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ABSTRACT

Traditional building materials and techniques should be preserved when selecting retrofit strategies.
The most recurrent energy retrofit strategies proposed for the historic centre of Oporto are mainly fo-
cused on achieving, or even overlapping, the reference U-values established for the external envelope
on national energy regulations, although historic sites are not obliged to comply with it. On the other
hand, national cultural heritage preservation policies, by allowing alterations on these historic buildings
interior, validate the adding of thermal insulation materials on internal walls. Nevertheless, these inter-
ventions may put to risk architectural patrimonial values, hence, sustainable ones. A more opportune
intervention could be the enhancement of the windows performance, due to its most common bad state
of conservation. This article analyses the performance of two non-intrusive retrofit strategies, in a rep-
resentative model of these buildings: the enhancement of ventilation and the substitution of the single
glazed windows for double glazed ones, and the two combined. On a first approach, using as a reference
the heating loads limits established in the energy regulation of 2013 and the normative methodology,
it is calculated the corresponding number of hours of daily heating use, in order to stand below these
limits. The results obtained showed that this is attainable, in comfortable conditions of heating use.
In order to achieve more accurate results and conclusions a dynamic simulation was performed using
energy models, for the heating and cooling season. The enhancement of ventilation proved to be the
most effective retrofit strategy.
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1 INTRODUCTION

Vernacular architecture is an example of building within inherent sustainable characteristics:
energy, materials and local resources. The Historic Centre of Oporto (HCO), inscribed as
UNESCO’s World Heritage since 1996, is nowadays still threatened by the degradation of
its urban built heritage, partly due to the exit of resident population. In order to invert the
current tendency of desertification of the historic centre, it is crucial to adapt these build-
ings to a complexity of contemporary demands: thermal performance, technical systems,
maintenance, ecological and recyclable materials, waste management and others. Nowadays,
Europe’s approach to the heritage retrofitting of historic centres is associated with sustain-
ability criteria, seeking to incorporate European regulations on building’s habitability and
energy efficiency. Although the buildings located in historic areas are exempt from these
regulations, studies were carried out [1, 2], recommending to the HCO buildings some energy
retrofit strategies. In the opaque envelope (walls and roofs) it is proposed the adding of ther-
mal insulation in order to approach the heat transfer coefficients (U-value) defined in the
energy regulations, or even to overcome them. This approach tends to evaluate architecture
only by its level of energy efficiency and external image. These recommendations can how-
ever enhance the loss of heritage values, such as original plaster work. The glazed areas are
also the subject of proposals that can reduce both the U-value and the solar factor. These
windows interventions are quite opportune, due to its most common state of conservation.
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Besides some key factors acknowledged to determine the influence of daylighting in build-
ings thermal performance [3, 4] such as the fenestration factor (FF = window area/room
area), the window wall ratio (WWR = glazing area/external facade area) and the effective
aperture (EA = WWR x solar factor), it also recognized the importance of ventilation in the
hygrothermal performance of buildings. Whereas, in Oporto, the cooling demand is about
10% of the heating demand, ventilation has a great impact in the winter season and ventila-
tion may be responsible from 30% up to 50% of the total heating demand, which leads to a
need to minimize the infiltration rates in order to reduce energy consumption [1]. This has
been confirmed in different countries [5—8]. Recent studies [9] confirm that, in the HCO
buildings, it is possible to obtain a significant reduction in the heating demand, improving the
infiltration rate. Moreover, by measuring the airtightness in two non-refurbished characteris-
tic buildings, some relations between the infiltration rates and the buildings’ morphological
and typological characteristics were pointed out [10].

This article establishes an operative methodology aiming to position these buildings in
relation to the Portuguese regulation on building’s energy demand, and the limits thereby
defined, focusing on the heating loads as the most expressive comfort request in Oporto.
According to this city’s climate, some authors [1] defend the notion of ‘real use’, which states
that no cooling is used and the heating is used at 30% of its total load. On the other hand, we
can determine the heating loads in a permanent regime and then define the hours of use in
order to maintain the building below the energy loads limits.

2 ENERGY REGULATIONS

Nowadays, Europe’s approach to the heritage retrofitting of historic centres is associated with
sustainability criteria, seeking to incorporate European regulations on building’s habitability
and energy efficiency. Regarding the thermal performance of buildings, the EPBD 2002/91/
CE [11] was incorporated in 2006 in the Portuguese regulation, comprising a revised version
of the RCCTE [12], formerly published in 1990. The 2010 Energy Performance of Buildings
Directive [13], and the 2012 Energy Efficiency Directive [14], generated in 2013 the current
REH [15], regarding specifically the housing buildings. The REH establishes the parameters
and methods of characterization of the energy performance of the housing buildings as well
as promoting the improvement of its thermal performance.

