0)0( = .  
However, these values are not especially relevant 
since their effect only last for the first instants.  
 
3.1 Model for a single harmonic  
Estimating a single harmonic leads to the state vector 
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where 1C  and 1S  are the real and imaginary 
components.  
For the fundamental harmonic, two approaches are 
possible for the transition and measurement matrices.  
Let N  be the number of samples for a period of the 
signal, so, the first approach leads to a constant phasor 
in steady state: 
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while the second one leads to a rotating phasor: 
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where N/2πφ = . 
 
Although the same results are obtained in both cases 
provided the rotation is taken into account, the second 
approach has the advantage of having matrices of 
constant coefficients. 
 
3.2 Model for decaying DC component  
This is a usual case in digital protection applications 
where an exponentially decaying component is present 
during the faulted period. 
 
In this case, the state vector  
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should be used, being 0X  the decaying DC 
component. 
 
With this state vector and considering the rotating 
phasor approach, the transition and measurement 
matrices are: 
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where λ  is the time constant of decay, which can be 
estimated from the equivalent impedance of the 
network, eqeq RL /=λ .  
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3.3 Model for higher harmonics  
When p  harmonics have to be modeled: 
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The transition and measurement matrices are 
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4   Comparison 
Performance of STDFT and Kalman filters is 
compared in this section for several cases. The signal 
under study is sampled 16=N  times every period 
and the Kalman filter uses 10 =Q , 01.00 =R , 

0)0(ˆ =x  and 100000 =P , like in [9]. 
 
4.1 Single harmonic  
To compare both techniques, a signal which is purely 
sinusoidal except for a two-cycle dip is supposed: 
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Fig. 2: Performance for sinusoidal signal, 0=ϕ  
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Fig. 3: Performance for different phase angles 
 
 
In figure 2, the performance for Kalman and STDFT is 
shown for the signal with 0=ϕ . The Kalman filter 
converges within the first 3 samples due to the high 
value of 0P .  
Convergence time at the subsequent dip transitions 
still remains faster than that of SFDFT, which is one 
period ( 16=N ). 
 
Figure 3 shows the performance for different values of 
ϕ , including 0=ϕ and 2/πϕ = . It can be seen that 
the Kalman filter presents strong oscillations for some 
sinusoids, while SDTFT has a quite uniform behavior, 
but a little bit slower than the Kalman filter. 
 
4.2 Decaying DC component  
This comparison considers the case of a decaying DC 
component added to the sinusoidal signal from the 
instant 32=n  on: 
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where )/2cos(100)( ϕπ += Nnns  and 16=λ . 
 
Figure 4 shows that the Kalman filter is able to 
converge to the correct value of the harmonic in the 
presence of the decaying DC component, while the 
STDFT remains with oscillations even after one 
period. This good behavior of the Kalman filter is 
checked for different phase angles in the sinusoid, as 
shown in figure 5. In this figure, it can seen that the 
convergence time and the results of the DC component 
do not depend on the phase angle. 
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Fig. 4: Comparison for decaying DC component  
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Fig. 5: Kalman performance for decaying DC 
component and several phase angles 
 
 
4.3 Higher harmonics  
This test is carried out improving the model of the 
Kalman filter to consider up to 4=p  harmonics. The 
result is shown in figure 7, where it is clear that even 
the model for 2=p harmonics slows down the 
Kalman filter convergence time compared with that of 
the STDFT. Convergence is similar to that for larger 
values of p . 
 
These results are not significantly affected by the 
presence of the modeled harmonics, as shown in 
Figure 7 for the case 4=p  and purely sinusoidal 
harmonics 2, 3 and 4 of amplitude 10. 
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Fig. 6: Performance for large number of harmonics in 
the model 
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Fig. 7: Performance for large number of harmonics in 
signal and model. 
 
 
5   Conclusion 
The STDFT shows quite a uniform convergence 
within a period to the proper value of the harmonic, 
despite the presence of higher harmonics. However it 
can not deal properly with the presence of decaying 
DC component, which produces ripple around the 
correct harmonic magnitude. 
 
On the other hand, the Kalman filter shows faster 
convergence than a period when a single harmonic is 
present, but sensitivity of this filter to non-modeled 
components makes it necessary to enlarge the Kalman 
model. The enlarged model comprising higher 
harmonics slows down the filter convergence, but in 
the case of decaying DC component provides the 
correct output as soon as the DC component is 
properly estimated. 
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