This regulation is mainly focused on new buildings, excluding ‘buildings integrated on clas-
sified sites, (...) whenever the accomplishment of the minimum energy performance require-
ments is susceptible to modify in an unacceptable way its character or feature’. Although the
buildings located in historic areas are exempt from these regulations, studies were carried out
[1, 2], recommending to the HCO buildings some energy retrofit strategies. In the opaque
envelope (walls and roofs) it is often proposed the adding of thermal insulation in order to
approach the heat transfer coefficients (U-value) defined in RCCTE, or even to overcome
them. The glazed areas are also the subject of proposals that can reduce both the U-value and
the solar factor. These windows interventions are quite opportune, due to its most common
state of conservation and the energy potential of daylighting.

3 ARCHITECTURAL AND ENERGY HERITAGE
Mostly erected between the 17th and the 19th centuries, the HCO buildings present morpho-
logically a quite narrow width and a large length. The typology of the facades is mainly char-
acterized by three windows per floor. These typologies create a harmonic street design, quite
determinant in the UNESCO’s classification (Fig. 1). However, this historic centre should
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Figure 1: Street facades.

not be acknowledged merely as a set of harmonic facades to preserve. National cultural herit-
age preservation policies tend to interpret as the unique heritage value of these buildings, by
allowing alterations on its building’s interior. We must explore the potential of non-intrusive
retrofit strategies, once internal adding strategies may put to risk these building’s sustainable
inherent value. In these buildings interior, there is both an architectural and energetic herit-
age to preserve, such as original plaster work and its internal wooden shutters (Figs 2 and 3).

Figure 2: Plaster work (left, middle) and wooden shutters (right).

Figure 3: Wooden shutters detail (no scale).
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These wooden shutters are an example of a refined architectural design. The masonry walls
are dimensioned to embrace them, when they are in the opened position (yellow). Energeti-
cally speaking, as a shading device, they reduce the solar heating gains in summer and reduce
the heating losses in winter. The window’s medium U-value is 5.1, when opened all day,
achieving 3.4, when closed by night (U, for glazing = 3.3). By proposing the adding of inter-
nal insulation on the walls, we may threaten the maintenance of these wooden shutters and
the original design. If not, the risk of thermal bridges is also increased (blue). On the other
hand, we may redesign the original carpentry and substitute the single glazing window for a
double one. This is particularly opportune due to its most common bad state of conservation.
In addition, this may lead us to an improvement of the air infiltration rate.

In a previous study [16], two retrofit strategies were simulated in a representative model of
these buildings, according to national RCCTE’s methodology: the enhancement of ventila-
tion (R.1) and the substitution of single glazed windows for double glazed ones (R.2). Three
models of typological retrofits were defined, using as a criterion the most usual ownership of
these buildings. Analysis of data obtained evidenced the energetic potential of these buildings
on its genesis. Considering the existing building, before any constructive retrofit intervention,
it is possible to achieve a variable daily heating use, according to each dwelling pattern. The
fact of closing the internal wooden shutters by night corresponds to a minimum hour gained
in the heating use for all dwellings. Even with the shutters left open, the hours of heating
use go from a minimum of 12 h to a maximum of 15 h and 17 h. The intervention R.1, using
double glazing, allows one more hour gained of heating use. On the other hand, the enhance-
ment of ventilation (R.2) corresponds to a gain of 2 h. The conjunction of these two strategies
(R.3) permits a heating use from a minimum of 15 h to a maximum of 22 h. These results
are rather superior to the previously referred notion of a real use of 30% of the heating loads,
equivalent to 8 daily hours. In addition, it was possible to infer that the FF (FF = window
area/room area) and the WWR (WWR = glazing area/external facade area) are morphological
parameters determinant in the hygrothermal performance of the buildings.

4 METHODOLOGY
In the study area, a representative model of these buildings was elected, taking into account
both its length/width proportion and its facade characteristics (Fig. 4): three windows per
floor comprising the existing three windows typologies. The main street facade is in Sdo Jodo
street, 12 m width, west oriented (+22°), and the other one is in Mercadores street, 4 m width,
east oriented (+13°).

4.1 Dwelling units definition

This building has six storeys, lagged on the ground floor and top floor, due to the differ-
ent street levels. The ground floor is usually for commerce, with a private staircase. The
garret is non-habitable. This article defines three dwelling units (Fig. 5), corresponding
to three models of typological retrofits, using as a criterion the most usual ownership
of these buildings: A — one residence with five storeys; B — one residence per storey
(four dwellings adapting top floor, B.4); C — one residence per storey and orientation
(9 dwellings).
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Figure 4: West facade (left) and east facade (right).
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Figure 5: Dwelling units’ schemes.
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Table 1: Morphological characterization of the dwelling units.

659

Dwelling Area Volume External surfaces Internal surfaces
units o . o o
Floor Window Wall Total b =03 b =06 b, =06 b =0.9

A 490.8 15726 674 107.6 1750 - 113.6 5359 110.1
B.1 113.6 3693 15.1 20.5 360 46.0 113.6 1247 -
B.2 1094 3720 15.1 27.8 429 50.7 - 127.9 -
B.3 109.4  366.5 17.8 245 422 500 - 126.0 -
B4 1094 3424 13.8 25.6 394 46.7 - 117.8 1094
C.1.1 574 186.5 104 102 206 205 574 58.7 -
C.2.1 574  195.1 7.7 139 216 215 - 614 -
C3.1 574 1922 10.4 10.8 213 212 - 60.5 -
C4.1 574  179.6 7.7 121 199 198 - 56.5 574
C.12 53.8 1748 5.0 103 153 204 53.8 55.9 -
C22 49.0 166.5 7.3 140 213 214 - 53.6 -
C3.2 49.0 164.0 7.3 13.6 210 21.1 - 52.8 -
Cc4.2 49.0 1532 6.1 13,5 196 19.7 - 49.4 -
C52 49.0 1224 54 9.1 145 157 - 394 49.0

Table 2: Constructive characterization and heat transmittance of the building’s elements.

External finish Structure

Internal finish

U-value (W/m?K)

Facade wall - W Lime mortar
Facade wall - E

Roof
Party wall

Floor
Internal wall

Lime mortar

Ceramic tile

Granite 86 cm

Granite 53 cm

Wood

Granite 60 cm

Wood
Wood

Plaster
Plaster
Plaster
Plaster

Plaster
Plaster

1.87
2.39
2.30
2.01

1.20
1.20

Table 1 specifies the areas and volume of each dwelling unit, while Table 2 presents its con-
structive materials and corresponding heat transmittance (U-value). The building has a 5 mm
single glazing, within a wooden frame, with internal wooden shutters (U-value = 5.1 W/m?*K).

4.2 Simulation schedule

Two different scenarios were established for the existing building (E). The simulation E.a
corresponds to closing the shutters at night, presenting a medium U-value of 5.10 W/m?K.
Simulation E.b supposes leaving the shutters open, presenting a medium U-value of 3.40
W/m?K. For the heating demand calculation, REH defines the use of a transparent inner
curtain, equivalent to a solar factor (g-value) of 0.70 for single colourless glass and 0.63
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Table 3: Simulation schedule.

ID Parameter Variable

E.a  Single glazing with internal curtain ~ g-value = 0.70
Wooden shutters closed by night U =340 W/m?*K

Single glazing with internal curtain ~ g-value = 0.70

Eb Wooden shutters opened by night U =510 Wm?K
R1 Double glazing with internal curtain ~ g-value = 0.63
Wooden shutters closed by night U =2.00 Wm?K
R Enhancement ventilation 0.60 ACH
E.a
R3 R
R.2

for double colourless glass. For the existing building simulations, it was considered a
natural ventilation with a value of 0.90 ACH, as established by the normative for non-classi-
fied windows. Three retrofit strategies (R) were defined. The intervention R.1 corresponds to
the replacement of single glazing for a double glazed one, which can be done by constructing
anew wooden frame following the original design. The intervention R.2 establishes for natural
ventilation the regulation’s minimum value of 0.60 ACH. The simulation R.3 comprises R.1
and R.2 altogether. Table 3 presents the different parameters defined and the respective vari-
ables affected.

4.3 Heating loads calculation

All the calculation methodology is fully detailed in the normative [14]. The main changes in
the new regulation (REH) comprise an actualization on the 2006’s climate data; the degree
days (DD) for the heating season, on a basis of 18°C (formerly 20°C); corrections of several
parameters due to altitude (M — heating season period, DD — number of degree days, ¢, —
mean exterior temperature for both heating and cooling). The criteria for defining the heat-
ing demand limits (V) is now based on a reference building model, instead of the RCCTE’s
parameters, which was determined by the buildings form factor and the degree days (DD) of
the local climate.

4.3.1 Climatic parameters

The values of the climatic parameters X associated to a specific zone are obtained from the
reference values X for each established region, adjusted to zone altitude, z. The corrections
due to altitude are linear, with a slope a, proportional to the difference between the zone alti-

tude and a reference altitude for the region z,, according to eqn (1):

X = Xper +a(z2— 2 (months or °C) (1)

The climatic parameters applicable to the heating season are the following: DD — number
of degree days, on an 18°C basis, corresponding to the conventional heating season;
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Table 4: Climatic parameters of the historic centre.

z M DD 0

ext, i South

REF REF a REF a REF a kWh/m?

m  months month/km °C °C/km °C °C/km per month

Oporto 94 6.2 2 1250 1600 9.9 -7 130
Historic centre 50 6.1 1180 10.2 130

M — duration of the heating season (months); . — mean exterior temperature of the
coldest month of the heating season; G, — monthly mean solar energy during the
season, acquired on a vertical surface south oriented (kWh/m? month). Table 4 shows
the reference values for Oporto and those calculated for the historic centre, considering
mean altitude of 50 m.

Therefore, three winter climatic zones are established, according to the number of degree
days (DD), on an 18°C basis: ‘11’ — DD < 1300; ‘12’ — 1300 < DD < 1800; ‘I3° — DD > 1800.
The historic centre is classified as an ‘I1” winter climatic zone, corresponding to 6.1 months
of heating season and 1180 degree days (DD) on an 18°C basis. The monthly medium value
of the medium solar energy incident on a vertical surface south oriented, during the heating
season (G, ), is 130 kWh/(m* month).

4.3.2 Heating demand limits — N,

The maximum value for the heating energy demand (V) should be established considering
reference values and conditions, according to eqn (2), being O — heat losses through the
reference envelope in the heating season (kWh); O — heat losses due to reference ventilation
in the heating season (kWh); Q, —net heat gains in the heating season (kWh); Ap — internal
floor area (m?).

Ni = (Q/r,i (ref) + Qve,[ (ref) — qu,i (ref)) /Ap (kWh / mzyear)] (2)

For the winter climatic zone of Oporto, established in the REH as ‘I1’, the U_; values to be
applied after 2015 are the ones showed in Table 5.

Table 5: U, values for the HCO.

Envelope element U _(Wm’K)
External or internal with a heat loss reduction Vertical opaque 0.40
coefficient b, > 0.7 Horizontal opaque 0.35
Adjacent to other buildings Vertical opaque 0.80
With a heat loss reduction coefficient b _< 0.7 Horizontal opaque 0.70
Glazing (U) 2.80

In contact with terrain 0.50
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The reference value for heat losses due to ventilation through the envelope, O, (refy should
be established considering a reference air infiltration rate, R, oy equal to the building in
study, with a maximum of 0.6 ACH.

4.4 Energy simulation models

In order to achieve more accurate results and conclusions a dynamic simulation was per-
formed, regarding the three retrofit strategies, as well as the original building, with the
wooden shutters open by night (E.b). One of the most acknowledged assessment tools to
test the hygrothermal performance of buildings and its energy demands is to create energy
simulation models. In this investigation it was elected the Design Builder program that uses
the Energy Plus dynamic simulation engine to generate performance data. Energy Plus is
the US DOE building energy simulation program for modelling building heating, cooling,
lighting, ventilating and other energy flows. Design Builder works with the main features
and capabilities of BLAST and DOE-2. Once the program already includes the ASHRAE
design weather data of Oporto, we introduced both the constructive and morphological data
of the selected model for the heating and cooling load calculation. The operative tempera-
ture conditions (heating 18°C; cooling 25°C) for a residential use were settled based on a
typical working week (week 18-23 h, weekend 8-23 h). In the remaining hours the system
is considered to be turned off.

This analysis was focused on the building as a whole (A) and on the intermediate dwelling
units that have no heat losses to the ground floor or roof (B.2, B.3, C.2.1,C.2.2,C.3.1,C.3.2,
C.4.2). The simulations comprised E.b — considered as the original, with wooden shutters
opened all day and 0.90 ACH; R.1 — renovation with double glazing and 0.90 ACH; R.2 -
enhancement of ventilation for 0.60 ACH; R.3 — combination of R.1 and R.2. The glazing
characteristics are presented in Table 6.

Table 6: Glazing characteristics.

Calculated values E.b —single glazing R.1, R.3 —double glazing
5 mm 6+ 6+6mm

Total solar transmission 0.809 0.237

Direct solar transmission 0.775 0.136

Light transmission 0.881 0.173

U-value (ISO 10292/ EN673) (W/m?>K) 5.500 2.863

U-value (W/m?K) 5.048 2.863

5 RESULTS AND DISCUSSION
5.1 Heating loads calculation

Table 7 presents the heating loads (N, ) obtained for each dwelling unit and respective simula-
tion for both the existent and retrofitted building and the limits defined by the regulation (V).
These values were converted in daily hours of heating use, calculated in order to not exceed
the calculated limits (Table 8).
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Table 7: Heating loads.

Dwelling N, (kWh/m® year) Existent Retrofit
units
E.a E.b R.1 R.2 R.3

A 38.10 73.90 80.37 69.91 64.18 60.21
B.1 47.49 85.41 91.88 81.26 76.17 72.02
B.2 38.74 74.47 80.98 70.36 64.88 60.77
B.3 39.79 72.11 79.72 67.44 59.65 55.00
B.4 43.45 94.74 100.73 91.26 85.83 82.35
C.1.1 49.69 83.83 92.43 78.27 71.59 66.06
C2.1 36.41 67.49 73.83 63.53 57.96 54.02
C3.1 38.99 61.71 70.09 56.71 49.57 44.62
C4.1 42.07 86.53 92.89 83.11 76.25 72.83
C.1.2 43.20 85.65 90.09 82.80 76.36 73.52
C22 38.77 76.14 83.21 71.58 66.54 61.99
C3.2 38.12 74.77 81.84 70.21 65.32 60.77
C4.2 33.77 69.79 75.64 66.02 60.96 57.19
C52 33.65 70.69 75.84 67.83 63.67 60.81

Table 8: Daily heating hours.

Dwelling units Existent Retrofit mean max. min. CvV

E.a Eb R1 R2 R3

A 12 11 13 14 15 13 15 11 0.1
B.1 13 12 14 15 16 14 16 12 0.1
B.2 12 11 13 14 15 13 15 11 0.1
B.3 13 12 14 16 17 15 17 12 0.1
B.4 11 10 11 12 13 12 13 10 0.1
C.1.1 14 13 15 17 18 15 18 13 0.1
C2.1 13 12 14 15 16 14 16 12 0.1
C3.1 15 13 17 19 21 17 21 13 0.2
C4.1 12 11 12 13 14 12 14 11 0.1
C.1.2 12 12 13 14 14 13 14 12 0.1
C2.2 12 11 13 14 15 13 15 11 0.1
C32 12 11 13 14 15 13 15 11 0.1
C4.2 12 11 12 13 14 12 14 11 0.1
C5.2 11 11 12 13 13 12 13 11 0.1
mean 13 12 13 15 16

max. 15 13 17 19 21

min. 11 10 11 12 13

Cv 0.1 0.1 01 01 0.1
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Analysing the daily heating hours obtained, it is clear that in all the simulations the heating
can be used for more than 8 h, the recognized notion of ‘real use’ (30% of the heating loads),
according to Oporto’s climate conditions. The minimum range of hours was registered in the
existing building with the wooden shutters left open by night (E.b), from 10 to 13 h, while
the conjunction of the two retrofit strategies (R.3) achieved a maximum of 13-21 h. The
fact of closing the internal wooden shutters by night (E.a) corresponds to a minimum hour
gained in the heating use for all dwellings. The enhancement of ventilation (R.2) from 0.90
to 0.60 ACH proved to be the more effective isolated strategy of intervention, gaining from 2
to 4 h, comparing it to situation E.a. Regarding the results obtained per dwelling unit, these
values show a significant reduction in the dwellings with heat losses through the roof (B.4,
C.1.4, C.2.5). This fact is clearly expressed in Fig. 6, which shows the percentage of heating
use achievable per dwelling unit and the mean values per intervention strategy. It also sum-
marizes the hierarchical relations between the interventions and emphasizes the difference
between the results obtained in the dwelling typologies C.1 (west oriented) and C.2 (east
oriented). Figure 7 graphically quantifies this difference, much more expressive in the maxi-
mum values. The correlation between heating loads and heating hours below the limits, in all

%
100

90
80
70
60
50
40
30

43

A Bl B2 B3 B4 Cl.1Cl1l2Cl13Cl14C21C22C23C24C25
E.a E.b R 1 R 2 R3 ® mean

Figure 6: Percentage of heating use per dwelling unit.

87 87
72
61 63
56 53 56
I : I : I I : I :
B C.1 C.2 All

Emean EMmax MEmin

%
100
80
60
40

20

Figure 7: Percentage of heating use per dwelling typology.



S. Alves & J.J. Sendra, Int. J. of Herit. Archit., Vol. 1, No. 4 (2017) 665

strategies, is very strong in dwellings B (R =-0.86) and C.1 (R =-0.79), being moderate in
dwellings C.2 (R = —0.63). The mean coefficient of correlation for all dwellings and strate-
gies is —0.72. Analysing by retrofit strategy, there is an expected increasing correlation with
the level of intervention, E.b (R =-0.22), E.a (R =-0.4), R.1 (R =-0.5), R.2 (R =-0.6) and
R.3 (R=-0.7).

Once the heating calculation methodology uses the same factor for both windows ori-
entation (0.56), it is opportune to analyse the relation between the energy savings and the
dwellings morphological characteristics, as detailed in Table 9. Analysing the data obtained
per dwelling typology, it is possible to infer that the FF (FF = window area/room area) and
the WWR (WWR = glazing area/external facade area) are morphological parameters deter-
minant in the hydrothermal performance of the buildings. The correlation coefficient (R)
measures the strength and direction of the linear relationship between two variables. It is
commonly classified as a strong correlation if its value is superior to 0.60, and a very strong
one if its value is superior to 0.80. Figure 8 presents the correlation coefficients obtained
between WWR and FF and the percentage of heating use achievable per retrofit energy
saving. It is recognizable that both the WWR and the FF present a very strong positive cor-
relation in all the interventions. The FF is slightly less determinant in simulation E.b, the
existing building with the wooden shutters left open by night.

5.2 Energy simulation models

The results obtained for cooling and heating loads after the model simulation of the four
building features are presented in Table 10.

Table 9: Energy saving per retrofit strategy.

Dwelling Area Ratio Energy saving to E.a
units

2 2

m m m? % % (kWh/m? year)

Floor Window Wall WWR FF R.1 R2 R.3

A 490.80 6740 17500 3850 1370 398 971  13.69
B.1 113.60 1550 36.00  43.00 13.60 4.15 924  13.39
B.2 109.40  15.10 4290 3510 13.80 4.12 959  13.70
B.3 109.40  17.80 4220 4200 1620 4.67 1246 17.11
B.4 109.40  13.80 3940 3500 12.60 348 890 12.38
C.1.1 5740  10.40 2060 5060 1820 555 1223  17.77
c2.1 57.40 7.70 2160 3580 1350 396 952  13.47
C3.1 5740  10.40 2130 49.10 1820 5.00 12.14  17.09
C4.1 57.40 7.70 19.90  39.00 1350 342 1028 13.71
C.12 53.80 5.00 1530 3270 930 285 928 1213
Cc22 49.00 7.30 2130 3440 1500 456  9.60 14.15
C3.2 49.00 7.30 21.00 3490 1500 456 945  14.00
C4.2 49.00 6.10 19.60  31.00 1240 3.78  8.83  12.60

Cs52 49.00 5.40 14.50 37.00 11.00  2.86 7.01 9.88
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Figure 8: Coefficients of correlation between percentage of heating use and dwellings
morphological characteristics.

5.2.1 Heating loads

As presented in Fig. 9 and Table 10, all the simulations registered heating loads below the
limit (N), except for some minor values, which revealed some increases in dwelling A, R.1
(+1.17 kWh/m?); dwelling C.3.2, E.b (+1.87 kWh/m?) and R.1 (+1.01 kWh/m?). On the other
hand, the values of dwelling C.4.2, with the lowest heating demand limit (Ni) due to both its
WWR and FF, were above the limit in all simulations: E.b (+12.99 kWh/m?); R.1 (+13.22

Table 10: Cooling and heating loads.

Heating (kWh/m?) Cooling (kWh/m?) N,

N, E.b R.1 R.2 R.3 E.b R.1 R.2 R.3
A 38.10 3721 3927 30.76 32.65 0.31 0.08 042 0.10
B.2 38.74 3509 3635 2636 23.85 0.07 0.00 0.10  0.00
B.3 39.79 3591 3853 27.37 2410 0.19 0.01 0.31 0.00
Cc2.1 36.41 32.13 3538 2421 31.76 0.21 0.00 0.35 0.00
C22 38.77 4054 39.10 31.84 30.34 0.00 0.00 0.00 0.00
C3.1 38.99 2825 32.87 20.79 2897 140 0.07 2.74 0.10
C3.2 38.12  40.64 39.77 3274 31.80 0.00 0.00 0.00 0.00
C4.2 3377 46.76 46.99 40.24 4044 0.17 0.09 021  0.10
mean 3784 37.07 38.53 29.29 3049 0.29 0.03 0.52 0.04
max. 39.79  46.76  46.99 40.24 4044 140 0.09 274 0.10
min. 3377 2825 3287 20.79 23.85 0.00 0.00 0.00 0.00
SD 1.91 568 415 599 527 0.46 0.04 091 0.05
CvV 0.05 0.15 0.11 0.20 0.17 1.56 1.29 1.77 1.38
Mean % of total 99.4% 0.6%
CVv 0.19 2.14

Coefficient Window -0.07 000 000 -001 003 042 -0.03 042

of correla-  WWR 079 —0.70 -0.75 -047 0.85 020 086 0.28

tion (R) FF 062 -0.64 -0.64 -052 070 -007 074 002
N 056 -0.67 -0.62 -0.88

i
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Figure 9: Heating loads and N, limits per dwelling typology.

kWh/m?); R.2 (+6.47 kWh/m?); R.3 (+6.67 kWh/m?). The heating loads of E.b, R.1, R.2
revealed a strong negative correlation with the WWR, with a coefficient of correlation (R) of
—0.79, -0.70 and —0.75, respectively. These simulations presented a moderate relation with
the FF (R = 0.62/0.64). The heating loads of R.3 presented a very strong negative correlation
with the heating limits (V,), with R = 0.88.

Focusing on the heating energy savings of the three retrofit strategies in comparison with
the original E.b (Table 11) it is noticeable that retrofit R.1 (double glazing) corresponds to an
increase in the heating loads, due to a significant average reduction of 85% in the solar gains
(CV =0.01). There is a strong relation with the WWR (R = 0.88). Dwelling C.3.1, with the
highest WWR and FF, registered the maximum increase of the heating loads (+16.3%), with
the predictable minimum increase in dwelling C.4.2 (+0.5%). Retrofit R.2 (0.60 ACH), as
in the normative calculation, proved to be the most effective in the heating energy savings
with a minimum saving of 14% (C.4.2) and a maximum of 26.4% (C.3.1).There is a moder-
ate negative correlation between the percentage of energy savings and the WWR, FF
and heating load limits N, (R = —-0.61, R =-0.63, R = -0.65, respectively). Retrofit R.3
(double glazing and 0.60 ACH), also penalized by the loss of the solar gains, corresponds to
an increase of the heating loads only on dwelling C.3.1, due to the highest WWR and FF
(+2.5%), achieving the maximum savings on dwellings B.2 and B.3, around 32%. Both ret-
rofit strategies R.1 and R.3 presented a very high coefficient of variation in the savings of all
dwellings. R.2 is the most regular in the savings per dwelling (CV = 0.2; mean = -21.5%). It
is quite recognizable in Fig. 10 that strategies R.1 and R.2 present a very strong correlation
with the original E.b (R = 0.96; R = 0.99), not so noticeable in R.3 (R = 0.61).

Heating loads R (kWh/m?)

50 .
40 e T LA °
bkl Al L
30 et
o0
20 LY
R.1 R.2 R3
10 y=10,7001x+ 12,584 y=1,0418x=9,3277 y =0,5689x + 9,4005
0 R2=0918 R?=0,9784 R?=0,3768
0 5 10 15 20 25 30 35 40 45 50

Heating loads E.b (kWh/m?)
¢ Rl e R2 R.3

Figure 10: Heating loads correlation between R.1, R.2, R.3 and E.b.
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Table 11: Heating savings and dwelling characteristics.

Heating saving Solar gains
Window  WWR FF R.I-Eb R.2-Eb RJ3-Eb R.I/R3-Eb
(m2) (%) (%) (%) (%) (%) (%)

A 67.40 38.50 13.70 5.55 -17.33 -12.24 -84.33
B.2 15.10 35.10 13.80 3.61 -24.87 -32.03 -84.62
B.3 17.80 42.00 16.20 7.32 -23.78 -32.88 -84.36
Cc.2.1 7.70 35.80 13.50 10.11 -24.65 -1.17 -84.46
C.22 7.30 34.40 15.00 -3.55 -21.46 -25.15 -84.21
C3.1 10.40 49.10 18.20 16.32 -26.43 2.53 -85.98
C32 7.30 34.90 15.00 -2.13 -19.42 -21.75 -85.52
C4.2 6.10 31.00 12.40 0.49 -13.95 -13.52 -84.77
mean 37.60 14.73 4.72 -21.49 -17.03 -84.78
max. 49.10 18.20 16.32 -13.95 2.53 -84.21
min. 31.00 12.40 -3.55 -26.43 -32.88 -85.98
SD 5.64 1.82 6.61 4.30 13.28 0.63
CV 0.15 0.12 1.40 -0.20 -0.78 -0.01
Coefficient of Window 0.12 0.28 0.03 0.32
correlation (R) WWR 0.81 -0.61 0.35 -0.50

FF 0.52 -0.63 0.13 -0.57

N. 0.20 -0.65 -0.37

i

5.2.2 Cooling loads

The results obtained confirmed that the cooling loads are quite insignificant in all the dwell-
ing units and all the simulations. The mean percentage of the cooling loads corresponds to
0.6% of the total annual loads. The maximum load of R.1 (double glazing) was 0.09 kWh/m?,
in dwelling C.4.2, the one that presents the lowest WWR and FF. Simulation R.3 presented
very similar results. Regarding the single glazing simulations the maximum value was 1.40
kWh/m?in E.b (0.90 ACH) and 2.74 kWh/m? in R.2 (0.60 ACH) in dwelling C.3.1, the one
that presents the highest WWR and FF. It is recognizable that there is a very strong correla-
tion between the WWR and both E.b (R = 0.85) and R.2 (R = 0.86) cooling loads. There is
also a significant relationship with the FF, in both E.b (R =0.70) and R.2 (R = 0.74).

6 CONCLUSIONS
Regarding the results obtained with this study we can conclude that, although the building’s
envelope presents heat transmittance values (U) quite distant from the limits thereby defined,
its energy heating demand can be placed below its corresponding limit, in comfortable con-
ditions of heating use. In all the simulations the heating can be used for more than 30% of
the total heating loads, the recognized notion of 8 hours of ‘real use’ in Oporto. Using the
normative methodology, the minimum range of hours was registered in the existing building
with the wooden shutters left open by night, from 10 to 13 h, while closing them by night
enables a daily heating use of 11-15 h. The enhancement of ventilation proved to be the more
effective isolated strategy of intervention, with a range of 12—19 h. The substitution of single
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glazing for a double glazing registered from 11 to 17 h, while the conjunction of the two
retrofit strategies achieved a maximum of 13-21 h.

On the other hand, a dynamic simulation with energy models exposed the importance
of the loss of solar gains in the heating season, when retrofitting single glazed windows by
double glazed ones. However, the acoustic advantages of this strategy should be taken into
account. It is important to associate this intervention with the enhancement of ventilation,
in order to achieve an optimized solution. Energetically, the enhancement of ventilation as
a single intervention proved to be the most unvarying in the heating energy savings with a
minimum saving of 14% and a maximum of 26.4%.

A primary measure to ensure the energy performance of these buildings is to take advan-
tage of its architectural heritage, namely its typical internal wooden shutters, closing them by
night in order to reduce the heat losses. Following the principle of non-intrusive interventions
versus increase of the energy efficiency, we should improve the windows infiltration rate,
which proved to be an important retrofit strategy. The most common bad state of conserva-
tion of the windows potentiates this intervention, by avoiding any cracks in the window
assembly. In addition, it is particularly opportune for the replacement of single glazing for
a double glazed one, by constructing a new wooden frame following the original design.
These non-intrusive interventions, while not adding any new materials to the external enve-
lope, enhance the architectural heritage values of these buildings. Hence, it is crucial to have
an overall knowledge of these historic buildings’ morphological characteristics, once the
FF and the WWR proved to be quite determinant in the heating energy savings, within the
defined retrofit strategies. These results were obtained for a typological representative build-
ing of the HCO, although in a specific urban context, namely the streets width and respective
east—west orientation. Further investigations should be developed embracing a wider range
of situations.
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